| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439 | 
							- /* dgelsx.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__0 = 0;
 
- static doublereal c_b13 = 0.;
 
- static integer c__2 = 2;
 
- static integer c__1 = 1;
 
- static doublereal c_b36 = 1.;
 
- /* Subroutine */ int _starpu_dgelsx_(integer *m, integer *n, integer *nrhs, 
 
- 	doublereal *a, integer *lda, doublereal *b, integer *ldb, integer *
 
- 	jpvt, doublereal *rcond, integer *rank, doublereal *work, integer *
 
- 	info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
 
-     doublereal d__1;
 
-     /* Local variables */
 
-     integer i__, j, k;
 
-     doublereal c1, c2, s1, s2, t1, t2;
 
-     integer mn;
 
-     doublereal anrm, bnrm, smin, smax;
 
-     integer iascl, ibscl, ismin, ismax;
 
-     extern /* Subroutine */ int _starpu_dtrsm_(char *, char *, char *, char *, 
 
- 	    integer *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), _starpu_dlaic1_(
 
- 	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *), _starpu_dorm2r_(
 
- 	    char *, char *, integer *, integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	    integer *), _starpu_dlabad_(doublereal *, doublereal *);
 
-     extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *);
 
-     extern /* Subroutine */ int _starpu_dlascl_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
 
- 	    integer *, integer *), _starpu_dgeqpf_(integer *, integer *, 
 
- 	    doublereal *, integer *, integer *, doublereal *, doublereal *, 
 
- 	    integer *), _starpu_dlaset_(char *, integer *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *), _starpu_xerbla_(char *, 
 
- 	    integer *);
 
-     doublereal bignum;
 
-     extern /* Subroutine */ int _starpu_dlatzm_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *);
 
-     doublereal sminpr, smaxpr, smlnum;
 
-     extern /* Subroutine */ int _starpu_dtzrqf_(integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, integer *);
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  This routine is deprecated and has been replaced by routine DGELSY. */
 
- /*  DGELSX computes the minimum-norm solution to a real linear least */
 
- /*  squares problem: */
 
- /*      minimize || A * X - B || */
 
- /*  using a complete orthogonal factorization of A.  A is an M-by-N */
 
- /*  matrix which may be rank-deficient. */
 
- /*  Several right hand side vectors b and solution vectors x can be */
 
- /*  handled in a single call; they are stored as the columns of the */
 
- /*  M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
 
- /*  matrix X. */
 
- /*  The routine first computes a QR factorization with column pivoting: */
 
- /*      A * P = Q * [ R11 R12 ] */
 
- /*                  [  0  R22 ] */
 
- /*  with R11 defined as the largest leading submatrix whose estimated */
 
- /*  condition number is less than 1/RCOND.  The order of R11, RANK, */
 
- /*  is the effective rank of A. */
 
- /*  Then, R22 is considered to be negligible, and R12 is annihilated */
 
- /*  by orthogonal transformations from the right, arriving at the */
 
- /*  complete orthogonal factorization: */
 
- /*     A * P = Q * [ T11 0 ] * Z */
 
- /*                 [  0  0 ] */
 
- /*  The minimum-norm solution is then */
 
- /*     X = P * Z' [ inv(T11)*Q1'*B ] */
 
- /*                [        0       ] */
 
- /*  where Q1 consists of the first RANK columns of Q. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A.  M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix A.  N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of */
 
- /*          columns of matrices B and X. NRHS >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the M-by-N matrix A. */
 
- /*          On exit, A has been overwritten by details of its */
 
- /*          complete orthogonal factorization. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,M). */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          On entry, the M-by-NRHS right hand side matrix B. */
 
- /*          On exit, the N-by-NRHS solution matrix X. */
 
- /*          If m >= n and RANK = n, the residual sum-of-squares for */
 
- /*          the solution in the i-th column is given by the sum of */
 
- /*          squares of elements N+1:M in that column. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B. LDB >= max(1,M,N). */
 
- /*  JPVT    (input/output) INTEGER array, dimension (N) */
 
- /*          On entry, if JPVT(i) .ne. 0, the i-th column of A is an */
 
- /*          initial column, otherwise it is a free column.  Before */
 
- /*          the QR factorization of A, all initial columns are */
 
- /*          permuted to the leading positions; only the remaining */
 
- /*          free columns are moved as a result of column pivoting */
 
- /*          during the factorization. */
 
- /*          On exit, if JPVT(i) = k, then the i-th column of A*P */
 
- /*          was the k-th column of A. */
 
- /*  RCOND   (input) DOUBLE PRECISION */
 
- /*          RCOND is used to determine the effective rank of A, which */
 
- /*          is defined as the order of the largest leading triangular */
 
- /*          submatrix R11 in the QR factorization with pivoting of A, */
 
- /*          whose estimated condition number < 1/RCOND. */
 
- /*  RANK    (output) INTEGER */
 
- /*          The effective rank of A, i.e., the order of the submatrix */
 
- /*          R11.  This is the same as the order of the submatrix T11 */
 
- /*          in the complete orthogonal factorization of A. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension */
 
- /*                      (max( min(M,N)+3*N, 2*min(M,N)+NRHS )), */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     --jpvt;
 
-     --work;
 
-     /* Function Body */
 
-     mn = min(*m,*n);
 
-     ismin = mn + 1;
 
-     ismax = (mn << 1) + 1;
 
- /*     Test the input arguments. */
 
-     *info = 0;
 
-     if (*m < 0) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -3;
 
-     } else if (*lda < max(1,*m)) {
 
- 	*info = -5;
 
-     } else /* if(complicated condition) */ {
 
- /* Computing MAX */
 
- 	i__1 = max(1,*m);
 
- 	if (*ldb < max(i__1,*n)) {
 
- 	    *info = -7;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DGELSX", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
- /* Computing MIN */
 
-     i__1 = min(*m,*n);
 
-     if (min(i__1,*nrhs) == 0) {
 
- 	*rank = 0;
 
- 	return 0;
 
-     }
 
- /*     Get machine parameters */
 
-     smlnum = _starpu_dlamch_("S") / _starpu_dlamch_("P");
 
-     bignum = 1. / smlnum;
 
-     _starpu_dlabad_(&smlnum, &bignum);
 
- /*     Scale A, B if max elements outside range [SMLNUM,BIGNUM] */
 
-     anrm = _starpu_dlange_("M", m, n, &a[a_offset], lda, &work[1]);
 
-     iascl = 0;
 
-     if (anrm > 0. && anrm < smlnum) {
 
- /*        Scale matrix norm up to SMLNUM */
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 
 
- 		info);
 
- 	iascl = 1;
 
-     } else if (anrm > bignum) {
 
- /*        Scale matrix norm down to BIGNUM */
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 
 
- 		info);
 
- 	iascl = 2;
 
-     } else if (anrm == 0.) {
 
- /*        Matrix all zero. Return zero solution. */
 
- 	i__1 = max(*m,*n);
 
- 	_starpu_dlaset_("F", &i__1, nrhs, &c_b13, &c_b13, &b[b_offset], ldb);
 
- 	*rank = 0;
 
- 	goto L100;
 
-     }
 
-     bnrm = _starpu_dlange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
 
-     ibscl = 0;
 
-     if (bnrm > 0. && bnrm < smlnum) {
 
- /*        Scale matrix norm up to SMLNUM */
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb, 
 
- 		 info);
 
- 	ibscl = 1;
 
-     } else if (bnrm > bignum) {
 
- /*        Scale matrix norm down to BIGNUM */
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb, 
 
- 		 info);
 
- 	ibscl = 2;
 
-     }
 
- /*     Compute QR factorization with column pivoting of A: */
 
- /*        A * P = Q * R */
 
-     _starpu_dgeqpf_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], info);
 
- /*     workspace 3*N. Details of Householder rotations stored */
 
- /*     in WORK(1:MN). */
 
- /*     Determine RANK using incremental condition estimation */
 
-     work[ismin] = 1.;
 
-     work[ismax] = 1.;
 
-     smax = (d__1 = a[a_dim1 + 1], abs(d__1));
 
-     smin = smax;
 
-     if ((d__1 = a[a_dim1 + 1], abs(d__1)) == 0.) {
 
- 	*rank = 0;
 
- 	i__1 = max(*m,*n);
 
- 	_starpu_dlaset_("F", &i__1, nrhs, &c_b13, &c_b13, &b[b_offset], ldb);
 
- 	goto L100;
 
-     } else {
 
- 	*rank = 1;
 
-     }
 
- L10:
 
-     if (*rank < mn) {
 
- 	i__ = *rank + 1;
 
- 	_starpu_dlaic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[
 
- 		i__ + i__ * a_dim1], &sminpr, &s1, &c1);
 
- 	_starpu_dlaic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[
 
- 		i__ + i__ * a_dim1], &smaxpr, &s2, &c2);
 
- 	if (smaxpr * *rcond <= sminpr) {
 
- 	    i__1 = *rank;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		work[ismin + i__ - 1] = s1 * work[ismin + i__ - 1];
 
- 		work[ismax + i__ - 1] = s2 * work[ismax + i__ - 1];
 
- /* L20: */
 
- 	    }
 
- 	    work[ismin + *rank] = c1;
 
- 	    work[ismax + *rank] = c2;
 
- 	    smin = sminpr;
 
- 	    smax = smaxpr;
 
- 	    ++(*rank);
 
- 	    goto L10;
 
- 	}
 
-     }
 
- /*     Logically partition R = [ R11 R12 ] */
 
- /*                             [  0  R22 ] */
 
- /*     where R11 = R(1:RANK,1:RANK) */
 
- /*     [R11,R12] = [ T11, 0 ] * Y */
 
-     if (*rank < *n) {
 
- 	_starpu_dtzrqf_(rank, n, &a[a_offset], lda, &work[mn + 1], info);
 
-     }
 
- /*     Details of Householder rotations stored in WORK(MN+1:2*MN) */
 
- /*     B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */
 
-     _starpu_dorm2r_("Left", "Transpose", m, nrhs, &mn, &a[a_offset], lda, &work[1], &
 
- 	    b[b_offset], ldb, &work[(mn << 1) + 1], info);
 
- /*     workspace NRHS */
 
- /*     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */
 
-     _starpu_dtrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b36, &
 
- 	    a[a_offset], lda, &b[b_offset], ldb);
 
-     i__1 = *n;
 
-     for (i__ = *rank + 1; i__ <= i__1; ++i__) {
 
- 	i__2 = *nrhs;
 
- 	for (j = 1; j <= i__2; ++j) {
 
- 	    b[i__ + j * b_dim1] = 0.;
 
- /* L30: */
 
- 	}
 
- /* L40: */
 
-     }
 
- /*     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS) */
 
-     if (*rank < *n) {
 
- 	i__1 = *rank;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    i__2 = *n - *rank + 1;
 
- 	    _starpu_dlatzm_("Left", &i__2, nrhs, &a[i__ + (*rank + 1) * a_dim1], lda, 
 
- 		    &work[mn + i__], &b[i__ + b_dim1], &b[*rank + 1 + b_dim1], 
 
- 		     ldb, &work[(mn << 1) + 1]);
 
- /* L50: */
 
- 	}
 
-     }
 
- /*     workspace NRHS */
 
- /*     B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */
 
-     i__1 = *nrhs;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	i__2 = *n;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    work[(mn << 1) + i__] = 1.;
 
- /* L60: */
 
- 	}
 
- 	i__2 = *n;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    if (work[(mn << 1) + i__] == 1.) {
 
- 		if (jpvt[i__] != i__) {
 
- 		    k = i__;
 
- 		    t1 = b[k + j * b_dim1];
 
- 		    t2 = b[jpvt[k] + j * b_dim1];
 
- L70:
 
- 		    b[jpvt[k] + j * b_dim1] = t1;
 
- 		    work[(mn << 1) + k] = 0.;
 
- 		    t1 = t2;
 
- 		    k = jpvt[k];
 
- 		    t2 = b[jpvt[k] + j * b_dim1];
 
- 		    if (jpvt[k] != i__) {
 
- 			goto L70;
 
- 		    }
 
- 		    b[i__ + j * b_dim1] = t1;
 
- 		    work[(mn << 1) + k] = 0.;
 
- 		}
 
- 	    }
 
- /* L80: */
 
- 	}
 
- /* L90: */
 
-     }
 
- /*     Undo scaling */
 
-     if (iascl == 1) {
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb, 
 
- 		 info);
 
- 	_starpu_dlascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset], 
 
- 		lda, info);
 
-     } else if (iascl == 2) {
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb, 
 
- 		 info);
 
- 	_starpu_dlascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset], 
 
- 		lda, info);
 
-     }
 
-     if (ibscl == 1) {
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb, 
 
- 		 info);
 
-     } else if (ibscl == 2) {
 
- 	_starpu_dlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb, 
 
- 		 info);
 
-     }
 
- L100:
 
-     return 0;
 
- /*     End of DGELSX */
 
- } /* _starpu_dgelsx_ */
 
 
  |