123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381 |
- /* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
- * Qwt Widget Library
- * Copyright (C) 1997 Josef Wilgen
- * Copyright (C) 2002 Uwe Rathmann
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the Qwt License, Version 1.0
- *****************************************************************************/
- #include "qwt_spline.h"
- #include "qwt_math.h"
- class QwtSpline::PrivateData
- {
- public:
- PrivateData():
- splineType( QwtSpline::Natural )
- {
- }
- QwtSpline::SplineType splineType;
- // coefficient vectors
- QVector<double> a;
- QVector<double> b;
- QVector<double> c;
- // control points
- QPolygonF points;
- };
- static int lookup( double x, const QPolygonF &values )
- {
- #if 0
- //qLowerBound/qHigherBound ???
- #endif
- int i1;
- const int size = ( int )values.size();
- if ( x <= values[0].x() )
- i1 = 0;
- else if ( x >= values[size - 2].x() )
- i1 = size - 2;
- else
- {
- i1 = 0;
- int i2 = size - 2;
- int i3 = 0;
- while ( i2 - i1 > 1 )
- {
- i3 = i1 + ( ( i2 - i1 ) >> 1 );
- if ( values[i3].x() > x )
- i2 = i3;
- else
- i1 = i3;
- }
- }
- return i1;
- }
- //! Constructor
- QwtSpline::QwtSpline()
- {
- d_data = new PrivateData;
- }
- /*!
- Copy constructor
- \param other Spline used for initilization
- */
- QwtSpline::QwtSpline( const QwtSpline& other )
- {
- d_data = new PrivateData( *other.d_data );
- }
- /*!
- Assignment operator
- \param other Spline used for initilization
- */
- QwtSpline &QwtSpline::operator=( const QwtSpline & other )
- {
- *d_data = *other.d_data;
- return *this;
- }
- //! Destructor
- QwtSpline::~QwtSpline()
- {
- delete d_data;
- }
- /*!
- Select the algorithm used for calculating the spline
- \param splineType Spline type
- \sa splineType()
- */
- void QwtSpline::setSplineType( SplineType splineType )
- {
- d_data->splineType = splineType;
- }
- /*!
- \return the spline type
- \sa setSplineType()
- */
- QwtSpline::SplineType QwtSpline::splineType() const
- {
- return d_data->splineType;
- }
- /*!
- \brief Calculate the spline coefficients
- Depending on the value of \a periodic, this function
- will determine the coefficients for a natural or a periodic
- spline and store them internally.
- \param points Points
- \return true if successful
- \warning The sequence of x (but not y) values has to be strictly monotone
- increasing, which means <code>points[i].x() < points[i+1].x()</code>.
- If this is not the case, the function will return false
- */
- bool QwtSpline::setPoints( const QPolygonF& points )
- {
- const int size = points.size();
- if ( size <= 2 )
- {
- reset();
- return false;
- }
- d_data->points = points;
- d_data->a.resize( size - 1 );
- d_data->b.resize( size - 1 );
- d_data->c.resize( size - 1 );
- bool ok;
- if ( d_data->splineType == Periodic )
- ok = buildPeriodicSpline( points );
- else
- ok = buildNaturalSpline( points );
- if ( !ok )
- reset();
- return ok;
- }
- /*!
- Return points passed by setPoints
- */
- QPolygonF QwtSpline::points() const
- {
- return d_data->points;
- }
- //! \return A coefficients
- const QVector<double> &QwtSpline::coefficientsA() const
- {
- return d_data->a;
- }
- //! \return B coefficients
- const QVector<double> &QwtSpline::coefficientsB() const
- {
- return d_data->b;
- }
- //! \return C coefficients
- const QVector<double> &QwtSpline::coefficientsC() const
- {
- return d_data->c;
- }
- //! Free allocated memory and set size to 0
- void QwtSpline::reset()
- {
- d_data->a.resize( 0 );
- d_data->b.resize( 0 );
- d_data->c.resize( 0 );
- d_data->points.resize( 0 );
- }
- //! True if valid
- bool QwtSpline::isValid() const
- {
- return d_data->a.size() > 0;
- }
- /*!
- Calculate the interpolated function value corresponding
- to a given argument x.
- */
- double QwtSpline::value( double x ) const
- {
- if ( d_data->a.size() == 0 )
- return 0.0;
- const int i = lookup( x, d_data->points );
- const double delta = x - d_data->points[i].x();
- return( ( ( ( d_data->a[i] * delta ) + d_data->b[i] )
- * delta + d_data->c[i] ) * delta + d_data->points[i].y() );
- }
- /*!
- \brief Determines the coefficients for a natural spline
- \return true if successful
- */
- bool QwtSpline::buildNaturalSpline( const QPolygonF &points )
- {
- int i;
- const QPointF *p = points.data();
- const int size = points.size();
- double *a = d_data->a.data();
- double *b = d_data->b.data();
- double *c = d_data->c.data();
- // set up tridiagonal equation system; use coefficient
- // vectors as temporary buffers
- QVector<double> h( size - 1 );
- for ( i = 0; i < size - 1; i++ )
- {
- h[i] = p[i+1].x() - p[i].x();
- if ( h[i] <= 0 )
- return false;
- }
- QVector<double> d( size - 1 );
- double dy1 = ( p[1].y() - p[0].y() ) / h[0];
- for ( i = 1; i < size - 1; i++ )
- {
- b[i] = c[i] = h[i];
- a[i] = 2.0 * ( h[i-1] + h[i] );
- const double dy2 = ( p[i+1].y() - p[i].y() ) / h[i];
- d[i] = 6.0 * ( dy1 - dy2 );
- dy1 = dy2;
- }
- //
- // solve it
- //
- // L-U Factorization
- for ( i = 1; i < size - 2; i++ )
- {
- c[i] /= a[i];
- a[i+1] -= b[i] * c[i];
- }
- // forward elimination
- QVector<double> s( size );
- s[1] = d[1];
- for ( i = 2; i < size - 1; i++ )
- s[i] = d[i] - c[i-1] * s[i-1];
- // backward elimination
- s[size - 2] = - s[size - 2] / a[size - 2];
- for ( i = size - 3; i > 0; i-- )
- s[i] = - ( s[i] + b[i] * s[i+1] ) / a[i];
- s[size - 1] = s[0] = 0.0;
- //
- // Finally, determine the spline coefficients
- //
- for ( i = 0; i < size - 1; i++ )
- {
- a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i] );
- b[i] = 0.5 * s[i];
- c[i] = ( p[i+1].y() - p[i].y() ) / h[i]
- - ( s[i+1] + 2.0 * s[i] ) * h[i] / 6.0;
- }
- return true;
- }
- /*!
- \brief Determines the coefficients for a periodic spline
- \return true if successful
- */
- bool QwtSpline::buildPeriodicSpline( const QPolygonF &points )
- {
- int i;
- const QPointF *p = points.data();
- const int size = points.size();
- double *a = d_data->a.data();
- double *b = d_data->b.data();
- double *c = d_data->c.data();
- QVector<double> d( size - 1 );
- QVector<double> h( size - 1 );
- QVector<double> s( size );
- //
- // setup equation system; use coefficient
- // vectors as temporary buffers
- //
- for ( i = 0; i < size - 1; i++ )
- {
- h[i] = p[i+1].x() - p[i].x();
- if ( h[i] <= 0.0 )
- return false;
- }
- const int imax = size - 2;
- double htmp = h[imax];
- double dy1 = ( p[0].y() - p[imax].y() ) / htmp;
- for ( i = 0; i <= imax; i++ )
- {
- b[i] = c[i] = h[i];
- a[i] = 2.0 * ( htmp + h[i] );
- const double dy2 = ( p[i+1].y() - p[i].y() ) / h[i];
- d[i] = 6.0 * ( dy1 - dy2 );
- dy1 = dy2;
- htmp = h[i];
- }
- //
- // solve it
- //
- // L-U Factorization
- a[0] = qSqrt( a[0] );
- c[0] = h[imax] / a[0];
- double sum = 0;
- for ( i = 0; i < imax - 1; i++ )
- {
- b[i] /= a[i];
- if ( i > 0 )
- c[i] = - c[i-1] * b[i-1] / a[i];
- a[i+1] = qSqrt( a[i+1] - qwtSqr( b[i] ) );
- sum += qwtSqr( c[i] );
- }
- b[imax-1] = ( b[imax-1] - c[imax-2] * b[imax-2] ) / a[imax-1];
- a[imax] = qSqrt( a[imax] - qwtSqr( b[imax-1] ) - sum );
- // forward elimination
- s[0] = d[0] / a[0];
- sum = 0;
- for ( i = 1; i < imax; i++ )
- {
- s[i] = ( d[i] - b[i-1] * s[i-1] ) / a[i];
- sum += c[i-1] * s[i-1];
- }
- s[imax] = ( d[imax] - b[imax-1] * s[imax-1] - sum ) / a[imax];
- // backward elimination
- s[imax] = - s[imax] / a[imax];
- s[imax-1] = -( s[imax-1] + b[imax-1] * s[imax] ) / a[imax-1];
- for ( i = imax - 2; i >= 0; i-- )
- s[i] = - ( s[i] + b[i] * s[i+1] + c[i] * s[imax] ) / a[i];
- //
- // Finally, determine the spline coefficients
- //
- s[size-1] = s[0];
- for ( i = 0; i < size - 1; i++ )
- {
- a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i] );
- b[i] = 0.5 * s[i];
- c[i] = ( p[i+1].y() - p[i].y() )
- / h[i] - ( s[i+1] + 2.0 * s[i] ) * h[i] / 6.0;
- }
- return true;
- }
|