| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632 | 
							- /* dlahqr.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dlahqr_(logical *wantt, logical *wantz, integer *n, 
 
- 	integer *ilo, integer *ihi, doublereal *h__, integer *ldh, doublereal 
 
- 	*wr, doublereal *wi, integer *iloz, integer *ihiz, doublereal *z__, 
 
- 	integer *ldz, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3;
 
-     doublereal d__1, d__2, d__3, d__4;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__, j, k, l, m;
 
-     doublereal s, v[3];
 
-     integer i1, i2;
 
-     doublereal t1, t2, t3, v2, v3, aa, ab, ba, bb, h11, h12, h21, h22, cs;
 
-     integer nh;
 
-     doublereal sn;
 
-     integer nr;
 
-     doublereal tr;
 
-     integer nz;
 
-     doublereal det, h21s;
 
-     integer its;
 
-     doublereal ulp, sum, tst, rt1i, rt2i, rt1r, rt2r;
 
-     extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *), _starpu_dcopy_(
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *), 
 
- 	    _starpu_dlanv2_(doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *), _starpu_dlabad_(doublereal *, doublereal *);
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     extern /* Subroutine */ int _starpu_dlarfg_(integer *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *);
 
-     doublereal safmin, safmax, rtdisc, smlnum;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*     Purpose */
 
- /*     ======= */
 
- /*     DLAHQR is an auxiliary routine called by DHSEQR to update the */
 
- /*     eigenvalues and Schur decomposition already computed by DHSEQR, by */
 
- /*     dealing with the Hessenberg submatrix in rows and columns ILO to */
 
- /*     IHI. */
 
- /*     Arguments */
 
- /*     ========= */
 
- /*     WANTT   (input) LOGICAL */
 
- /*          = .TRUE. : the full Schur form T is required; */
 
- /*          = .FALSE.: only eigenvalues are required. */
 
- /*     WANTZ   (input) LOGICAL */
 
- /*          = .TRUE. : the matrix of Schur vectors Z is required; */
 
- /*          = .FALSE.: Schur vectors are not required. */
 
- /*     N       (input) INTEGER */
 
- /*          The order of the matrix H.  N >= 0. */
 
- /*     ILO     (input) INTEGER */
 
- /*     IHI     (input) INTEGER */
 
- /*          It is assumed that H is already upper quasi-triangular in */
 
- /*          rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless */
 
- /*          ILO = 1). DLAHQR works primarily with the Hessenberg */
 
- /*          submatrix in rows and columns ILO to IHI, but applies */
 
- /*          transformations to all of H if WANTT is .TRUE.. */
 
- /*          1 <= ILO <= max(1,IHI); IHI <= N. */
 
- /*     H       (input/output) DOUBLE PRECISION array, dimension (LDH,N) */
 
- /*          On entry, the upper Hessenberg matrix H. */
 
- /*          On exit, if INFO is zero and if WANTT is .TRUE., H is upper */
 
- /*          quasi-triangular in rows and columns ILO:IHI, with any */
 
- /*          2-by-2 diagonal blocks in standard form. If INFO is zero */
 
- /*          and WANTT is .FALSE., the contents of H are unspecified on */
 
- /*          exit.  The output state of H if INFO is nonzero is given */
 
- /*          below under the description of INFO. */
 
- /*     LDH     (input) INTEGER */
 
- /*          The leading dimension of the array H. LDH >= max(1,N). */
 
- /*     WR      (output) DOUBLE PRECISION array, dimension (N) */
 
- /*     WI      (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The real and imaginary parts, respectively, of the computed */
 
- /*          eigenvalues ILO to IHI are stored in the corresponding */
 
- /*          elements of WR and WI. If two eigenvalues are computed as a */
 
- /*          complex conjugate pair, they are stored in consecutive */
 
- /*          elements of WR and WI, say the i-th and (i+1)th, with */
 
- /*          WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the */
 
- /*          eigenvalues are stored in the same order as on the diagonal */
 
- /*          of the Schur form returned in H, with WR(i) = H(i,i), and, if */
 
- /*          H(i:i+1,i:i+1) is a 2-by-2 diagonal block, */
 
- /*          WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i). */
 
- /*     ILOZ    (input) INTEGER */
 
- /*     IHIZ    (input) INTEGER */
 
- /*          Specify the rows of Z to which transformations must be */
 
- /*          applied if WANTZ is .TRUE.. */
 
- /*          1 <= ILOZ <= ILO; IHI <= IHIZ <= N. */
 
- /*     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */
 
- /*          If WANTZ is .TRUE., on entry Z must contain the current */
 
- /*          matrix Z of transformations accumulated by DHSEQR, and on */
 
- /*          exit Z has been updated; transformations are applied only to */
 
- /*          the submatrix Z(ILOZ:IHIZ,ILO:IHI). */
 
- /*          If WANTZ is .FALSE., Z is not referenced. */
 
- /*     LDZ     (input) INTEGER */
 
- /*          The leading dimension of the array Z. LDZ >= max(1,N). */
 
- /*     INFO    (output) INTEGER */
 
- /*           =   0: successful exit */
 
- /*          .GT. 0: If INFO = i, DLAHQR failed to compute all the */
 
- /*                  eigenvalues ILO to IHI in a total of 30 iterations */
 
- /*                  per eigenvalue; elements i+1:ihi of WR and WI */
 
- /*                  contain those eigenvalues which have been */
 
- /*                  successfully computed. */
 
- /*                  If INFO .GT. 0 and WANTT is .FALSE., then on exit, */
 
- /*                  the remaining unconverged eigenvalues are the */
 
- /*                  eigenvalues of the upper Hessenberg matrix rows */
 
- /*                  and columns ILO thorugh INFO of the final, output */
 
- /*                  value of H. */
 
- /*                  If INFO .GT. 0 and WANTT is .TRUE., then on exit */
 
- /*          (*)       (initial value of H)*U  = U*(final value of H) */
 
- /*                  where U is an orthognal matrix.    The final */
 
- /*                  value of H is upper Hessenberg and triangular in */
 
- /*                  rows and columns INFO+1 through IHI. */
 
- /*                  If INFO .GT. 0 and WANTZ is .TRUE., then on exit */
 
- /*                      (final value of Z)  = (initial value of Z)*U */
 
- /*                  where U is the orthogonal matrix in (*) */
 
- /*                  (regardless of the value of WANTT.) */
 
- /*     Further Details */
 
- /*     =============== */
 
- /*     02-96 Based on modifications by */
 
- /*     David Day, Sandia National Laboratory, USA */
 
- /*     12-04 Further modifications by */
 
- /*     Ralph Byers, University of Kansas, USA */
 
- /*     This is a modified version of DLAHQR from LAPACK version 3.0. */
 
- /*     It is (1) more robust against overflow and underflow and */
 
- /*     (2) adopts the more conservative Ahues & Tisseur stopping */
 
- /*     criterion (LAWN 122, 1997). */
 
- /*     ========================================================= */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     h_dim1 = *ldh;
 
-     h_offset = 1 + h_dim1;
 
-     h__ -= h_offset;
 
-     --wr;
 
-     --wi;
 
-     z_dim1 = *ldz;
 
-     z_offset = 1 + z_dim1;
 
-     z__ -= z_offset;
 
-     /* Function Body */
 
-     *info = 0;
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
-     if (*ilo == *ihi) {
 
- 	wr[*ilo] = h__[*ilo + *ilo * h_dim1];
 
- 	wi[*ilo] = 0.;
 
- 	return 0;
 
-     }
 
- /*     ==== clear out the trash ==== */
 
-     i__1 = *ihi - 3;
 
-     for (j = *ilo; j <= i__1; ++j) {
 
- 	h__[j + 2 + j * h_dim1] = 0.;
 
- 	h__[j + 3 + j * h_dim1] = 0.;
 
- /* L10: */
 
-     }
 
-     if (*ilo <= *ihi - 2) {
 
- 	h__[*ihi + (*ihi - 2) * h_dim1] = 0.;
 
-     }
 
-     nh = *ihi - *ilo + 1;
 
-     nz = *ihiz - *iloz + 1;
 
- /*     Set machine-dependent constants for the stopping criterion. */
 
-     safmin = _starpu_dlamch_("SAFE MINIMUM");
 
-     safmax = 1. / safmin;
 
-     _starpu_dlabad_(&safmin, &safmax);
 
-     ulp = _starpu_dlamch_("PRECISION");
 
-     smlnum = safmin * ((doublereal) nh / ulp);
 
- /*     I1 and I2 are the indices of the first row and last column of H */
 
- /*     to which transformations must be applied. If eigenvalues only are */
 
- /*     being computed, I1 and I2 are set inside the main loop. */
 
-     if (*wantt) {
 
- 	i1 = 1;
 
- 	i2 = *n;
 
-     }
 
- /*     The main loop begins here. I is the loop index and decreases from */
 
- /*     IHI to ILO in steps of 1 or 2. Each iteration of the loop works */
 
- /*     with the active submatrix in rows and columns L to I. */
 
- /*     Eigenvalues I+1 to IHI have already converged. Either L = ILO or */
 
- /*     H(L,L-1) is negligible so that the matrix splits. */
 
-     i__ = *ihi;
 
- L20:
 
-     l = *ilo;
 
-     if (i__ < *ilo) {
 
- 	goto L160;
 
-     }
 
- /*     Perform QR iterations on rows and columns ILO to I until a */
 
- /*     submatrix of order 1 or 2 splits off at the bottom because a */
 
- /*     subdiagonal element has become negligible. */
 
-     for (its = 0; its <= 30; ++its) {
 
- /*        Look for a single small subdiagonal element. */
 
- 	i__1 = l + 1;
 
- 	for (k = i__; k >= i__1; --k) {
 
- 	    if ((d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)) <= smlnum) {
 
- 		goto L40;
 
- 	    }
 
- 	    tst = (d__1 = h__[k - 1 + (k - 1) * h_dim1], abs(d__1)) + (d__2 = 
 
- 		    h__[k + k * h_dim1], abs(d__2));
 
- 	    if (tst == 0.) {
 
- 		if (k - 2 >= *ilo) {
 
- 		    tst += (d__1 = h__[k - 1 + (k - 2) * h_dim1], abs(d__1));
 
- 		}
 
- 		if (k + 1 <= *ihi) {
 
- 		    tst += (d__1 = h__[k + 1 + k * h_dim1], abs(d__1));
 
- 		}
 
- 	    }
 
- /*           ==== The following is a conservative small subdiagonal */
 
- /*           .    deflation  criterion due to Ahues & Tisseur (LAWN 122, */
 
- /*           .    1997). It has better mathematical foundation and */
 
- /*           .    improves accuracy in some cases.  ==== */
 
- 	    if ((d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)) <= ulp * tst) {
 
- /* Computing MAX */
 
- 		d__3 = (d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)), d__4 = (
 
- 			d__2 = h__[k - 1 + k * h_dim1], abs(d__2));
 
- 		ab = max(d__3,d__4);
 
- /* Computing MIN */
 
- 		d__3 = (d__1 = h__[k + (k - 1) * h_dim1], abs(d__1)), d__4 = (
 
- 			d__2 = h__[k - 1 + k * h_dim1], abs(d__2));
 
- 		ba = min(d__3,d__4);
 
- /* Computing MAX */
 
- 		d__3 = (d__1 = h__[k + k * h_dim1], abs(d__1)), d__4 = (d__2 =
 
- 			 h__[k - 1 + (k - 1) * h_dim1] - h__[k + k * h_dim1], 
 
- 			abs(d__2));
 
- 		aa = max(d__3,d__4);
 
- /* Computing MIN */
 
- 		d__3 = (d__1 = h__[k + k * h_dim1], abs(d__1)), d__4 = (d__2 =
 
- 			 h__[k - 1 + (k - 1) * h_dim1] - h__[k + k * h_dim1], 
 
- 			abs(d__2));
 
- 		bb = min(d__3,d__4);
 
- 		s = aa + ab;
 
- /* Computing MAX */
 
- 		d__1 = smlnum, d__2 = ulp * (bb * (aa / s));
 
- 		if (ba * (ab / s) <= max(d__1,d__2)) {
 
- 		    goto L40;
 
- 		}
 
- 	    }
 
- /* L30: */
 
- 	}
 
- L40:
 
- 	l = k;
 
- 	if (l > *ilo) {
 
- /*           H(L,L-1) is negligible */
 
- 	    h__[l + (l - 1) * h_dim1] = 0.;
 
- 	}
 
- /*        Exit from loop if a submatrix of order 1 or 2 has split off. */
 
- 	if (l >= i__ - 1) {
 
- 	    goto L150;
 
- 	}
 
- /*        Now the active submatrix is in rows and columns L to I. If */
 
- /*        eigenvalues only are being computed, only the active submatrix */
 
- /*        need be transformed. */
 
- 	if (! (*wantt)) {
 
- 	    i1 = l;
 
- 	    i2 = i__;
 
- 	}
 
- 	if (its == 10) {
 
- /*           Exceptional shift. */
 
- 	    s = (d__1 = h__[l + 1 + l * h_dim1], abs(d__1)) + (d__2 = h__[l + 
 
- 		    2 + (l + 1) * h_dim1], abs(d__2));
 
- 	    h11 = s * .75 + h__[l + l * h_dim1];
 
- 	    h12 = s * -.4375;
 
- 	    h21 = s;
 
- 	    h22 = h11;
 
- 	} else if (its == 20) {
 
- /*           Exceptional shift. */
 
- 	    s = (d__1 = h__[i__ + (i__ - 1) * h_dim1], abs(d__1)) + (d__2 = 
 
- 		    h__[i__ - 1 + (i__ - 2) * h_dim1], abs(d__2));
 
- 	    h11 = s * .75 + h__[i__ + i__ * h_dim1];
 
- 	    h12 = s * -.4375;
 
- 	    h21 = s;
 
- 	    h22 = h11;
 
- 	} else {
 
- /*           Prepare to use Francis' double shift */
 
- /*           (i.e. 2nd degree generalized Rayleigh quotient) */
 
- 	    h11 = h__[i__ - 1 + (i__ - 1) * h_dim1];
 
- 	    h21 = h__[i__ + (i__ - 1) * h_dim1];
 
- 	    h12 = h__[i__ - 1 + i__ * h_dim1];
 
- 	    h22 = h__[i__ + i__ * h_dim1];
 
- 	}
 
- 	s = abs(h11) + abs(h12) + abs(h21) + abs(h22);
 
- 	if (s == 0.) {
 
- 	    rt1r = 0.;
 
- 	    rt1i = 0.;
 
- 	    rt2r = 0.;
 
- 	    rt2i = 0.;
 
- 	} else {
 
- 	    h11 /= s;
 
- 	    h21 /= s;
 
- 	    h12 /= s;
 
- 	    h22 /= s;
 
- 	    tr = (h11 + h22) / 2.;
 
- 	    det = (h11 - tr) * (h22 - tr) - h12 * h21;
 
- 	    rtdisc = sqrt((abs(det)));
 
- 	    if (det >= 0.) {
 
- /*              ==== complex conjugate shifts ==== */
 
- 		rt1r = tr * s;
 
- 		rt2r = rt1r;
 
- 		rt1i = rtdisc * s;
 
- 		rt2i = -rt1i;
 
- 	    } else {
 
- /*              ==== real shifts (use only one of them)  ==== */
 
- 		rt1r = tr + rtdisc;
 
- 		rt2r = tr - rtdisc;
 
- 		if ((d__1 = rt1r - h22, abs(d__1)) <= (d__2 = rt2r - h22, abs(
 
- 			d__2))) {
 
- 		    rt1r *= s;
 
- 		    rt2r = rt1r;
 
- 		} else {
 
- 		    rt2r *= s;
 
- 		    rt1r = rt2r;
 
- 		}
 
- 		rt1i = 0.;
 
- 		rt2i = 0.;
 
- 	    }
 
- 	}
 
- /*        Look for two consecutive small subdiagonal elements. */
 
- 	i__1 = l;
 
- 	for (m = i__ - 2; m >= i__1; --m) {
 
- /*           Determine the effect of starting the double-shift QR */
 
- /*           iteration at row M, and see if this would make H(M,M-1) */
 
- /*           negligible.  (The following uses scaling to avoid */
 
- /*           overflows and most underflows.) */
 
- 	    h21s = h__[m + 1 + m * h_dim1];
 
- 	    s = (d__1 = h__[m + m * h_dim1] - rt2r, abs(d__1)) + abs(rt2i) + 
 
- 		    abs(h21s);
 
- 	    h21s = h__[m + 1 + m * h_dim1] / s;
 
- 	    v[0] = h21s * h__[m + (m + 1) * h_dim1] + (h__[m + m * h_dim1] - 
 
- 		    rt1r) * ((h__[m + m * h_dim1] - rt2r) / s) - rt1i * (rt2i 
 
- 		    / s);
 
- 	    v[1] = h21s * (h__[m + m * h_dim1] + h__[m + 1 + (m + 1) * h_dim1]
 
- 		     - rt1r - rt2r);
 
- 	    v[2] = h21s * h__[m + 2 + (m + 1) * h_dim1];
 
- 	    s = abs(v[0]) + abs(v[1]) + abs(v[2]);
 
- 	    v[0] /= s;
 
- 	    v[1] /= s;
 
- 	    v[2] /= s;
 
- 	    if (m == l) {
 
- 		goto L60;
 
- 	    }
 
- 	    if ((d__1 = h__[m + (m - 1) * h_dim1], abs(d__1)) * (abs(v[1]) + 
 
- 		    abs(v[2])) <= ulp * abs(v[0]) * ((d__2 = h__[m - 1 + (m - 
 
- 		    1) * h_dim1], abs(d__2)) + (d__3 = h__[m + m * h_dim1], 
 
- 		    abs(d__3)) + (d__4 = h__[m + 1 + (m + 1) * h_dim1], abs(
 
- 		    d__4)))) {
 
- 		goto L60;
 
- 	    }
 
- /* L50: */
 
- 	}
 
- L60:
 
- /*        Double-shift QR step */
 
- 	i__1 = i__ - 1;
 
- 	for (k = m; k <= i__1; ++k) {
 
- /*           The first iteration of this loop determines a reflection G */
 
- /*           from the vector V and applies it from left and right to H, */
 
- /*           thus creating a nonzero bulge below the subdiagonal. */
 
- /*           Each subsequent iteration determines a reflection G to */
 
- /*           restore the Hessenberg form in the (K-1)th column, and thus */
 
- /*           chases the bulge one step toward the bottom of the active */
 
- /*           submatrix. NR is the order of G. */
 
- /* Computing MIN */
 
- 	    i__2 = 3, i__3 = i__ - k + 1;
 
- 	    nr = min(i__2,i__3);
 
- 	    if (k > m) {
 
- 		_starpu_dcopy_(&nr, &h__[k + (k - 1) * h_dim1], &c__1, v, &c__1);
 
- 	    }
 
- 	    _starpu_dlarfg_(&nr, v, &v[1], &c__1, &t1);
 
- 	    if (k > m) {
 
- 		h__[k + (k - 1) * h_dim1] = v[0];
 
- 		h__[k + 1 + (k - 1) * h_dim1] = 0.;
 
- 		if (k < i__ - 1) {
 
- 		    h__[k + 2 + (k - 1) * h_dim1] = 0.;
 
- 		}
 
- 	    } else if (m > l) {
 
- /*               ==== Use the following instead of */
 
- /*               .    H( K, K-1 ) = -H( K, K-1 ) to */
 
- /*               .    avoid a bug when v(2) and v(3) */
 
- /*               .    underflow. ==== */
 
- 		h__[k + (k - 1) * h_dim1] *= 1. - t1;
 
- 	    }
 
- 	    v2 = v[1];
 
- 	    t2 = t1 * v2;
 
- 	    if (nr == 3) {
 
- 		v3 = v[2];
 
- 		t3 = t1 * v3;
 
- /*              Apply G from the left to transform the rows of the matrix */
 
- /*              in columns K to I2. */
 
- 		i__2 = i2;
 
- 		for (j = k; j <= i__2; ++j) {
 
- 		    sum = h__[k + j * h_dim1] + v2 * h__[k + 1 + j * h_dim1] 
 
- 			    + v3 * h__[k + 2 + j * h_dim1];
 
- 		    h__[k + j * h_dim1] -= sum * t1;
 
- 		    h__[k + 1 + j * h_dim1] -= sum * t2;
 
- 		    h__[k + 2 + j * h_dim1] -= sum * t3;
 
- /* L70: */
 
- 		}
 
- /*              Apply G from the right to transform the columns of the */
 
- /*              matrix in rows I1 to min(K+3,I). */
 
- /* Computing MIN */
 
- 		i__3 = k + 3;
 
- 		i__2 = min(i__3,i__);
 
- 		for (j = i1; j <= i__2; ++j) {
 
- 		    sum = h__[j + k * h_dim1] + v2 * h__[j + (k + 1) * h_dim1]
 
- 			     + v3 * h__[j + (k + 2) * h_dim1];
 
- 		    h__[j + k * h_dim1] -= sum * t1;
 
- 		    h__[j + (k + 1) * h_dim1] -= sum * t2;
 
- 		    h__[j + (k + 2) * h_dim1] -= sum * t3;
 
- /* L80: */
 
- 		}
 
- 		if (*wantz) {
 
- /*                 Accumulate transformations in the matrix Z */
 
- 		    i__2 = *ihiz;
 
- 		    for (j = *iloz; j <= i__2; ++j) {
 
- 			sum = z__[j + k * z_dim1] + v2 * z__[j + (k + 1) * 
 
- 				z_dim1] + v3 * z__[j + (k + 2) * z_dim1];
 
- 			z__[j + k * z_dim1] -= sum * t1;
 
- 			z__[j + (k + 1) * z_dim1] -= sum * t2;
 
- 			z__[j + (k + 2) * z_dim1] -= sum * t3;
 
- /* L90: */
 
- 		    }
 
- 		}
 
- 	    } else if (nr == 2) {
 
- /*              Apply G from the left to transform the rows of the matrix */
 
- /*              in columns K to I2. */
 
- 		i__2 = i2;
 
- 		for (j = k; j <= i__2; ++j) {
 
- 		    sum = h__[k + j * h_dim1] + v2 * h__[k + 1 + j * h_dim1];
 
- 		    h__[k + j * h_dim1] -= sum * t1;
 
- 		    h__[k + 1 + j * h_dim1] -= sum * t2;
 
- /* L100: */
 
- 		}
 
- /*              Apply G from the right to transform the columns of the */
 
- /*              matrix in rows I1 to min(K+3,I). */
 
- 		i__2 = i__;
 
- 		for (j = i1; j <= i__2; ++j) {
 
- 		    sum = h__[j + k * h_dim1] + v2 * h__[j + (k + 1) * h_dim1]
 
- 			    ;
 
- 		    h__[j + k * h_dim1] -= sum * t1;
 
- 		    h__[j + (k + 1) * h_dim1] -= sum * t2;
 
- /* L110: */
 
- 		}
 
- 		if (*wantz) {
 
- /*                 Accumulate transformations in the matrix Z */
 
- 		    i__2 = *ihiz;
 
- 		    for (j = *iloz; j <= i__2; ++j) {
 
- 			sum = z__[j + k * z_dim1] + v2 * z__[j + (k + 1) * 
 
- 				z_dim1];
 
- 			z__[j + k * z_dim1] -= sum * t1;
 
- 			z__[j + (k + 1) * z_dim1] -= sum * t2;
 
- /* L120: */
 
- 		    }
 
- 		}
 
- 	    }
 
- /* L130: */
 
- 	}
 
- /* L140: */
 
-     }
 
- /*     Failure to converge in remaining number of iterations */
 
-     *info = i__;
 
-     return 0;
 
- L150:
 
-     if (l == i__) {
 
- /*        H(I,I-1) is negligible: one eigenvalue has converged. */
 
- 	wr[i__] = h__[i__ + i__ * h_dim1];
 
- 	wi[i__] = 0.;
 
-     } else if (l == i__ - 1) {
 
- /*        H(I-1,I-2) is negligible: a pair of eigenvalues have converged. */
 
- /*        Transform the 2-by-2 submatrix to standard Schur form, */
 
- /*        and compute and store the eigenvalues. */
 
- 	_starpu_dlanv2_(&h__[i__ - 1 + (i__ - 1) * h_dim1], &h__[i__ - 1 + i__ * 
 
- 		h_dim1], &h__[i__ + (i__ - 1) * h_dim1], &h__[i__ + i__ * 
 
- 		h_dim1], &wr[i__ - 1], &wi[i__ - 1], &wr[i__], &wi[i__], &cs, 
 
- 		&sn);
 
- 	if (*wantt) {
 
- /*           Apply the transformation to the rest of H. */
 
- 	    if (i2 > i__) {
 
- 		i__1 = i2 - i__;
 
- 		_starpu_drot_(&i__1, &h__[i__ - 1 + (i__ + 1) * h_dim1], ldh, &h__[
 
- 			i__ + (i__ + 1) * h_dim1], ldh, &cs, &sn);
 
- 	    }
 
- 	    i__1 = i__ - i1 - 1;
 
- 	    _starpu_drot_(&i__1, &h__[i1 + (i__ - 1) * h_dim1], &c__1, &h__[i1 + i__ *
 
- 		     h_dim1], &c__1, &cs, &sn);
 
- 	}
 
- 	if (*wantz) {
 
- /*           Apply the transformation to Z. */
 
- 	    _starpu_drot_(&nz, &z__[*iloz + (i__ - 1) * z_dim1], &c__1, &z__[*iloz + 
 
- 		    i__ * z_dim1], &c__1, &cs, &sn);
 
- 	}
 
-     }
 
- /*     return to start of the main loop with new value of I. */
 
-     i__ = l - 1;
 
-     goto L20;
 
- L160:
 
-     return 0;
 
- /*     End of DLAHQR */
 
- } /* _starpu_dlahqr_ */
 
 
  |