| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843 | 
							- /* dgegv.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- static doublereal c_b27 = 1.;
 
- static doublereal c_b38 = 0.;
 
- /* Subroutine */ int _starpu_dgegv_(char *jobvl, char *jobvr, integer *n, doublereal *
 
- 	a, integer *lda, doublereal *b, integer *ldb, doublereal *alphar, 
 
- 	doublereal *alphai, doublereal *beta, doublereal *vl, integer *ldvl, 
 
- 	doublereal *vr, integer *ldvr, doublereal *work, integer *lwork, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 
 
- 	    vr_offset, i__1, i__2;
 
-     doublereal d__1, d__2, d__3, d__4;
 
-     /* Local variables */
 
-     integer jc, nb, in, jr, nb1, nb2, nb3, ihi, ilo;
 
-     doublereal eps;
 
-     logical ilv;
 
-     doublereal absb, anrm, bnrm;
 
-     integer itau;
 
-     doublereal temp;
 
-     logical ilvl, ilvr;
 
-     integer lopt;
 
-     doublereal anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer ileft, iinfo, icols, iwork, irows;
 
-     extern /* Subroutine */ int _starpu_dggbak_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, integer *), _starpu_dggbal_(char *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, integer *);
 
-     extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *);
 
-     doublereal salfai;
 
-     extern /* Subroutine */ int _starpu_dgghrd_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *), _starpu_dlascl_(char *, integer *, integer *, doublereal 
 
- 	    *, doublereal *, integer *, integer *, doublereal *, integer *, 
 
- 	    integer *);
 
-     doublereal salfar;
 
-     extern /* Subroutine */ int _starpu_dgeqrf_(integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, integer *), 
 
- 	    _starpu_dlacpy_(char *, integer *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     doublereal safmin;
 
-     extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, integer *);
 
-     doublereal safmax;
 
-     char chtemp[1];
 
-     logical ldumma[1];
 
-     extern /* Subroutine */ int _starpu_dhgeqz_(char *, char *, char *, integer *, 
 
- 	    integer *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    integer *), _starpu_dtgevc_(char *, char *, 
 
- 	    logical *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    integer *, integer *, doublereal *, integer *), 
 
- 	    _starpu_xerbla_(char *, integer *);
 
-     integer ijobvl, iright;
 
-     logical ilimit;
 
-     extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     integer ijobvr;
 
-     extern /* Subroutine */ int _starpu_dorgqr_(integer *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    integer *);
 
-     doublereal onepls;
 
-     integer lwkmin;
 
-     extern /* Subroutine */ int _starpu_dormqr_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, integer *);
 
-     integer lwkopt;
 
-     logical lquery;
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  This routine is deprecated and has been replaced by routine DGGEV. */
 
- /*  DGEGV computes the eigenvalues and, optionally, the left and/or right */
 
- /*  eigenvectors of a real matrix pair (A,B). */
 
- /*  Given two square matrices A and B, */
 
- /*  the generalized nonsymmetric eigenvalue problem (GNEP) is to find the */
 
- /*  eigenvalues lambda and corresponding (non-zero) eigenvectors x such */
 
- /*  that */
 
- /*     A*x = lambda*B*x. */
 
- /*  An alternate form is to find the eigenvalues mu and corresponding */
 
- /*  eigenvectors y such that */
 
- /*     mu*A*y = B*y. */
 
- /*  These two forms are equivalent with mu = 1/lambda and x = y if */
 
- /*  neither lambda nor mu is zero.  In order to deal with the case that */
 
- /*  lambda or mu is zero or small, two values alpha and beta are returned */
 
- /*  for each eigenvalue, such that lambda = alpha/beta and */
 
- /*  mu = beta/alpha. */
 
- /*  The vectors x and y in the above equations are right eigenvectors of */
 
- /*  the matrix pair (A,B).  Vectors u and v satisfying */
 
- /*     u**H*A = lambda*u**H*B  or  mu*v**H*A = v**H*B */
 
- /*  are left eigenvectors of (A,B). */
 
- /*  Note: this routine performs "full balancing" on A and B -- see */
 
- /*  "Further Details", below. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOBVL   (input) CHARACTER*1 */
 
- /*          = 'N':  do not compute the left generalized eigenvectors; */
 
- /*          = 'V':  compute the left generalized eigenvectors (returned */
 
- /*                  in VL). */
 
- /*  JOBVR   (input) CHARACTER*1 */
 
- /*          = 'N':  do not compute the right generalized eigenvectors; */
 
- /*          = 'V':  compute the right generalized eigenvectors (returned */
 
- /*                  in VR). */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrices A, B, VL, and VR.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
 
- /*          On entry, the matrix A. */
 
- /*          If JOBVL = 'V' or JOBVR = 'V', then on exit A */
 
- /*          contains the real Schur form of A from the generalized Schur */
 
- /*          factorization of the pair (A,B) after balancing. */
 
- /*          If no eigenvectors were computed, then only the diagonal */
 
- /*          blocks from the Schur form will be correct.  See DGGHRD and */
 
- /*          DHGEQZ for details. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of A.  LDA >= max(1,N). */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
 
- /*          On entry, the matrix B. */
 
- /*          If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the */
 
- /*          upper triangular matrix obtained from B in the generalized */
 
- /*          Schur factorization of the pair (A,B) after balancing. */
 
- /*          If no eigenvectors were computed, then only those elements of */
 
- /*          B corresponding to the diagonal blocks from the Schur form of */
 
- /*          A will be correct.  See DGGHRD and DHGEQZ for details. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of B.  LDB >= max(1,N). */
 
- /*  ALPHAR  (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The real parts of each scalar alpha defining an eigenvalue of */
 
- /*          GNEP. */
 
- /*  ALPHAI  (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The imaginary parts of each scalar alpha defining an */
 
- /*          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th */
 
- /*          eigenvalue is real; if positive, then the j-th and */
 
- /*          (j+1)-st eigenvalues are a complex conjugate pair, with */
 
- /*          ALPHAI(j+1) = -ALPHAI(j). */
 
- /*  BETA    (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The scalars beta that define the eigenvalues of GNEP. */
 
- /*          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */
 
- /*          beta = BETA(j) represent the j-th eigenvalue of the matrix */
 
- /*          pair (A,B), in one of the forms lambda = alpha/beta or */
 
- /*          mu = beta/alpha.  Since either lambda or mu may overflow, */
 
- /*          they should not, in general, be computed. */
 
- /*  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N) */
 
- /*          If JOBVL = 'V', the left eigenvectors u(j) are stored */
 
- /*          in the columns of VL, in the same order as their eigenvalues. */
 
- /*          If the j-th eigenvalue is real, then u(j) = VL(:,j). */
 
- /*          If the j-th and (j+1)-st eigenvalues form a complex conjugate */
 
- /*          pair, then */
 
- /*             u(j) = VL(:,j) + i*VL(:,j+1) */
 
- /*          and */
 
- /*            u(j+1) = VL(:,j) - i*VL(:,j+1). */
 
- /*          Each eigenvector is scaled so that its largest component has */
 
- /*          abs(real part) + abs(imag. part) = 1, except for eigenvectors */
 
- /*          corresponding to an eigenvalue with alpha = beta = 0, which */
 
- /*          are set to zero. */
 
- /*          Not referenced if JOBVL = 'N'. */
 
- /*  LDVL    (input) INTEGER */
 
- /*          The leading dimension of the matrix VL. LDVL >= 1, and */
 
- /*          if JOBVL = 'V', LDVL >= N. */
 
- /*  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N) */
 
- /*          If JOBVR = 'V', the right eigenvectors x(j) are stored */
 
- /*          in the columns of VR, in the same order as their eigenvalues. */
 
- /*          If the j-th eigenvalue is real, then x(j) = VR(:,j). */
 
- /*          If the j-th and (j+1)-st eigenvalues form a complex conjugate */
 
- /*          pair, then */
 
- /*            x(j) = VR(:,j) + i*VR(:,j+1) */
 
- /*          and */
 
- /*            x(j+1) = VR(:,j) - i*VR(:,j+1). */
 
- /*          Each eigenvector is scaled so that its largest component has */
 
- /*          abs(real part) + abs(imag. part) = 1, except for eigenvalues */
 
- /*          corresponding to an eigenvalue with alpha = beta = 0, which */
 
- /*          are set to zero. */
 
- /*          Not referenced if JOBVR = 'N'. */
 
- /*  LDVR    (input) INTEGER */
 
- /*          The leading dimension of the matrix VR. LDVR >= 1, and */
 
- /*          if JOBVR = 'V', LDVR >= N. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK.  LWORK >= max(1,8*N). */
 
- /*          For good performance, LWORK must generally be larger. */
 
- /*          To compute the optimal value of LWORK, call ILAENV to get */
 
- /*          blocksizes (for DGEQRF, DORMQR, and DORGQR.)  Then compute: */
 
- /*          NB  -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR; */
 
- /*          The optimal LWORK is: */
 
- /*              2*N + MAX( 6*N, N*(NB+1) ). */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          = 1,...,N: */
 
- /*                The QZ iteration failed.  No eigenvectors have been */
 
- /*                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
 
- /*                should be correct for j=INFO+1,...,N. */
 
- /*          > N:  errors that usually indicate LAPACK problems: */
 
- /*                =N+1: error return from DGGBAL */
 
- /*                =N+2: error return from DGEQRF */
 
- /*                =N+3: error return from DORMQR */
 
- /*                =N+4: error return from DORGQR */
 
- /*                =N+5: error return from DGGHRD */
 
- /*                =N+6: error return from DHGEQZ (other than failed */
 
- /*                                                iteration) */
 
- /*                =N+7: error return from DTGEVC */
 
- /*                =N+8: error return from DGGBAK (computing VL) */
 
- /*                =N+9: error return from DGGBAK (computing VR) */
 
- /*                =N+10: error return from DLASCL (various calls) */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Balancing */
 
- /*  --------- */
 
- /*  This driver calls DGGBAL to both permute and scale rows and columns */
 
- /*  of A and B.  The permutations PL and PR are chosen so that PL*A*PR */
 
- /*  and PL*B*R will be upper triangular except for the diagonal blocks */
 
- /*  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as */
 
- /*  possible.  The diagonal scaling matrices DL and DR are chosen so */
 
- /*  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to */
 
- /*  one (except for the elements that start out zero.) */
 
- /*  After the eigenvalues and eigenvectors of the balanced matrices */
 
- /*  have been computed, DGGBAK transforms the eigenvectors back to what */
 
- /*  they would have been (in perfect arithmetic) if they had not been */
 
- /*  balanced. */
 
- /*  Contents of A and B on Exit */
 
- /*  -------- -- - --- - -- ---- */
 
- /*  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or */
 
- /*  both), then on exit the arrays A and B will contain the real Schur */
 
- /*  form[*] of the "balanced" versions of A and B.  If no eigenvectors */
 
- /*  are computed, then only the diagonal blocks will be correct. */
 
- /*  [*] See DHGEQZ, DGEGS, or read the book "Matrix Computations", */
 
- /*      by Golub & van Loan, pub. by Johns Hopkins U. Press. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Decode the input arguments */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     --alphar;
 
-     --alphai;
 
-     --beta;
 
-     vl_dim1 = *ldvl;
 
-     vl_offset = 1 + vl_dim1;
 
-     vl -= vl_offset;
 
-     vr_dim1 = *ldvr;
 
-     vr_offset = 1 + vr_dim1;
 
-     vr -= vr_offset;
 
-     --work;
 
-     /* Function Body */
 
-     if (_starpu_lsame_(jobvl, "N")) {
 
- 	ijobvl = 1;
 
- 	ilvl = FALSE_;
 
-     } else if (_starpu_lsame_(jobvl, "V")) {
 
- 	ijobvl = 2;
 
- 	ilvl = TRUE_;
 
-     } else {
 
- 	ijobvl = -1;
 
- 	ilvl = FALSE_;
 
-     }
 
-     if (_starpu_lsame_(jobvr, "N")) {
 
- 	ijobvr = 1;
 
- 	ilvr = FALSE_;
 
-     } else if (_starpu_lsame_(jobvr, "V")) {
 
- 	ijobvr = 2;
 
- 	ilvr = TRUE_;
 
-     } else {
 
- 	ijobvr = -1;
 
- 	ilvr = FALSE_;
 
-     }
 
-     ilv = ilvl || ilvr;
 
- /*     Test the input arguments */
 
- /* Computing MAX */
 
-     i__1 = *n << 3;
 
-     lwkmin = max(i__1,1);
 
-     lwkopt = lwkmin;
 
-     work[1] = (doublereal) lwkopt;
 
-     lquery = *lwork == -1;
 
-     *info = 0;
 
-     if (ijobvl <= 0) {
 
- 	*info = -1;
 
-     } else if (ijobvr <= 0) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -5;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -7;
 
-     } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
 
- 	*info = -12;
 
-     } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
 
- 	*info = -14;
 
-     } else if (*lwork < lwkmin && ! lquery) {
 
- 	*info = -16;
 
-     }
 
-     if (*info == 0) {
 
- 	nb1 = _starpu_ilaenv_(&c__1, "DGEQRF", " ", n, n, &c_n1, &c_n1);
 
- 	nb2 = _starpu_ilaenv_(&c__1, "DORMQR", " ", n, n, n, &c_n1);
 
- 	nb3 = _starpu_ilaenv_(&c__1, "DORGQR", " ", n, n, n, &c_n1);
 
- /* Computing MAX */
 
- 	i__1 = max(nb1,nb2);
 
- 	nb = max(i__1,nb3);
 
- /* Computing MAX */
 
- 	i__1 = *n * 6, i__2 = *n * (nb + 1);
 
- 	lopt = (*n << 1) + max(i__1,i__2);
 
- 	work[1] = (doublereal) lopt;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DGEGV ", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Get machine constants */
 
-     eps = _starpu_dlamch_("E") * _starpu_dlamch_("B");
 
-     safmin = _starpu_dlamch_("S");
 
-     safmin += safmin;
 
-     safmax = 1. / safmin;
 
-     onepls = eps * 4 + 1.;
 
- /*     Scale A */
 
-     anrm = _starpu_dlange_("M", n, n, &a[a_offset], lda, &work[1]);
 
-     anrm1 = anrm;
 
-     anrm2 = 1.;
 
-     if (anrm < 1.) {
 
- 	if (safmax * anrm < 1.) {
 
- 	    anrm1 = safmin;
 
- 	    anrm2 = safmax * anrm;
 
- 	}
 
-     }
 
-     if (anrm > 0.) {
 
- 	_starpu_dlascl_("G", &c_n1, &c_n1, &anrm, &c_b27, n, n, &a[a_offset], lda, &
 
- 		iinfo);
 
- 	if (iinfo != 0) {
 
- 	    *info = *n + 10;
 
- 	    return 0;
 
- 	}
 
-     }
 
- /*     Scale B */
 
-     bnrm = _starpu_dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
 
-     bnrm1 = bnrm;
 
-     bnrm2 = 1.;
 
-     if (bnrm < 1.) {
 
- 	if (safmax * bnrm < 1.) {
 
- 	    bnrm1 = safmin;
 
- 	    bnrm2 = safmax * bnrm;
 
- 	}
 
-     }
 
-     if (bnrm > 0.) {
 
- 	_starpu_dlascl_("G", &c_n1, &c_n1, &bnrm, &c_b27, n, n, &b[b_offset], ldb, &
 
- 		iinfo);
 
- 	if (iinfo != 0) {
 
- 	    *info = *n + 10;
 
- 	    return 0;
 
- 	}
 
-     }
 
- /*     Permute the matrix to make it more nearly triangular */
 
- /*     Workspace layout:  (8*N words -- "work" requires 6*N words) */
 
- /*        left_permutation, right_permutation, work... */
 
-     ileft = 1;
 
-     iright = *n + 1;
 
-     iwork = iright + *n;
 
-     _starpu_dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
 
- 	    ileft], &work[iright], &work[iwork], &iinfo);
 
-     if (iinfo != 0) {
 
- 	*info = *n + 1;
 
- 	goto L120;
 
-     }
 
- /*     Reduce B to triangular form, and initialize VL and/or VR */
 
- /*     Workspace layout:  ("work..." must have at least N words) */
 
- /*        left_permutation, right_permutation, tau, work... */
 
-     irows = ihi + 1 - ilo;
 
-     if (ilv) {
 
- 	icols = *n + 1 - ilo;
 
-     } else {
 
- 	icols = irows;
 
-     }
 
-     itau = iwork;
 
-     iwork = itau + irows;
 
-     i__1 = *lwork + 1 - iwork;
 
-     _starpu_dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
 
- 	    iwork], &i__1, &iinfo);
 
-     if (iinfo >= 0) {
 
- /* Computing MAX */
 
- 	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
 
- 	lwkopt = max(i__1,i__2);
 
-     }
 
-     if (iinfo != 0) {
 
- 	*info = *n + 2;
 
- 	goto L120;
 
-     }
 
-     i__1 = *lwork + 1 - iwork;
 
-     _starpu_dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
 
- 	    work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &
 
- 	    iinfo);
 
-     if (iinfo >= 0) {
 
- /* Computing MAX */
 
- 	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
 
- 	lwkopt = max(i__1,i__2);
 
-     }
 
-     if (iinfo != 0) {
 
- 	*info = *n + 3;
 
- 	goto L120;
 
-     }
 
-     if (ilvl) {
 
- 	_starpu_dlaset_("Full", n, n, &c_b38, &c_b27, &vl[vl_offset], ldvl)
 
- 		;
 
- 	i__1 = irows - 1;
 
- 	i__2 = irows - 1;
 
- 	_starpu_dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[ilo + 
 
- 		1 + ilo * vl_dim1], ldvl);
 
- 	i__1 = *lwork + 1 - iwork;
 
- 	_starpu_dorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
 
- 		itau], &work[iwork], &i__1, &iinfo);
 
- 	if (iinfo >= 0) {
 
- /* Computing MAX */
 
- 	    i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
 
- 	    lwkopt = max(i__1,i__2);
 
- 	}
 
- 	if (iinfo != 0) {
 
- 	    *info = *n + 4;
 
- 	    goto L120;
 
- 	}
 
-     }
 
-     if (ilvr) {
 
- 	_starpu_dlaset_("Full", n, n, &c_b38, &c_b27, &vr[vr_offset], ldvr)
 
- 		;
 
-     }
 
- /*     Reduce to generalized Hessenberg form */
 
-     if (ilv) {
 
- /*        Eigenvectors requested -- work on whole matrix. */
 
- 	_starpu_dgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], 
 
- 		ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo);
 
-     } else {
 
- 	_starpu_dgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda, 
 
- 		&b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
 
- 		vr_offset], ldvr, &iinfo);
 
-     }
 
-     if (iinfo != 0) {
 
- 	*info = *n + 5;
 
- 	goto L120;
 
-     }
 
- /*     Perform QZ algorithm */
 
- /*     Workspace layout:  ("work..." must have at least 1 word) */
 
- /*        left_permutation, right_permutation, work... */
 
-     iwork = itau;
 
-     if (ilv) {
 
- 	*(unsigned char *)chtemp = 'S';
 
-     } else {
 
- 	*(unsigned char *)chtemp = 'E';
 
-     }
 
-     i__1 = *lwork + 1 - iwork;
 
-     _starpu_dhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
 
- 	    b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], 
 
- 	    ldvl, &vr[vr_offset], ldvr, &work[iwork], &i__1, &iinfo);
 
-     if (iinfo >= 0) {
 
- /* Computing MAX */
 
- 	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
 
- 	lwkopt = max(i__1,i__2);
 
-     }
 
-     if (iinfo != 0) {
 
- 	if (iinfo > 0 && iinfo <= *n) {
 
- 	    *info = iinfo;
 
- 	} else if (iinfo > *n && iinfo <= *n << 1) {
 
- 	    *info = iinfo - *n;
 
- 	} else {
 
- 	    *info = *n + 6;
 
- 	}
 
- 	goto L120;
 
-     }
 
-     if (ilv) {
 
- /*        Compute Eigenvectors  (DTGEVC requires 6*N words of workspace) */
 
- 	if (ilvl) {
 
- 	    if (ilvr) {
 
- 		*(unsigned char *)chtemp = 'B';
 
- 	    } else {
 
- 		*(unsigned char *)chtemp = 'L';
 
- 	    }
 
- 	} else {
 
- 	    *(unsigned char *)chtemp = 'R';
 
- 	}
 
- 	_starpu_dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, 
 
- 		&vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
 
- 		iwork], &iinfo);
 
- 	if (iinfo != 0) {
 
- 	    *info = *n + 7;
 
- 	    goto L120;
 
- 	}
 
- /*        Undo balancing on VL and VR, rescale */
 
- 	if (ilvl) {
 
- 	    _starpu_dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
 
- 		    vl[vl_offset], ldvl, &iinfo);
 
- 	    if (iinfo != 0) {
 
- 		*info = *n + 8;
 
- 		goto L120;
 
- 	    }
 
- 	    i__1 = *n;
 
- 	    for (jc = 1; jc <= i__1; ++jc) {
 
- 		if (alphai[jc] < 0.) {
 
- 		    goto L50;
 
- 		}
 
- 		temp = 0.;
 
- 		if (alphai[jc] == 0.) {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- /* Computing MAX */
 
- 			d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1], 
 
- 				abs(d__1));
 
- 			temp = max(d__2,d__3);
 
- /* L10: */
 
- 		    }
 
- 		} else {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- /* Computing MAX */
 
- 			d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1], 
 
- 				abs(d__1)) + (d__2 = vl[jr + (jc + 1) * 
 
- 				vl_dim1], abs(d__2));
 
- 			temp = max(d__3,d__4);
 
- /* L20: */
 
- 		    }
 
- 		}
 
- 		if (temp < safmin) {
 
- 		    goto L50;
 
- 		}
 
- 		temp = 1. / temp;
 
- 		if (alphai[jc] == 0.) {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- 			vl[jr + jc * vl_dim1] *= temp;
 
- /* L30: */
 
- 		    }
 
- 		} else {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- 			vl[jr + jc * vl_dim1] *= temp;
 
- 			vl[jr + (jc + 1) * vl_dim1] *= temp;
 
- /* L40: */
 
- 		    }
 
- 		}
 
- L50:
 
- 		;
 
- 	    }
 
- 	}
 
- 	if (ilvr) {
 
- 	    _starpu_dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
 
- 		    vr[vr_offset], ldvr, &iinfo);
 
- 	    if (iinfo != 0) {
 
- 		*info = *n + 9;
 
- 		goto L120;
 
- 	    }
 
- 	    i__1 = *n;
 
- 	    for (jc = 1; jc <= i__1; ++jc) {
 
- 		if (alphai[jc] < 0.) {
 
- 		    goto L100;
 
- 		}
 
- 		temp = 0.;
 
- 		if (alphai[jc] == 0.) {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- /* Computing MAX */
 
- 			d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1], 
 
- 				abs(d__1));
 
- 			temp = max(d__2,d__3);
 
- /* L60: */
 
- 		    }
 
- 		} else {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- /* Computing MAX */
 
- 			d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1], 
 
- 				abs(d__1)) + (d__2 = vr[jr + (jc + 1) * 
 
- 				vr_dim1], abs(d__2));
 
- 			temp = max(d__3,d__4);
 
- /* L70: */
 
- 		    }
 
- 		}
 
- 		if (temp < safmin) {
 
- 		    goto L100;
 
- 		}
 
- 		temp = 1. / temp;
 
- 		if (alphai[jc] == 0.) {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- 			vr[jr + jc * vr_dim1] *= temp;
 
- /* L80: */
 
- 		    }
 
- 		} else {
 
- 		    i__2 = *n;
 
- 		    for (jr = 1; jr <= i__2; ++jr) {
 
- 			vr[jr + jc * vr_dim1] *= temp;
 
- 			vr[jr + (jc + 1) * vr_dim1] *= temp;
 
- /* L90: */
 
- 		    }
 
- 		}
 
- L100:
 
- 		;
 
- 	    }
 
- 	}
 
- /*        End of eigenvector calculation */
 
-     }
 
- /*     Undo scaling in alpha, beta */
 
- /*     Note: this does not give the alpha and beta for the unscaled */
 
- /*     problem. */
 
- /*     Un-scaling is limited to avoid underflow in alpha and beta */
 
- /*     if they are significant. */
 
-     i__1 = *n;
 
-     for (jc = 1; jc <= i__1; ++jc) {
 
- 	absar = (d__1 = alphar[jc], abs(d__1));
 
- 	absai = (d__1 = alphai[jc], abs(d__1));
 
- 	absb = (d__1 = beta[jc], abs(d__1));
 
- 	salfar = anrm * alphar[jc];
 
- 	salfai = anrm * alphai[jc];
 
- 	sbeta = bnrm * beta[jc];
 
- 	ilimit = FALSE_;
 
- 	scale = 1.;
 
- /*        Check for significant underflow in ALPHAI */
 
- /* Computing MAX */
 
- 	d__1 = safmin, d__2 = eps * absar, d__1 = max(d__1,d__2), d__2 = eps *
 
- 		 absb;
 
- 	if (abs(salfai) < safmin && absai >= max(d__1,d__2)) {
 
- 	    ilimit = TRUE_;
 
- /* Computing MAX */
 
- 	    d__1 = onepls * safmin, d__2 = anrm2 * absai;
 
- 	    scale = onepls * safmin / anrm1 / max(d__1,d__2);
 
- 	} else if (salfai == 0.) {
 
- /*           If insignificant underflow in ALPHAI, then make the */
 
- /*           conjugate eigenvalue real. */
 
- 	    if (alphai[jc] < 0. && jc > 1) {
 
- 		alphai[jc - 1] = 0.;
 
- 	    } else if (alphai[jc] > 0. && jc < *n) {
 
- 		alphai[jc + 1] = 0.;
 
- 	    }
 
- 	}
 
- /*        Check for significant underflow in ALPHAR */
 
- /* Computing MAX */
 
- 	d__1 = safmin, d__2 = eps * absai, d__1 = max(d__1,d__2), d__2 = eps *
 
- 		 absb;
 
- 	if (abs(salfar) < safmin && absar >= max(d__1,d__2)) {
 
- 	    ilimit = TRUE_;
 
- /* Computing MAX */
 
- /* Computing MAX */
 
- 	    d__3 = onepls * safmin, d__4 = anrm2 * absar;
 
- 	    d__1 = scale, d__2 = onepls * safmin / anrm1 / max(d__3,d__4);
 
- 	    scale = max(d__1,d__2);
 
- 	}
 
- /*        Check for significant underflow in BETA */
 
- /* Computing MAX */
 
- 	d__1 = safmin, d__2 = eps * absar, d__1 = max(d__1,d__2), d__2 = eps *
 
- 		 absai;
 
- 	if (abs(sbeta) < safmin && absb >= max(d__1,d__2)) {
 
- 	    ilimit = TRUE_;
 
- /* Computing MAX */
 
- /* Computing MAX */
 
- 	    d__3 = onepls * safmin, d__4 = bnrm2 * absb;
 
- 	    d__1 = scale, d__2 = onepls * safmin / bnrm1 / max(d__3,d__4);
 
- 	    scale = max(d__1,d__2);
 
- 	}
 
- /*        Check for possible overflow when limiting scaling */
 
- 	if (ilimit) {
 
- /* Computing MAX */
 
- 	    d__1 = abs(salfar), d__2 = abs(salfai), d__1 = max(d__1,d__2), 
 
- 		    d__2 = abs(sbeta);
 
- 	    temp = scale * safmin * max(d__1,d__2);
 
- 	    if (temp > 1.) {
 
- 		scale /= temp;
 
- 	    }
 
- 	    if (scale < 1.) {
 
- 		ilimit = FALSE_;
 
- 	    }
 
- 	}
 
- /*        Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary. */
 
- 	if (ilimit) {
 
- 	    salfar = scale * alphar[jc] * anrm;
 
- 	    salfai = scale * alphai[jc] * anrm;
 
- 	    sbeta = scale * beta[jc] * bnrm;
 
- 	}
 
- 	alphar[jc] = salfar;
 
- 	alphai[jc] = salfai;
 
- 	beta[jc] = sbeta;
 
- /* L110: */
 
-     }
 
- L120:
 
-     work[1] = (doublereal) lwkopt;
 
-     return 0;
 
- /*     End of DGEGV */
 
- } /* _starpu_dgegv_ */
 
 
  |