starpu.texi 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU
  9. @page
  10. @vskip 0pt plus 1filll
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Configuration options:: Configurations options
  29. * Environment variables:: Environment variables used by StarPU
  30. * StarPU API:: The API to use StarPU
  31. * Basic Examples:: Basic examples of the use of StarPU
  32. * Advanced Topics:: Advanced use of StarPU
  33. @end menu
  34. @c ---------------------------------------------------------------------
  35. @c Introduction to StarPU
  36. @c ---------------------------------------------------------------------
  37. @node Introduction
  38. @chapter Introduction to StarPU
  39. @menu
  40. * Motivation:: Why StarPU ?
  41. * StarPU in a Nutshell:: The Fundamentals of StarPU
  42. @end menu
  43. @node Motivation
  44. @section Motivation
  45. @c complex machines with heterogeneous cores/devices
  46. The use of specialized hardware such as accelerators or coprocessors offers an
  47. interesting approach to overcome the physical limits encountered by processor
  48. architects. As a result, many machines are now equipped with one or several
  49. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  50. efforts have been devoted to offload computation onto such accelerators, very
  51. little attention as been paid to portability concerns on the one hand, and to the
  52. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  53. StarPU is a runtime system that offers support for heterogeneous multicore
  54. architectures, it not only offers a unified view of the computational resources
  55. (i.e. CPUs and accelerators at the same time), but it also takes care of
  56. efficiently mapping and executing tasks onto an heterogeneous machine while
  57. transparently handling low-level issues in a portable fashion.
  58. @c this leads to a complicated distributed memory design
  59. @c which is not (easily) manageable by hand
  60. @c added value/benefits of StarPU
  61. @c - portability
  62. @c - scheduling, perf. portability
  63. @node StarPU in a Nutshell
  64. @section StarPU in a Nutshell
  65. From a programming point of view, StarPU is not a new language but a library
  66. that executes tasks explicitly submitted by the application. The data that a
  67. task manipulates are automatically transferred onto the accelerator so that the
  68. programmer does not have to take care of complex data movements. StarPU also
  69. takes particular care of scheduling those tasks efficiently and allows
  70. scheduling experts to implement custom scheduling policies in a portable
  71. fashion.
  72. @c explain the notion of codelet and task (i.e. g(A, B)
  73. @subsection Codelet and Tasks
  74. One of StarPU primary data structure is the @b{codelet}. A codelet describes a
  75. computational kernel that can possibly be implemented on multiple architectures
  76. such as a CPU, a CUDA device or a Cell's SPU.
  77. @c TODO insert illustration f : f_spu, f_cpu, ...
  78. Another important data structure is the @b{task}. Executing a StarPU task
  79. consists in applying a codelet on a data set, on one of the architectures on
  80. which the codelet is implemented. In addition to the codelet that a task
  81. implements, it also describes which data are accessed, and how they are
  82. accessed during the computation (read and/or write).
  83. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  84. operation. The task structure can also specify a @b{callback} function that is
  85. called once StarPU has properly executed the task. It also contains optional
  86. fields that the application may use to give hints to the scheduler (such as
  87. priority levels).
  88. A task may be identified by a unique 64-bit number which we refer as a @b{tag}.
  89. Task dependencies can be enforced either by the means of callback functions, or
  90. by expressing dependencies between tags.
  91. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  92. @c DSM
  93. @subsection StarPU Data Management Library
  94. Because StarPU schedules tasks at runtime, data transfers have to be
  95. done automatically and ``just-in-time'' between processing units,
  96. relieving the application programmer from explicit data transfers.
  97. Moreover, to avoid unnecessary transfers, StarPU keeps data
  98. where it was last needed, even if was modified there, and it
  99. allows multiple copies of the same data to reside at the same time on
  100. several processing units as long as it is not modified.
  101. @c ---------------------------------------------------------------------
  102. @c Installing StarPU
  103. @c ---------------------------------------------------------------------
  104. @node Installing StarPU
  105. @chapter Installing StarPU
  106. StarPU can be built and installed by the standard means of the GNU
  107. autotools. The following chapter is intended to briefly remind how these tools
  108. can be used to install StarPU.
  109. @section Configuring StarPU
  110. @subsection Generating Makefiles and configuration scripts
  111. This step is not necessary when using the tarball releases of StarPU. If you
  112. are using the source code from the svn repository, you first need to generate
  113. the configure scripts and the Makefiles.
  114. @example
  115. $ autoreconf -vfi
  116. @end example
  117. @subsection Configuring StarPU
  118. @example
  119. $ ./configure
  120. @end example
  121. Details about options that are useful to give to @code{./configure} are given in
  122. @ref{Configuration options}.
  123. @section Building and Installing StarPU
  124. @subsection Building
  125. @example
  126. $ make
  127. @end example
  128. @subsection Sanity Checks
  129. In order to make sure that StarPU is working properly on the system, it is also
  130. possible to run a test suite.
  131. @example
  132. $ make check
  133. @end example
  134. @subsection Installing
  135. In order to install StarPU at the location that was specified during
  136. configuration:
  137. @example
  138. $ make install
  139. @end example
  140. @subsection pkg-config configuration
  141. It is possible that compiling and linking an application against StarPU
  142. requires to use specific flags or libraries (for instance @code{CUDA} or
  143. @code{libspe2}). To this end, it is possible to use the @code{pkg-config} tool.
  144. If StarPU was not installed at some standard location, the path of StarPU's
  145. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  146. that @code{pkg-config} can find it. For example if StarPU was installed in
  147. @code{$prefix_dir}:
  148. @example
  149. $ PKG_CONFIG_PATH = $PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  150. @end example
  151. The flags required to compile or link against StarPU are then
  152. accessible with the following commands:
  153. @example
  154. $ pkg-config --cflags libstarpu # options for the compiler
  155. $ pkg-config --libs libstarpu # options for the linker
  156. @end example
  157. @c ---------------------------------------------------------------------
  158. @c Configuration options
  159. @c ---------------------------------------------------------------------
  160. @node Configuration options
  161. @chapter Configuration options
  162. @table @asis
  163. @item @code{--disable-cpu}
  164. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  165. @item @code{--enable-maxcudadev=<number>}
  166. Defines the maximum number of CUDA devices that StarPU will support, then
  167. available as the STARPU_MAXCUDADEVS macro.
  168. @item @code{--disable-cuda}
  169. Disable the use of CUDA, even if the SDK is detected.
  170. @item @code{--enable-maxopencldev=<number>}
  171. Defines the maximum number of OpenCL devices that StarPU will support, then
  172. available as the STARPU_MAXOPENCLDEVS macro.
  173. @item @code{--disable-opencl}
  174. Disable the use of OpenCL, even if the SDK is detected.
  175. @item @code{--enable-gordon}
  176. Enable the use of the Gordon runtime for Cell SPUs.
  177. @c TODO: rather default to enabled when detected
  178. @item @code{--enable-debug}
  179. Enable debugging messages.
  180. @item @code{--enable-fast}
  181. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  182. @item @code{--enable-verbose}
  183. Augment the verbosity of the debugging messages.
  184. @item @code{--enable-coverage}
  185. Enable flags for the coverage tool.
  186. @item @code{--enable-perf-debug}
  187. Enable performance debugging.
  188. @item @code{--enable-model-debug}
  189. Enable performance model debugging.
  190. @item @code{--enable-stats}
  191. Enable statistics.
  192. @item @code{--enable-maxbuffers=<nbuffers>}
  193. Define the maximum number of buffers that tasks will be able to take as parameters, then available as the STARPU_NMAXBUFS macro.
  194. @item @code{--disable-priority}
  195. Disable taking priorities into account in scheduling decisions. Mostly for
  196. comparison purposes.
  197. @item @code{--enable-allocation-cache}
  198. Enable the use of a data allocation cache to avoid the cost of it with
  199. CUDA. Still experimental.
  200. @item @code{--enable-opengl-render}
  201. Enable the use of OpenGL for the rendering of some examples.
  202. @c TODO: rather default to enabled when detected
  203. @item @code{--enable-blas-lib=<name>}
  204. Specify the blas library to be used by some of the examples. The
  205. library has to be 'atlas' or 'goto'.
  206. @item @code{--with-cuda-dir=<path>}
  207. Specify the location of the CUDA SDK resides. This directory should notably contain
  208. @code{include/cuda.h}.
  209. @item @code{--with-magma=<path>}
  210. Specify where magma is installed.
  211. @item @code{--with-opencl-dir=<path>}
  212. Specify the location of the OpenCL SDK. This directory should notably contain
  213. @code{include/CL/cl.h}.
  214. @item @code{--with-gordon-dir=<path>}
  215. Specify the location of the Gordon SDK.
  216. @item @code{--with-fxt=<path>}
  217. Specify the location of FxT (for generating traces and rendering them
  218. using ViTE). This directory should notably contain
  219. @code{include/fxt/fxt.h}.
  220. @item @code{--with-perf-model-dir=<dir>}
  221. Specify where performance models should be stored (instead of defaulting to the
  222. current user's home).
  223. @item @code{--with-mpicc=<path to mpicc>}
  224. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  225. @c TODO: also just use AC_PROG
  226. @item @code{--with-mpi}
  227. Enable building libstarpumpi.
  228. @c TODO: rather just use the availability of mpicc instead of a second option
  229. @item @code{--with-goto-dir=<dir>}
  230. Specify the location of GotoBLAS.
  231. @item @code{--with-atlas-dir=<dir>}
  232. Specify the location of ATLAS. This directory should notably contain
  233. @code{include/cblas.h}.
  234. @end table
  235. @c ---------------------------------------------------------------------
  236. @c Environment variables
  237. @c ---------------------------------------------------------------------
  238. @node Environment variables
  239. @chapter Environment variables
  240. @menu
  241. * Workers:: Configuring workers
  242. * Scheduling:: Configuring the Scheduling engine
  243. * Misc:: Miscellaneous and debug
  244. @end menu
  245. Note: the values given in @code{starpu_conf} structure passed to starpu_init
  246. will override the values of the environment variables.
  247. @node Workers
  248. @section Configuring workers
  249. @menu
  250. * STARPU_NCPUS :: Number of CPU workers
  251. * STARPU_NCUDA :: Number of CUDA workers
  252. * STARPU_NOPENCL :: Number of OpenCL workers
  253. * STARPU_NGORDON :: Number of SPU workers (Cell)
  254. * STARPU_WORKERS_CPUID :: Bind workers to specific CPUs
  255. * STARPU_WORKERS_CUDAID :: Select specific CUDA devices
  256. * STARPU_WORKERS_OPENCLID :: Select specific OpenCL devices
  257. @end menu
  258. @node STARPU_NCPUS
  259. @subsection @code{STARPU_NCPUS} -- Number of CPU workers
  260. @table @asis
  261. @item @emph{Description}:
  262. Specify the maximum number of CPU workers. Note that StarPU will not allocate
  263. more CPUs than there are physical CPUs, and that some CPUs are used to control
  264. the accelerators.
  265. @end table
  266. @node STARPU_NCUDA
  267. @subsection @code{STARPU_NCUDA} -- Number of CUDA workers
  268. @table @asis
  269. @item @emph{Description}:
  270. Specify the maximum number of CUDA devices that StarPU can use. If
  271. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  272. possible to select which CUDA devices should be used by the means of the
  273. @code{STARPU_WORKERS_CUDAID} environment variable.
  274. @end table
  275. @node STARPU_NOPENCL
  276. @subsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  277. @table @asis
  278. @item @emph{Description}:
  279. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  280. @end table
  281. @node STARPU_NGORDON
  282. @subsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  283. @table @asis
  284. @item @emph{Description}:
  285. Specify the maximum number of SPUs that StarPU can use.
  286. @end table
  287. @node STARPU_WORKERS_CPUID
  288. @subsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  289. @table @asis
  290. @item @emph{Description}:
  291. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  292. specifies on which logical CPU the different workers should be
  293. bound. For instance, if @code{STARPU_WORKERS_CPUID = "1 3 0 2"}, the first
  294. worker will be bound to logical CPU #1, the second CPU worker will be bound to
  295. logical CPU #3 and so on. Note that the logical ordering of the CPUs is either
  296. determined by the OS, or provided by the @code{hwloc} library in case it is
  297. available.
  298. Note that the first workers correspond to the CUDA workers, then come the
  299. OpenCL and the SPU, and finally the CPU workers. For example if
  300. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  301. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  302. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  303. the logical CPUs #1 and #3 will be used by the CPU workers.
  304. If the number of workers is larger than the array given in
  305. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  306. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  307. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  308. @end table
  309. @node STARPU_WORKERS_CUDAID
  310. @subsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  311. @table @asis
  312. @item @emph{Description}:
  313. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  314. possible to select which CUDA devices should be used by StarPU. On a machine
  315. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  316. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  317. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  318. the one reported by CUDA).
  319. @end table
  320. @node STARPU_WORKERS_OPENCLID
  321. @subsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  322. @table @asis
  323. @item @emph{Description}:
  324. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  325. @end table
  326. @node Scheduling
  327. @section Configuring the Scheduling engine
  328. @menu
  329. * STARPU_SCHED :: Scheduling policy
  330. * STARPU_CALIBRATE :: Calibrate performance models
  331. * STARPU_PREFETCH :: Use data prefetch
  332. * STARPU_SCHED_ALPHA :: Computation factor
  333. * STARPU_SCHED_BETA :: Communication factor
  334. @end menu
  335. @node STARPU_SCHED
  336. @subsection @code{STARPU_SCHED} -- Scheduling policy
  337. @table @asis
  338. @item @emph{Description}:
  339. This chooses between the different scheduling policies proposed by StarPU: work
  340. random, stealing, greedy, with performance models, etc.
  341. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  342. @end table
  343. @node STARPU_CALIBRATE
  344. @subsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  345. @table @asis
  346. @item @emph{Description}:
  347. If this variable is set to 1, the performance models are calibrated during
  348. the execution. If it is set to 2, the previous values are dropped to restart
  349. calibration from scratch.
  350. Note: this currently only applies to dm and dmda scheduling policies.
  351. @end table
  352. @node STARPU_PREFETCH
  353. @subsection @code{STARPU_PREFETCH} -- Use data prefetch
  354. @table @asis
  355. @item @emph{Description}:
  356. If this variable is set, data prefetching will be enabled, that is when a task is
  357. scheduled to be executed e.g. on a GPU, StarPU will request an asynchronous
  358. transfer in advance, so that data is already present on the GPU when the task
  359. starts. As a result, computation and data transfers are overlapped.
  360. @end table
  361. @node STARPU_SCHED_ALPHA
  362. @subsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  363. @table @asis
  364. @item @emph{Description}:
  365. To estimate the cost of a task StarPU takes into account the estimated
  366. computation time (obtained thanks to performance models). The alpha factor is
  367. the coefficient to be applied to it before adding it to the communication part.
  368. @end table
  369. @node STARPU_SCHED_BETA
  370. @subsection @code{STARPU_SCHED_BETA} -- Communication factor
  371. @table @asis
  372. @item @emph{Description}:
  373. To estimate the cost of a task StarPU takes into account the estimated
  374. data transfer time (obtained thanks to performance models). The beta factor is
  375. the coefficient to be applied to it before adding it to the computation part.
  376. @end table
  377. @node Misc
  378. @section Miscellaneous and debug
  379. @menu
  380. * STARPU_LOGFILENAME :: Select debug file name
  381. @end menu
  382. @node STARPU_LOGFILENAME
  383. @subsection @code{STARPU_LOGFILENAME} -- Select debug file name
  384. @table @asis
  385. @item @emph{Description}:
  386. This variable specify in which file the debugging output should be saved to.
  387. @end table
  388. @c ---------------------------------------------------------------------
  389. @c StarPU API
  390. @c ---------------------------------------------------------------------
  391. @node StarPU API
  392. @chapter StarPU API
  393. @menu
  394. * Initialization and Termination:: Initialization and Termination methods
  395. * Workers' Properties:: Methods to enumerate workers' properties
  396. * Data Library:: Methods to manipulate data
  397. * Codelets and Tasks:: Methods to construct tasks
  398. * Tags:: Task dependencies
  399. * CUDA extensions:: CUDA extensions
  400. * Cell extensions:: Cell extensions
  401. * Miscellaneous:: Miscellaneous helpers
  402. @end menu
  403. @node Initialization and Termination
  404. @section Initialization and Termination
  405. @menu
  406. * starpu_init:: Initialize StarPU
  407. * struct starpu_conf:: StarPU runtime configuration
  408. * starpu_shutdown:: Terminate StarPU
  409. @end menu
  410. @node starpu_init
  411. @subsection @code{starpu_init} -- Initialize StarPU
  412. @table @asis
  413. @item @emph{Description}:
  414. This is StarPU initialization method, which must be called prior to any other
  415. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  416. policy, number of cores, ...) by passing a non-null argument. Default
  417. configuration is used if the passed argument is @code{NULL}.
  418. @item @emph{Return value}:
  419. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  420. indicates that no worker was available (so that StarPU was not initialized).
  421. @item @emph{Prototype}:
  422. @code{int starpu_init(struct starpu_conf *conf);}
  423. @end table
  424. @node struct starpu_conf
  425. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  426. @table @asis
  427. @item @emph{Description}:
  428. This structure is passed to the @code{starpu_init} function in order
  429. to configure StarPU.
  430. When the default value is used, StarPU automatically selects the number
  431. of processing units and takes the default scheduling policy. This parameter
  432. overwrites the equivalent environment variables.
  433. @item @emph{Fields}:
  434. @table @asis
  435. @item @code{sched_policy} (default = NULL):
  436. This is the name of the scheduling policy. This can also be specified with the
  437. @code{STARPU_SCHED} environment variable.
  438. @item @code{ncpus} (default = -1):
  439. This is the maximum number of CPU cores that StarPU can use. This can also be
  440. specified with the @code{STARPU_NCPUS} environment variable.
  441. @item @code{ncuda} (default = -1):
  442. This is the maximum number of CUDA devices that StarPU can use. This can also be
  443. specified with the @code{STARPU_NCUDA} environment variable.
  444. @item @code{nopencl} (default = -1):
  445. This is the maximum number of OpenCL devices that StarPU can use. This can also be
  446. specified with the @code{STARPU_NOPENCL} environment variable.
  447. @item @code{nspus} (default = -1):
  448. This is the maximum number of Cell SPUs that StarPU can use. This can also be
  449. specified with the @code{STARPU_NGORDON} environment variable.
  450. @item @code{calibrate} (default = 0):
  451. If this flag is set, StarPU will calibrate the performance models when
  452. executing tasks. This can also be specified with the @code{STARPU_CALIBRATE}
  453. environment variable.
  454. @end table
  455. @end table
  456. @node starpu_shutdown
  457. @subsection @code{starpu_shutdown} -- Terminate StarPU
  458. @table @asis
  459. @item @emph{Description}:
  460. This is StarPU termination method. It must be called at the end of the
  461. application: statistics and other post-mortem debugging information are not
  462. guaranteed to be available until this method has been called.
  463. @item @emph{Prototype}:
  464. @code{void starpu_shutdown(void);}
  465. @end table
  466. @node Workers' Properties
  467. @section Workers' Properties
  468. @menu
  469. * starpu_worker_get_count:: Get the number of processing units
  470. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  471. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  472. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  473. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  474. * starpu_worker_get_id:: Get the identifier of the current worker
  475. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  476. * starpu_worker_get_name:: Get the name of a worker
  477. @end menu
  478. @node starpu_worker_get_count
  479. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  480. @table @asis
  481. @item @emph{Description}:
  482. This function returns the number of workers (i.e. processing units executing
  483. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  484. @item @emph{Prototype}:
  485. @code{unsigned starpu_worker_get_count(void);}
  486. @end table
  487. @node starpu_cpu_worker_get_count
  488. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  489. @table @asis
  490. @item @emph{Description}:
  491. This function returns the number of CPUs controlled by StarPU. The returned
  492. value should be at most @code{STARPU_NMAXCPUS}.
  493. @item @emph{Prototype}:
  494. @code{unsigned starpu_cpu_worker_get_count(void);}
  495. @end table
  496. @node starpu_cuda_worker_get_count
  497. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  498. @table @asis
  499. @item @emph{Description}:
  500. This function returns the number of CUDA devices controlled by StarPU. The returned
  501. value should be at most @code{STARPU_MAXCUDADEVS}.
  502. @item @emph{Prototype}:
  503. @code{unsigned starpu_cuda_worker_get_count(void);}
  504. @end table
  505. @node starpu_opencl_worker_get_count
  506. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  507. @table @asis
  508. @item @emph{Description}:
  509. This function returns the number of OpenCL devices controlled by StarPU. The returned
  510. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  511. @item @emph{Prototype}:
  512. @code{unsigned starpu_opencl_worker_get_count(void);}
  513. @end table
  514. @node starpu_spu_worker_get_count
  515. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  516. @table @asis
  517. @item @emph{Description}:
  518. This function returns the number of Cell SPUs controlled by StarPU.
  519. @item @emph{Prototype}:
  520. @code{unsigned starpu_opencl_worker_get_count(void);}
  521. @end table
  522. @node starpu_worker_get_id
  523. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  524. @table @asis
  525. @item @emph{Description}:
  526. This function returns the identifier of the worker associated to the calling
  527. thread. The returned value is either -1 if the current context is not a StarPU
  528. worker (i.e. when called from the application outside a task or a callback), or
  529. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  530. @item @emph{Prototype}:
  531. @code{int starpu_worker_get_id(void);}
  532. @end table
  533. @node starpu_worker_get_type
  534. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  535. @table @asis
  536. @item @emph{Description}:
  537. This function returns the type of worker associated to an identifier (as
  538. returned by the @code{starpu_worker_get_id} function). The returned value
  539. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  540. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  541. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  542. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  543. identifier is unspecified.
  544. @item @emph{Prototype}:
  545. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  546. @end table
  547. @node starpu_worker_get_name
  548. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  549. @table @asis
  550. @item @emph{Description}:
  551. StarPU associates a unique human readable string to each processing unit. This
  552. function copies at most the @code{maxlen} first bytes of the unique string
  553. associated to a worker identified by its identifier @code{id} into the
  554. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  555. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  556. function on an invalid identifier results in an unspecified behaviour.
  557. @item @emph{Prototype}:
  558. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  559. @end table
  560. @node Data Library
  561. @section Data Library
  562. This section describes the data management facilities provided by StarPU.
  563. TODO: We show how to use existing data interfaces in [ref], but developers can
  564. design their own data interfaces if required.
  565. @menu
  566. * starpu_data_handle:: StarPU opaque data handle
  567. * void *interface:: StarPU data interface
  568. @end menu
  569. @node starpu_data_handle
  570. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  571. @table @asis
  572. @item @emph{Description}:
  573. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  574. data. Once a piece of data has been registered to StarPU, it is associated to a
  575. @code{starpu_data_handle} which keeps track of the state of the piece of data
  576. over the entire machine, so that we can maintain data consistency and locate
  577. data replicates for instance.
  578. @end table
  579. @node void *interface
  580. @subsection @code{void *interface} -- StarPU data interface
  581. @table @asis
  582. @item @emph{Description}:
  583. Data management is done at a high-level in StarPU: rather than accessing a mere
  584. list of contiguous buffers, the tasks may manipulate data that are described by
  585. a high-level construct which we call data interface.
  586. TODO
  587. @end table
  588. @c void starpu_data_unregister(struct starpu_data_state_t *state);
  589. @c starpu_worker_get_memory_node TODO
  590. @c
  591. @c user interaction with the DSM
  592. @c void starpu_data_sync_with_mem(struct starpu_data_state_t *state);
  593. @c void starpu_notify_data_modification(struct starpu_data_state_t *state, uint32_t modifying_node);
  594. @node Codelets and Tasks
  595. @section Codelets and Tasks
  596. @menu
  597. * struct starpu_codelet:: StarPU codelet structure
  598. * struct starpu_task:: StarPU task structure
  599. * starpu_task_init:: Initialize a Task
  600. * starpu_task_create:: Allocate and Initialize a Task
  601. * starpu_task_deinit:: Release all the resources used by a Task
  602. * starpu_task_destroy:: Destroy a dynamically allocated Task
  603. * starpu_task_submit:: Submit a Task
  604. * starpu_task_wait:: Wait for the termination of a Task
  605. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  606. @end menu
  607. @node struct starpu_codelet
  608. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  609. @table @asis
  610. @item @emph{Description}:
  611. The codelet structure describes a kernel that is possibly implemented on
  612. various targets.
  613. @item @emph{Fields}:
  614. @table @asis
  615. @item @code{where}:
  616. Indicates which types of processing units are able to execute that codelet.
  617. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  618. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  619. indicates that it is only available on Cell SPUs.
  620. @item @code{cpu_func} (optional):
  621. Is a function pointer to the CPU implementation of the codelet. Its prototype
  622. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  623. argument being the array of data managed by the data management library, and
  624. the second argument is a pointer to the argument passed from the @code{.cl_arg}
  625. field of the @code{starpu_task} structure.
  626. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  627. the @code{.where} field, it must be non-null otherwise.
  628. @item @code{cuda_func} (optional):
  629. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  630. must be a host-function written in the CUDA runtime API}. Its prototype must
  631. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  632. field is ignored if @code{STARPU_CUDA} does not appear in the @code{.where}
  633. field, it must be non-null otherwise.
  634. @item @code{opencl_func} (optional):
  635. Is a function pointer to the OpenCL implementation of the codelet. Its
  636. prototype must be:
  637. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  638. This pointer is ignored if @code{OPENCL} does not appear in the
  639. @code{.where} field, it must be non-null otherwise.
  640. @item @code{gordon_func} (optional):
  641. This is the index of the Cell SPU implementation within the Gordon library.
  642. TODO
  643. @item @code{nbuffers}:
  644. Specifies the number of arguments taken by the codelet. These arguments are
  645. managed by the DSM and are accessed from the @code{void *buffers[]}
  646. array. The constant argument passed with the @code{.cl_arg} field of the
  647. @code{starpu_task} structure is not counted in this number. This value should
  648. not be above @code{STARPU_NMAXBUFS}.
  649. @item @code{model} (optional):
  650. This is a pointer to the performance model associated to this codelet. This
  651. optional field is ignored when null. TODO
  652. @end table
  653. @end table
  654. @node struct starpu_task
  655. @subsection @code{struct starpu_task} -- StarPU task structure
  656. @table @asis
  657. @item @emph{Description}:
  658. The starpu_task structure describes a task that can be offloaded on the various
  659. processing units managed by StarPU. It instantiates a codelet. It can either be
  660. allocated dynamically with the @code{starpu_task_create} method, or declared
  661. statically. In the latter case, the programmer has to zero the
  662. @code{starpu_task} structure and to fill the different fields properly. The
  663. indicated default values correspond to the configuration of a task allocated
  664. with @code{starpu_task_create}.
  665. @item @emph{Fields}:
  666. @table @asis
  667. @item @code{cl}:
  668. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  669. describes where the kernel should be executed, and supplies the appropriate
  670. implementations. When set to @code{NULL}, no code is executed during the tasks,
  671. such empty tasks can be useful for synchronization purposes.
  672. @item @code{buffers}:
  673. TODO
  674. @item @code{cl_arg} (optional) (default = NULL):
  675. This pointer is passed to the codelet through the second argument
  676. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  677. In the specific case of the Cell processor, see the @code{.cl_arg_size}
  678. argument.
  679. @item @code{cl_arg_size} (optional, Cell specific):
  680. In the case of the Cell processor, the @code{.cl_arg} pointer is not directly
  681. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  682. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  683. at address @code{cl_arg}. In that case, the argument given to the SPU codelet
  684. is therefore not the @code{.cl_arg} pointer, but the address of the buffer in
  685. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  686. codelets.
  687. @item @code{callback_func} (optional) (default = @code{NULL}):
  688. This is a function pointer of prototype @code{void (*f)(void *)} which
  689. specifies a possible callback. If that pointer is non-null, the callback
  690. function is executed @emph{on the host} after the execution of the task. The
  691. callback is passed the value contained in the @code{callback_arg} field. No
  692. callback is executed if that field is null.
  693. @item @code{callback_arg} (optional) (default = @code{NULL}):
  694. This is the pointer passed to the callback function. This field is ignored if
  695. the @code{callback_func} is null.
  696. @item @code{use_tag} (optional) (default = 0):
  697. If set, this flag indicates that the task should be associated with the tag
  698. contained in the @code{tag_id} field. Tag allow the application to synchronize
  699. with the task and to express task dependencies easily.
  700. @item @code{tag_id}:
  701. This fields contains the tag associated to the tag if the @code{use_tag} field
  702. was set, it is ignored otherwise.
  703. @item @code{synchronous}:
  704. If this flag is set, the @code{starpu_task_submit} function is blocking and
  705. returns only when the task has been executed (or if no worker is able to
  706. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  707. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  708. This field indicates a level of priority for the task. This is an integer value
  709. that must be set between @code{STARPU_MIN_PRIO} (for the least important
  710. tasks) and @code{STARPU_MAX_PRIO} (for the most important tasks) included.
  711. Default priority is @code{STARPU_DEFAULT_PRIO}. Scheduling strategies that
  712. take priorities into account can use this parameter to take better scheduling
  713. decisions, but the scheduling policy may also ignore it.
  714. @item @code{execute_on_a_specific_worker} (default = 0):
  715. If this flag is set, StarPU will bypass the scheduler and directly affect this
  716. task to the worker specified by the @code{workerid} field.
  717. @item @code{workerid} (optional):
  718. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  719. which is the identifier of the worker that should process this task (as
  720. returned by @code{starpu_worker_get_id}). This field is ignored if
  721. @code{execute_on_a_specific_worker} field is set to 0.
  722. @item @code{detach} (optional) (default = 1):
  723. If this flag is set, it is not possible to synchronize with the task
  724. by the means of @code{starpu_task_wait} later on. Internal data structures
  725. are only guaranteed to be freed once @code{starpu_task_wait} is called if that
  726. flag is not set.
  727. @item @code{destroy} (optional) (default = 1):
  728. If this flag is set, the task structure will automatically be freed, either
  729. after the execution of the callback if the task is detached, or during
  730. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  731. allocated data structures will not be freed until @code{starpu_task_destroy} is
  732. called explicitly. Setting this flag for a statically allocated task structure
  733. will result in undefined behaviour.
  734. @end table
  735. @end table
  736. @node starpu_task_init
  737. @subsection @code{starpu_task_init} -- Initialize a Task
  738. @table @asis
  739. @item @emph{Description}:
  740. Initialize a task structure with default values. This function is implicitly
  741. called by @code{starpu_task_create}. By default, tasks initialized with
  742. @code{starpu_task_init} must be deinitialized explicitly with
  743. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  744. constant @code{STARPU_TASK_INITIALIZER}.
  745. @item @emph{Prototype}:
  746. @code{void starpu_task_init(struct starpu_task *task);}
  747. @end table
  748. @node starpu_task_create
  749. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  750. @table @asis
  751. @item @emph{Description}:
  752. Allocate a task structure and initialize it with default values. Tasks
  753. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  754. task is terminated. If the destroy flag is explicitly unset, the resources used
  755. by the task are freed by calling
  756. @code{starpu_task_destroy}.
  757. @item @emph{Prototype}:
  758. @code{struct starpu_task *starpu_task_create(void);}
  759. @end table
  760. @node starpu_task_deinit
  761. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  762. @table @asis
  763. @item @emph{Description}:
  764. Release all the structures automatically allocated to execute the task. This is
  765. called implicitly by starpu_task_destroy, but the task structure itself is not
  766. freed. This should be used for statically allocated tasks for instance.
  767. Note that this function is automatically called by @code{starpu_task_destroy}.
  768. @item @emph{Prototype}:
  769. @code{void starpu_task_deinit(struct starpu_task *task);}
  770. @end table
  771. @node starpu_task_destroy
  772. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  773. @table @asis
  774. @item @emph{Description}:
  775. Free the resource allocated during @code{starpu_task_create}. This function can be
  776. called automatically after the execution of a task by setting the
  777. @code{.destroy} flag of the @code{starpu_task} structure (default behaviour).
  778. Calling this function on a statically allocated task results in an undefined
  779. behaviour.
  780. @item @emph{Prototype}:
  781. @code{void starpu_task_destroy(struct starpu_task *task);}
  782. @end table
  783. @node starpu_task_wait
  784. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  785. @table @asis
  786. @item @emph{Description}:
  787. This function blocks until the task has been executed. It is not possible to
  788. synchronize with a task more than once. It is not possible to wait for
  789. synchronous or detached tasks.
  790. @item @emph{Return value}:
  791. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  792. indicates that the specified task was either synchronous or detached.
  793. @item @emph{Prototype}:
  794. @code{int starpu_task_wait(struct starpu_task *task);}
  795. @end table
  796. @node starpu_task_submit
  797. @subsection @code{starpu_task_submit} -- Submit a Task
  798. @table @asis
  799. @item @emph{Description}:
  800. This function submits task @code{task} to StarPU. Calling this function does
  801. not mean that the task will be executed immediately as there can be data or task
  802. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  803. scheduling this task with respect to such dependencies.
  804. This function returns immediately if the @code{synchronous} field of the
  805. @code{starpu_task} structure was set to 0, and block until the termination of
  806. the task otherwise. It is also possible to synchronize the application with
  807. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  808. function for instance.
  809. @item @emph{Return value}:
  810. In case of success, this function returns 0, a return value of @code{-ENODEV}
  811. means that there is no worker able to process that task (e.g. there is no GPU
  812. available and this task is only implemented for CUDA devices).
  813. @item @emph{Prototype}:
  814. @code{int starpu_task_submit(struct starpu_task *task);}
  815. @end table
  816. @node starpu_task_wait_for_all
  817. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  818. @table @asis
  819. @item @emph{Description}:
  820. This function blocks until all the tasks that were submitted are terminated.
  821. @item @emph{Prototype}:
  822. @code{void starpu_task_wait_for_all(void);}
  823. @end table
  824. @c Callbacks : what can we put in callbacks ?
  825. @node Tags
  826. @section Tags
  827. @menu
  828. * starpu_tag_t:: Task identifier
  829. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  830. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  831. * starpu_tag_wait:: Block until a Tag is terminated
  832. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  833. * starpu_tag_remove:: Destroy a Tag
  834. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  835. @end menu
  836. @node starpu_tag_t
  837. @subsection @code{starpu_tag_t} -- Task identifier
  838. @table @asis
  839. @item @emph{Description}:
  840. It is possible to associate a task with a unique "tag" and to express
  841. dependencies between tasks by the means of those tags. To do so, fill the
  842. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  843. be arbitrary) and set the @code{use_tag} field to 1.
  844. If @code{starpu_tag_declare_deps} is called with that tag number, the task will
  845. not be started until the tasks which holds the declared dependency tags are
  846. completed.
  847. @end table
  848. @node starpu_tag_declare_deps
  849. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  850. @table @asis
  851. @item @emph{Description}:
  852. Specify the dependencies of the task identified by tag @code{id}. The first
  853. argument specifies the tag which is configured, the second argument gives the
  854. number of tag(s) on which @code{id} depends. The following arguments are the
  855. tags which have to be terminated to unlock the task.
  856. This function must be called before the associated task is submitted to StarPU
  857. with @code{starpu_task_submit}.
  858. @item @emph{Remark}
  859. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  860. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  861. typically need to be explicitly casted. Using the
  862. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  863. @item @emph{Prototype}:
  864. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  865. @item @emph{Example}:
  866. @example
  867. @c @cartouche
  868. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  869. starpu_tag_declare_deps((starpu_tag_t)0x1,
  870. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  871. @c @end cartouche
  872. @end example
  873. @end table
  874. @node starpu_tag_declare_deps_array
  875. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  876. @table @asis
  877. @item @emph{Description}:
  878. This function is similar to @code{starpu_tag_declare_deps}, except that its
  879. does not take a variable number of arguments but an array of tags of size
  880. @code{ndeps}.
  881. @item @emph{Prototype}:
  882. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  883. @item @emph{Example}:
  884. @example
  885. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  886. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  887. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  888. @end example
  889. @end table
  890. @node starpu_tag_wait
  891. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  892. @table @asis
  893. @item @emph{Description}:
  894. This function blocks until the task associated to tag @code{id} has been
  895. executed. This is a blocking call which must therefore not be called within
  896. tasks or callbacks, but only from the application directly. It is possible to
  897. synchronize with the same tag multiple times, as long as the
  898. @code{starpu_tag_remove} function is not called. Note that it is still
  899. possible to synchronize with a tag associated to a task which @code{starpu_task}
  900. data structure was freed (e.g. if the @code{destroy} flag of the
  901. @code{starpu_task} was enabled).
  902. @item @emph{Prototype}:
  903. @code{void starpu_tag_wait(starpu_tag_t id);}
  904. @end table
  905. @node starpu_tag_wait_array
  906. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  907. @table @asis
  908. @item @emph{Description}:
  909. This function is similar to @code{starpu_tag_wait} except that it blocks until
  910. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  911. terminated.
  912. @item @emph{Prototype}:
  913. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  914. @end table
  915. @node starpu_tag_remove
  916. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  917. @table @asis
  918. @item @emph{Description}:
  919. This function releases the resources associated to tag @code{id}. It can be
  920. called once the corresponding task has been executed and when there is no tag
  921. that depend on that one anymore.
  922. @item @emph{Prototype}:
  923. @code{void starpu_tag_remove(starpu_tag_t id);}
  924. @end table
  925. @node starpu_tag_notify_from_apps
  926. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  927. @table @asis
  928. @item @emph{Description}:
  929. This function explicitly unlocks tag @code{id}. It may be useful in the
  930. case of applications which execute part of their computation outside StarPU
  931. tasks (e.g. third-party libraries). It is also provided as a
  932. convenient tool for the programmer, for instance to entirely construct the task
  933. DAG before actually giving StarPU the opportunity to execute the tasks.
  934. @item @emph{Prototype}:
  935. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  936. @end table
  937. @node CUDA extensions
  938. @section CUDA extensions
  939. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  940. @c starpu_helper_cublas_init TODO
  941. @c starpu_helper_cublas_shutdown TODO
  942. @menu
  943. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  944. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  945. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  946. @end menu
  947. @node starpu_cuda_get_local_stream
  948. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  949. @table @asis
  950. @item @emph{Description}:
  951. StarPU provides a stream for every CUDA device controlled by StarPU. This
  952. function is only provided for convenience so that programmers can easily use
  953. asynchronous operations within codelets without having to create a stream by
  954. hand. Note that the application is not forced to use the stream provided by
  955. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  956. @item @emph{Prototype}:
  957. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  958. @end table
  959. @node starpu_helper_cublas_init
  960. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  961. @table @asis
  962. @item @emph{Description}:
  963. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  964. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  965. controlled by StarPU. This call blocks until CUBLAS has been properly
  966. initialized on every device.
  967. @item @emph{Prototype}:
  968. @code{void starpu_helper_cublas_init(void);}
  969. @end table
  970. @node starpu_helper_cublas_shutdown
  971. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  972. @table @asis
  973. @item @emph{Description}:
  974. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  975. @item @emph{Prototype}:
  976. @code{void starpu_helper_cublas_shutdown(void);}
  977. @end table
  978. @node Cell extensions
  979. @section Cell extensions
  980. nothing yet.
  981. @node Miscellaneous
  982. @section Miscellaneous helpers
  983. @menu
  984. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  985. @end menu
  986. @node starpu_execute_on_each_worker
  987. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  988. @table @asis
  989. @item @emph{Description}:
  990. When calling this method, the offloaded function specified by the first argument is
  991. executed by every StarPU worker that may execute the function.
  992. The second argument is passed to the offloaded function.
  993. The last argument specifies on which types of processing units the function
  994. should be executed. Similarly to the @code{.where} field of the
  995. @code{starpu_codelet} structure, it is possible to specify that the function
  996. should be executed on every CUDA device and every CPU by passing
  997. @code{STARPU_CPU|STARPU_CUDA}.
  998. This function blocks until the function has been executed on every appropriate
  999. processing units, so that it may not be called from a callback function for
  1000. instance.
  1001. @item @emph{Prototype}:
  1002. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  1003. @end table
  1004. @c ---------------------------------------------------------------------
  1005. @c Basic Examples
  1006. @c ---------------------------------------------------------------------
  1007. @node Basic Examples
  1008. @chapter Basic Examples
  1009. @menu
  1010. * Compiling and linking:: Compiling and Linking Options
  1011. * Hello World:: Submitting Tasks
  1012. * Scaling a Vector:: Manipulating Data
  1013. * Scaling a Vector (hybrid):: Handling Heterogeneous Architectures
  1014. @end menu
  1015. @node Compiling and linking
  1016. @section Compiling and linking options
  1017. The Makefile could for instance contain the following lines to define which
  1018. options must be given to the compiler and to the linker:
  1019. @example
  1020. @c @cartouche
  1021. CFLAGS+=$$(pkg-config --cflags libstarpu)
  1022. LIBS+=$$(pkg-config --libs libstarpu)
  1023. @c @end cartouche
  1024. @end example
  1025. @node Hello World
  1026. @section Hello World
  1027. In this section, we show how to implement a simple program that submits a task to StarPU.
  1028. @subsection Required Headers
  1029. The @code{starpu.h} header should be included in any code using StarPU.
  1030. @example
  1031. @c @cartouche
  1032. #include <starpu.h>
  1033. @c @end cartouche
  1034. @end example
  1035. @subsection Defining a Codelet
  1036. @example
  1037. @c @cartouche
  1038. void cpu_func(void *buffers[], void *cl_arg)
  1039. @{
  1040. float *array = cl_arg;
  1041. printf("Hello world (array = @{%f, %f@} )\n", array[0], array[1]);
  1042. @}
  1043. starpu_codelet cl =
  1044. @{
  1045. .where = STARPU_CPU,
  1046. .cpu_func = cpu_func,
  1047. .nbuffers = 0
  1048. @};
  1049. @c @end cartouche
  1050. @end example
  1051. A codelet is a structure that represents a computational kernel. Such a codelet
  1052. may contain an implementation of the same kernel on different architectures
  1053. (e.g. CUDA, Cell's SPU, x86, ...).
  1054. The ''@code{.nbuffers}'' field specifies the number of data buffers that are
  1055. manipulated by the codelet: here the codelet does not access or modify any data
  1056. that is controlled by our data management library. Note that the argument
  1057. passed to the codelet (the ''@code{.cl_arg}'' field of the @code{starpu_task}
  1058. structure) does not count as a buffer since it is not managed by our data
  1059. management library.
  1060. @c TODO need a crossref to the proper description of "where" see bla for more ...
  1061. We create a codelet which may only be executed on the CPUs. The ''@code{.where}''
  1062. field is a bitmask that defines where the codelet may be executed. Here, the
  1063. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  1064. (@pxref{Codelets and Tasks} for more details on that field).
  1065. When a CPU core executes a codelet, it calls the @code{.cpu_func} function,
  1066. which @emph{must} have the following prototype:
  1067. @code{void (*cpu_func)(void *buffers[], void *cl_arg)}
  1068. In this example, we can ignore the first argument of this function which gives a
  1069. description of the input and output buffers (e.g. the size and the location of
  1070. the matrices). The second argument is a pointer to a buffer passed as an
  1071. argument to the codelet by the means of the ''@code{.cl_arg}'' field of the
  1072. @code{starpu_task} structure.
  1073. @c TODO rewrite so that it is a little clearer ?
  1074. Be aware that this may be a pointer to a
  1075. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  1076. if the codelet modifies this buffer, there is no guarantee that the initial
  1077. buffer will be modified as well: this for instance implies that the buffer
  1078. cannot be used as a synchronization medium.
  1079. @subsection Submitting a Task
  1080. @example
  1081. @c @cartouche
  1082. void callback_func(void *callback_arg)
  1083. @{
  1084. printf("Callback function (arg %x)\n", callback_arg);
  1085. @}
  1086. int main(int argc, char **argv)
  1087. @{
  1088. /* initialize StarPU */
  1089. starpu_init(NULL);
  1090. struct starpu_task *task = starpu_task_create();
  1091. task->cl = &cl;
  1092. float *array[2] = @{1.0f, -1.0f@};
  1093. task->cl_arg = &array;
  1094. task->cl_arg_size = 2*sizeof(float);
  1095. task->callback_func = callback_func;
  1096. task->callback_arg = 0x42;
  1097. /* starpu_task_submit will be a blocking call */
  1098. task->synchronous = 1;
  1099. /* submit the task to StarPU */
  1100. starpu_task_submit(task);
  1101. /* terminate StarPU */
  1102. starpu_shutdown();
  1103. return 0;
  1104. @}
  1105. @c @end cartouche
  1106. @end example
  1107. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  1108. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  1109. be submitted after the termination of StarPU by a call to
  1110. @code{starpu_shutdown}.
  1111. In the example above, a task structure is allocated by a call to
  1112. @code{starpu_task_create}. This function only allocates and fills the
  1113. corresponding structure with the default settings (@pxref{starpu_task_create}),
  1114. but it does not submit the task to StarPU.
  1115. @c not really clear ;)
  1116. The ''@code{.cl}'' field is a pointer to the codelet which the task will
  1117. execute: in other words, the codelet structure describes which computational
  1118. kernel should be offloaded on the different architectures, and the task
  1119. structure is a wrapper containing a codelet and the piece of data on which the
  1120. codelet should operate.
  1121. The optional ''@code{.cl_arg}'' field is a pointer to a buffer (of size
  1122. @code{.cl_arg_size}) with some parameters for the kernel
  1123. described by the codelet. For instance, if a codelet implements a computational
  1124. kernel that multiplies its input vector by a constant, the constant could be
  1125. specified by the means of this buffer.
  1126. Once a task has been executed, an optional callback function can be called.
  1127. While the computational kernel could be offloaded on various architectures, the
  1128. callback function is always executed on a CPU. The ''@code{.callback_arg}''
  1129. pointer is passed as an argument of the callback. The prototype of a callback
  1130. function must be:
  1131. @example
  1132. void (*callback_function)(void *);
  1133. @end example
  1134. If the @code{.synchronous} field is non-null, task submission will be
  1135. synchronous: the @code{starpu_task_submit} function will not return until the
  1136. task was executed. Note that the @code{starpu_shutdown} method does not
  1137. guarantee that asynchronous tasks have been executed before it returns.
  1138. @node Scaling a Vector
  1139. @section Manipulating Data: Scaling a Vector
  1140. The previous example has shown how to submit tasks. In this section we show how
  1141. StarPU tasks can manipulate data.
  1142. Programmers can describe the data layout of their application so that StarPU is
  1143. responsible for enforcing data coherency and availability across the machine.
  1144. Instead of handling complex (and non-portable) mechanisms to perform data
  1145. movements, programmers only declare which piece of data is accessed and/or
  1146. modified by a task, and StarPU makes sure that when a computational kernel
  1147. starts somewhere (e.g. on a GPU), its data are available locally.
  1148. Before submitting those tasks, the programmer first needs to declare the
  1149. different pieces of data to StarPU using the @code{starpu_*_data_register}
  1150. functions. To ease the development of applications for StarPU, it is possible
  1151. to describe multiple types of data layout. A type of data layout is called an
  1152. @b{interface}. By default, there are different interfaces available in StarPU:
  1153. here we will consider the @b{vector interface}.
  1154. The following lines show how to declare an array of @code{n} elements of type
  1155. @code{float} using the vector interface:
  1156. @example
  1157. float tab[n];
  1158. starpu_data_handle tab_handle;
  1159. starpu_vector_data_register(&tab_handle, 0, tab, n, sizeof(float));
  1160. @end example
  1161. The first argument, called the @b{data handle}, is an opaque pointer which
  1162. designates the array in StarPU. This is also the structure which is used to
  1163. describe which data is used by a task. The second argument is the node number
  1164. where the data currently resides. Here it is 0 since the @code{tab} array is in
  1165. the main memory. Then comes the pointer @code{tab} where the data can be found,
  1166. the number of elements in the vector and the size of each element.
  1167. It is possible to construct a StarPU
  1168. task that multiplies this vector by a constant factor:
  1169. @example
  1170. float factor;
  1171. struct starpu_task *task = starpu_task_create();
  1172. task->cl = &cl;
  1173. task->buffers[0].handle = tab_handle;
  1174. task->buffers[0].mode = STARPU_RW;
  1175. task->cl_arg = &factor;
  1176. task->cl_arg_size = sizeof(float);
  1177. @end example
  1178. Since the factor is constant, it does not need a preliminary declaration, and
  1179. can just be passed through the @code{cl_arg} pointer like in the previous
  1180. example. The vector parameter is described by its handle.
  1181. There are two fields in each element of the @code{buffers} array.
  1182. @code{.handle} is the handle of the data, and @code{.mode} specifies how the
  1183. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  1184. write-only and @code{STARPU_RW} for read and write access).
  1185. The definition of the codelet can be written as follows:
  1186. @example
  1187. void scal_func(void *buffers[], void *cl_arg)
  1188. @{
  1189. unsigned i;
  1190. float *factor = cl_arg;
  1191. struct starpu_vector_interface_s *vector = buffers[0];
  1192. /* length of the vector */
  1193. unsigned n = vector->nx;
  1194. /* local copy of the vector pointer */
  1195. float *val = (float *)vector->ptr;
  1196. for (i = 0; i < n; i++)
  1197. val[i] *= *factor;
  1198. @}
  1199. starpu_codelet cl = @{
  1200. .where = STARPU_CPU,
  1201. .cpu_func = scal_func,
  1202. .nbuffers = 1
  1203. @};
  1204. @end example
  1205. The second argument of the @code{scal_func} function contains a pointer to the
  1206. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  1207. constant factor from this pointer. The first argument is an array that gives
  1208. a description of every buffers passed in the @code{task->buffers}@ array. The
  1209. size of this array is given by the @code{.nbuffers} field of the codelet
  1210. structure. For the sake of generality, this array contains pointers to the
  1211. different interfaces describing each buffer. In the case of the @b{vector
  1212. interface}, the location of the vector (resp. its length) is accessible in the
  1213. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  1214. read-write fashion, any modification will automatically affect future accesses
  1215. to that vector made by other tasks.
  1216. @node Scaling a Vector (hybrid)
  1217. @section Vector Scaling on an Hybrid CPU/GPU Machine
  1218. Contrary to the previous examples, the task submitted in the example may not
  1219. only be executed by the CPUs, but also by a CUDA device.
  1220. TODO
  1221. @c ---------------------------------------------------------------------
  1222. @c Advanced Topics
  1223. @c ---------------------------------------------------------------------
  1224. @node Advanced Topics
  1225. @chapter Advanced Topics
  1226. @bye