basic-api.texi 128 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Versioning::
  9. * Initialization and Termination::
  10. * Workers' Properties::
  11. * Data Management::
  12. * Data Interfaces::
  13. * Data Partition::
  14. * Codelets and Tasks::
  15. * Explicit Dependencies::
  16. * Implicit Data Dependencies::
  17. * Performance Model API::
  18. * Profiling API::
  19. * CUDA extensions::
  20. * OpenCL extensions::
  21. * Miscellaneous helpers::
  22. @end menu
  23. @node Versioning
  24. @section Versioning
  25. @defmac STARPU_MAJOR_VERSION
  26. Define the major version of StarPU
  27. @end defmac
  28. @defmac STARPU_MINOR_VERSION
  29. Define the minor version of StarPU
  30. @end defmac
  31. @node Initialization and Termination
  32. @section Initialization and Termination
  33. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  34. This is StarPU initialization method, which must be called prior to any other
  35. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  36. policy, number of cores, ...) by passing a non-null argument. Default
  37. configuration is used if the passed argument is @code{NULL}.
  38. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  39. indicates that no worker was available (so that StarPU was not initialized).
  40. @end deftypefun
  41. @deftp {Data Type} {struct starpu_driver}
  42. @table @asis
  43. @item @code{enum starpu_archtype type}
  44. The type of the driver. Only STARPU_CPU_DRIVER, STARPU_CUDA_DRIVER and
  45. STARPU_OPENCL_DRIVER are currently supported.
  46. @item @code{union id} Anonymous union
  47. @table @asis
  48. @item @code{unsigned cpu_id}
  49. Should only be used if type is STARPU_CPU_WORKER.
  50. @item @code{unsigned cuda_id}
  51. Should only be used if type is STARPU_CUDA_WORKER.
  52. @item @code{cl_device_id opencl_id}
  53. Should only be used if type is STARPU_OPENCL_WORKER.
  54. @end table
  55. @end table
  56. @end deftp
  57. @deftp {Data Type} {struct starpu_conf}
  58. This structure is passed to the @code{starpu_init} function in order
  59. to configure StarPU. It has to be initialized with @code{starpu_conf_init}.
  60. When the default value is used, StarPU automatically selects the number of
  61. processing units and takes the default scheduling policy. The environment
  62. variables overwrite the equivalent parameters.
  63. @table @asis
  64. @item @code{const char *sched_policy_name} (default = NULL)
  65. This is the name of the scheduling policy. This can also be specified
  66. with the @code{STARPU_SCHED} environment variable.
  67. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  68. This is the definition of the scheduling policy. This field is ignored
  69. if @code{sched_policy_name} is set.
  70. @item @code{int ncpus} (default = -1)
  71. This is the number of CPU cores that StarPU can use. This can also be
  72. specified with the @code{STARPU_NCPU} environment variable.
  73. @item @code{int ncuda} (default = -1)
  74. This is the number of CUDA devices that StarPU can use. This can also
  75. be specified with the @code{STARPU_NCUDA} environment variable.
  76. @item @code{int nopencl} (default = -1)
  77. This is the number of OpenCL devices that StarPU can use. This can
  78. also be specified with the @code{STARPU_NOPENCL} environment variable.
  79. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  80. If this flag is set, the @code{workers_bindid} array indicates where the
  81. different workers are bound, otherwise StarPU automatically selects where to
  82. bind the different workers. This can also be specified with the
  83. @code{STARPU_WORKERS_CPUID} environment variable.
  84. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  85. If the @code{use_explicit_workers_bindid} flag is set, this array
  86. indicates where to bind the different workers. The i-th entry of the
  87. @code{workers_bindid} indicates the logical identifier of the
  88. processor which should execute the i-th worker. Note that the logical
  89. ordering of the CPUs is either determined by the OS, or provided by
  90. the @code{hwloc} library in case it is available.
  91. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  92. If this flag is set, the CUDA workers will be attached to the CUDA devices
  93. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  94. CUDA devices in a round-robin fashion. This can also be specified with the
  95. @code{STARPU_WORKERS_CUDAID} environment variable.
  96. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  97. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  98. contains the logical identifiers of the CUDA devices (as used by
  99. @code{cudaGetDevice}).
  100. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  101. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  102. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  103. the OpenCL devices in a round-robin fashion. This can also be specified with
  104. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  105. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  106. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  107. contains the logical identifiers of the OpenCL devices to be used.
  108. @item @code{int calibrate} (default = 0)
  109. If this flag is set, StarPU will calibrate the performance models when
  110. executing tasks. If this value is equal to @code{-1}, the default value is
  111. used. If the value is equal to @code{1}, it will force continuing
  112. calibration. If the value is equal to @code{2}, the existing performance
  113. models will be overwritten. This can also be specified with the
  114. @code{STARPU_CALIBRATE} environment variable.
  115. @item @code{int bus_calibrate} (default = 0)
  116. If this flag is set, StarPU will recalibrate the bus. If this value is equal
  117. to @code{-1}, the default value is used. This can also be specified with the
  118. @code{STARPU_BUS_CALIBRATE} environment variable.
  119. @item @code{int single_combined_worker} (default = 0)
  120. By default, StarPU executes parallel tasks concurrently.
  121. Some parallel libraries (e.g. most OpenMP implementations) however do
  122. not support concurrent calls to parallel code. In such case, setting this flag
  123. makes StarPU only start one parallel task at a time (but other
  124. CPU and GPU tasks are not affected and can be run concurrently). The parallel
  125. task scheduler will however still however still try varying combined worker
  126. sizes to look for the most efficient ones.
  127. This can also be specified with the @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  128. @item @code{int disable_asynchronous_copy} (default = 0)
  129. This flag should be set to 1 to disable asynchronous copies between
  130. CPUs and all accelerators. This can also be specified with the
  131. @code{STARPU_DISABLE_ASYNCHRONOUS_COPY} environment variable.
  132. The AMD implementation of OpenCL is known to
  133. fail when copying data asynchronously. When using this implementation,
  134. it is therefore necessary to disable asynchronous data transfers.
  135. This can also be specified at compilation time by giving to the
  136. configure script the option @code{--disable-asynchronous-copy}.
  137. @item @code{int disable_asynchronous_cuda_copy} (default = 0)
  138. This flag should be set to 1 to disable asynchronous copies between
  139. CPUs and CUDA accelerators. This can also be specified with the
  140. @code{STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY} environment variable.
  141. This can also be specified at compilation time by giving to the
  142. configure script the option @code{--disable-asynchronous-cuda-copy}.
  143. @item @code{int disable_asynchronous_opencl_copy} (default = 0)
  144. This flag should be set to 1 to disable asynchronous copies between
  145. CPUs and OpenCL accelerators. This can also be specified with the
  146. @code{STARPU_DISABLE_ASYNCHRONOUS_OPENCL_COPY} environment variable.
  147. The AMD implementation of OpenCL is known to
  148. fail when copying data asynchronously. When using this implementation,
  149. it is therefore necessary to disable asynchronous data transfers.
  150. This can also be specified at compilation time by giving to the
  151. configure script the option @code{--disable-asynchronous-opencl-copy}.
  152. @item @code{int *cuda_opengl_interoperability} (default = NULL)
  153. This can be set to an array of CUDA device identifiers for which
  154. @code{cudaGLSetGLDevice} should be called instead of @code{cudaSetDevice}. Its
  155. size is specified by the @code{n_cuda_opengl_interoperability} field below
  156. @item @code{int *n_cuda_opengl_interoperability} (default = 0)
  157. This has to be set to the size of the array pointed to by the
  158. @code{cuda_opengl_interoperability} field.
  159. @item @code{struct starpu_driver *not_launched_drivers}
  160. The drivers that should not be launched by StarPU.
  161. @item @code{unsigned n_not_launched_drivers}
  162. The number of StarPU drivers that should not be launched by StarPU.
  163. @item @code{trace_buffer_size}
  164. Specifies the buffer size used for FxT tracing. Starting from FxT version
  165. 0.2.12, the buffer will automatically be flushed when it fills in, but it may
  166. still be interesting to specify a bigger value to avoid any flushing (which
  167. would disturb the trace).
  168. @end table
  169. @end deftp
  170. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  171. This function initializes the @var{conf} structure passed as argument
  172. with the default values. In case some configuration parameters are already
  173. specified through environment variables, @code{starpu_conf_init} initializes
  174. the fields of the structure according to the environment variables. For
  175. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  176. @code{.calibrate} field of the structure passed as argument.
  177. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  178. indicates that the argument was NULL.
  179. @end deftypefun
  180. @deftypefun void starpu_shutdown (void)
  181. This is StarPU termination method. It must be called at the end of the
  182. application: statistics and other post-mortem debugging information are not
  183. guaranteed to be available until this method has been called.
  184. @end deftypefun
  185. @deftypefun int starpu_asynchronous_copy_disabled (void)
  186. Return 1 if asynchronous data transfers between CPU and accelerators
  187. are disabled.
  188. @end deftypefun
  189. @deftypefun int starpu_asynchronous_cuda_copy_disabled (void)
  190. Return 1 if asynchronous data transfers between CPU and CUDA accelerators
  191. are disabled.
  192. @end deftypefun
  193. @deftypefun int starpu_asynchronous_opencl_copy_disabled (void)
  194. Return 1 if asynchronous data transfers between CPU and OpenCL accelerators
  195. are disabled.
  196. @end deftypefun
  197. @node Workers' Properties
  198. @section Workers' Properties
  199. @deftp {Data Type} {enum starpu_archtype}
  200. The different values are:
  201. @table @asis
  202. @item @code{STARPU_CPU_WORKER}
  203. @item @code{STARPU_CUDA_WORKER}
  204. @item @code{STARPU_OPENCL_WORKER}
  205. @end table
  206. @end deftp
  207. @deftypefun unsigned starpu_worker_get_count (void)
  208. This function returns the number of workers (i.e. processing units executing
  209. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  210. @end deftypefun
  211. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  212. Returns the number of workers of the given @var{type}. A positive
  213. (or @code{NULL}) value is returned in case of success, @code{-EINVAL} indicates that
  214. the type is not valid otherwise.
  215. @end deftypefun
  216. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  217. This function returns the number of CPUs controlled by StarPU. The returned
  218. value should be at most @code{STARPU_MAXCPUS}.
  219. @end deftypefun
  220. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  221. This function returns the number of CUDA devices controlled by StarPU. The returned
  222. value should be at most @code{STARPU_MAXCUDADEVS}.
  223. @end deftypefun
  224. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  225. This function returns the number of OpenCL devices controlled by StarPU. The returned
  226. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  227. @end deftypefun
  228. @deftypefun int starpu_worker_get_id (void)
  229. This function returns the identifier of the current worker, i.e the one associated to the calling
  230. thread. The returned value is either -1 if the current context is not a StarPU
  231. worker (i.e. when called from the application outside a task or a callback), or
  232. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  233. @end deftypefun
  234. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  235. This function gets the list of identifiers of workers with the given
  236. type. It fills the workerids array with the identifiers of the workers that have the type
  237. indicated in the first argument. The maxsize argument indicates the size of the
  238. workids array. The returned value gives the number of identifiers that were put
  239. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  240. workers with the appropriate type: in that case, the array is filled with the
  241. maxsize first elements. To avoid such overflows, the value of maxsize can be
  242. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  243. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  244. @end deftypefun
  245. @deftypefun int starpu_worker_get_by_type ({enum starpu_archtype} @var{type}, int @var{num})
  246. This returns the identifier of the @var{num}-th worker that has the specified type
  247. @var{type}. If there are no such worker, -1 is returned.
  248. @end deftypefun
  249. @deftypefun int starpu_worker_get_by_devid ({enum starpu_archtype} @var{type}, int @var{devid})
  250. This returns the identifier of the worker that has the specified type
  251. @var{type} and devid @var{devid} (which may not be the n-th, if some devices are
  252. skipped for instance). If there are no such worker, -1 is returned.
  253. @end deftypefun
  254. @deftypefun int starpu_worker_get_devid (int @var{id})
  255. This functions returns the device id of the given worker. The worker
  256. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  257. CUDA worker, this device identifier is the logical device identifier exposed by
  258. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  259. identifier of a CPU worker is the logical identifier of the core on which the
  260. worker was bound; this identifier is either provided by the OS or by the
  261. @code{hwloc} library in case it is available.
  262. @end deftypefun
  263. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  264. This function returns the type of processing unit associated to a
  265. worker. The worker identifier is a value returned by the
  266. @code{starpu_worker_get_id} function). The returned value
  267. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  268. core, @code{STARPU_CUDA_WORKER} for a CUDA device, and
  269. @code{STARPU_OPENCL_WORKER} for a OpenCL device. The value returned for an invalid
  270. identifier is unspecified.
  271. @end deftypefun
  272. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  273. This function allows to get the name of a given worker.
  274. StarPU associates a unique human readable string to each processing unit. This
  275. function copies at most the @var{maxlen} first bytes of the unique string
  276. associated to a worker identified by its identifier @var{id} into the
  277. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  278. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  279. function on an invalid identifier results in an unspecified behaviour.
  280. @end deftypefun
  281. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  282. This function returns the identifier of the memory node associated to the
  283. worker identified by @var{workerid}.
  284. @end deftypefun
  285. @deftp {Data Type} {enum starpu_node_kind}
  286. todo
  287. @table @asis
  288. @item @code{STARPU_UNUSED}
  289. @item @code{STARPU_CPU_RAM}
  290. @item @code{STARPU_CUDA_RAM}
  291. @item @code{STARPU_OPENCL_RAM}
  292. @end table
  293. @end deftp
  294. @deftypefun {enum starpu_node_kind} starpu_node_get_kind (unsigned @var{node})
  295. Returns the type of the given node as defined by @code{enum
  296. starpu_node_kind}. For example, when defining a new data interface,
  297. this function should be used in the allocation function to determine
  298. on which device the memory needs to be allocated.
  299. @end deftypefun
  300. @node Data Management
  301. @section Data Management
  302. @menu
  303. * Introduction to Data Management::
  304. * Basic Data Management API::
  305. * Access registered data from the application::
  306. @end menu
  307. This section describes the data management facilities provided by StarPU.
  308. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  309. design their own data interfaces if required.
  310. @node Introduction to Data Management
  311. @subsection Introduction
  312. Data management is done at a high-level in StarPU: rather than accessing a mere
  313. list of contiguous buffers, the tasks may manipulate data that are described by
  314. a high-level construct which we call data interface.
  315. An example of data interface is the "vector" interface which describes a
  316. contiguous data array on a spefic memory node. This interface is a simple
  317. structure containing the number of elements in the array, the size of the
  318. elements, and the address of the array in the appropriate address space (this
  319. address may be invalid if there is no valid copy of the array in the memory
  320. node). More informations on the data interfaces provided by StarPU are
  321. given in @ref{Data Interfaces}.
  322. When a piece of data managed by StarPU is used by a task, the task
  323. implementation is given a pointer to an interface describing a valid copy of
  324. the data that is accessible from the current processing unit.
  325. Every worker is associated to a memory node which is a logical abstraction of
  326. the address space from which the processing unit gets its data. For instance,
  327. the memory node associated to the different CPU workers represents main memory
  328. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  329. Every memory node is identified by a logical index which is accessible from the
  330. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  331. to StarPU, the specified memory node indicates where the piece of data
  332. initially resides (we also call this memory node the home node of a piece of
  333. data).
  334. @node Basic Data Management API
  335. @subsection Basic Data Management API
  336. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  337. This function allocates data of the given size in main memory. It will also try to pin it in
  338. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  339. thus permit data transfer and computation overlapping. The allocated buffer must
  340. be freed thanks to the @code{starpu_free} function.
  341. @end deftypefun
  342. @deftypefun void starpu_malloc_set_align (size_t @var{align})
  343. This functions sets an alignment constraints for @code{starpu_malloc}
  344. allocations. @var{align} must be a power of two. This is for instance called
  345. automatically by the OpenCL driver to specify its own alignment constraints.
  346. @end deftypefun
  347. @deftypefun int starpu_free (void *@var{A})
  348. This function frees memory which has previously allocated with
  349. @code{starpu_malloc}.
  350. @end deftypefun
  351. @deftp {Data Type} {enum starpu_access_mode}
  352. This datatype describes a data access mode. The different available modes are:
  353. @table @asis
  354. @item @code{STARPU_R}: read-only mode.
  355. @item @code{STARPU_W}: write-only mode.
  356. @item @code{STARPU_RW}: read-write mode.
  357. This is equivalent to @code{STARPU_R|STARPU_W}.
  358. @item @code{STARPU_SCRATCH}: scratch memory.
  359. A temporary buffer is allocated for the task, but StarPU does not
  360. enforce data consistency---i.e. each device has its own buffer,
  361. independently from each other (even for CPUs), and no data transfer is
  362. ever performed. This is useful for temporary variables to avoid
  363. allocating/freeing buffers inside each task.
  364. Currently, no behavior is defined concerning the relation with the
  365. @code{STARPU_R} and @code{STARPU_W} modes and the value provided at
  366. registration---i.e., the value of the scratch buffer is undefined at
  367. entry of the codelet function. It is being considered for future
  368. extensions at least to define the initial value. For now, data to be
  369. used in @code{SCRATCH} mode should be registered with node @code{-1} and
  370. a @code{NULL} pointer, since the value of the provided buffer is simply
  371. ignored for now.
  372. @item @code{STARPU_REDUX}: reduction mode. TODO!
  373. @end table
  374. @end deftp
  375. @deftp {Data Type} {starpu_data_handle_t}
  376. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  377. data. Once a piece of data has been registered to StarPU, it is associated to a
  378. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  379. over the entire machine, so that we can maintain data consistency and locate
  380. data replicates for instance.
  381. @end deftp
  382. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, unsigned @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  383. Register a piece of data into the handle located at the @var{handleptr}
  384. address. The @var{data_interface} buffer contains the initial description of the
  385. data in the home node. The @var{ops} argument is a pointer to a structure
  386. describing the different methods used to manipulate this type of interface. See
  387. @ref{struct starpu_data_interface_ops} for more details on this structure.
  388. If @code{home_node} is -1, StarPU will automatically
  389. allocate the memory when it is used for the
  390. first time in write-only mode. Once such data handle has been automatically
  391. allocated, it is possible to access it using any access mode.
  392. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  393. matrix) which can be registered by the means of helper functions (e.g.
  394. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  395. @end deftypefun
  396. @deftypefun void starpu_data_register_same ({starpu_data_handle_t *}@var{handledst}, starpu_data_handle_t @var{handlesrc})
  397. Register a new piece of data into the handle @var{handledst} with the
  398. same interface as the handle @var{handlesrc}.
  399. @end deftypefun
  400. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  401. This function unregisters a data handle from StarPU. If the data was
  402. automatically allocated by StarPU because the home node was -1, all
  403. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  404. is put back into the home node in the buffer that was initially registered.
  405. Using a data handle that has been unregistered from StarPU results in an
  406. undefined behaviour.
  407. @end deftypefun
  408. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  409. This is the same as starpu_data_unregister, except that StarPU does not put back
  410. a valid copy into the home node, in the buffer that was initially registered.
  411. @end deftypefun
  412. @deftypefun void starpu_data_unregister_submit (starpu_data_handle_t @var{handle})
  413. Destroy the data handle once it is not needed anymore by any submitted
  414. task. No coherency is assumed.
  415. @end deftypefun
  416. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  417. Destroy all replicates of the data handle immediately. After data invalidation,
  418. the first access to the handle must be performed in write-only mode.
  419. Accessing an invalidated data in read-mode results in undefined
  420. behaviour.
  421. @end deftypefun
  422. @deftypefun void starpu_data_invalidate_submit (starpu_data_handle_t @var{handle})
  423. Submits invalidation of the data handle after completion of previously submitted tasks.
  424. @end deftypefun
  425. @c TODO create a specific sections about user interaction with the DSM ?
  426. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  427. This function sets the write-through mask of a given data, i.e. a bitmask of
  428. nodes where the data should be always replicated after modification. It also
  429. prevents the data from being evicted from these nodes when memory gets scarse.
  430. @end deftypefun
  431. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  432. Issue a prefetch request for a given data to a given node, i.e.
  433. requests that the data be replicated to the given node, so that it is available
  434. there for tasks. If the @var{async} parameter is 0, the call will block until
  435. the transfer is achieved, else the call will return as soon as the request is
  436. scheduled (which may however have to wait for a task completion).
  437. @end deftypefun
  438. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  439. Return the handle corresponding to the data pointed to by the @var{ptr}
  440. host pointer.
  441. @end deftypefun
  442. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, unsigned @var{node})
  443. Explicitly ask StarPU to allocate room for a piece of data on the specified
  444. memory node.
  445. @end deftypefun
  446. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  447. Query the status of the handle on the specified memory node.
  448. @end deftypefun
  449. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  450. This function allows to specify that a piece of data can be discarded
  451. without impacting the application.
  452. @end deftypefun
  453. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  454. This sets the codelets to be used for the @var{handle} when it is accessed in
  455. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  456. codelet, and reduction between per-worker buffers will be done with the
  457. @var{redux_cl} codelet.
  458. @end deftypefun
  459. @node Access registered data from the application
  460. @subsection Access registered data from the application
  461. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  462. The application must call this function prior to accessing registered data from
  463. main memory outside tasks. StarPU ensures that the application will get an
  464. up-to-date copy of the data in main memory located where the data was
  465. originally registered, and that all concurrent accesses (e.g. from tasks) will
  466. be consistent with the access mode specified in the @var{mode} argument.
  467. @code{starpu_data_release} must be called once the application does not need to
  468. access the piece of data anymore. Note that implicit data
  469. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  470. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  471. the data, unless they have been disabled explictly by calling
  472. @code{starpu_data_set_default_sequential_consistency_flag} or
  473. @code{starpu_data_set_sequential_consistency_flag}.
  474. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  475. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  476. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  477. @end deftypefun
  478. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  479. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  480. @code{starpu_data_acquire}. When the data specified in the first argument is
  481. available in the appropriate access mode, the callback function is executed.
  482. The application may access the requested data during the execution of this
  483. callback. The callback function must call @code{starpu_data_release} once the
  484. application does not need to access the piece of data anymore.
  485. Note that implicit data dependencies are also enforced by
  486. @code{starpu_data_acquire_cb} in case they are not disabled.
  487. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  488. be called from task callbacks. Upon successful completion, this function
  489. returns 0.
  490. @end deftypefun
  491. @deftypefun int starpu_data_acquire_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode})
  492. This is the same as @code{starpu_data_acquire}, except that the data will be
  493. available on the given memory node instead of main memory.
  494. @end deftypefun
  495. @deftypefun int starpu_data_acquire_on_node_cb (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  496. This is the same as @code{starpu_data_acquire_cb}, except that the data will be
  497. available on the given memory node instead of main memory.
  498. @end deftypefun
  499. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  500. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  501. except that the code to be executed in a callback is directly provided as a
  502. macro parameter, and the data handle is automatically released after it. This
  503. permits to easily execute code which depends on the value of some registered
  504. data. This is non-blocking too and may be called from task callbacks.
  505. @end defmac
  506. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  507. This function releases the piece of data acquired by the application either by
  508. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  509. @end deftypefun
  510. @deftypefun void starpu_data_release_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node})
  511. This is the same as @code{starpu_data_release}, except that the data will be
  512. available on the given memory node instead of main memory.
  513. @end deftypefun
  514. @node Data Interfaces
  515. @section Data Interfaces
  516. @menu
  517. * Registering Data::
  518. * Accessing Data Interfaces::
  519. * Defining Interface::
  520. @end menu
  521. @node Registering Data
  522. @subsection Registering Data
  523. There are several ways to register a memory region so that it can be managed by
  524. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  525. matrices as well as BCSR and CSR sparse matrices.
  526. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  527. Register a void interface. There is no data really associated to that
  528. interface, but it may be used as a synchronization mechanism. It also
  529. permits to express an abstract piece of data that is managed by the
  530. application internally: this makes it possible to forbid the
  531. concurrent execution of different tasks accessing the same "void" data
  532. in read-write concurrently.
  533. @end deftypefun
  534. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  535. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  536. typically a scalar, and initialize @var{handle} to represent this data
  537. item.
  538. @cartouche
  539. @smallexample
  540. float var;
  541. starpu_data_handle_t var_handle;
  542. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  543. @end smallexample
  544. @end cartouche
  545. @end deftypefun
  546. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  547. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  548. @var{ptr} and initialize @var{handle} to represent it.
  549. @cartouche
  550. @smallexample
  551. float vector[NX];
  552. starpu_data_handle_t vector_handle;
  553. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  554. sizeof(vector[0]));
  555. @end smallexample
  556. @end cartouche
  557. @end deftypefun
  558. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  559. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  560. pointed by @var{ptr} and initialize @var{handle} to represent it.
  561. @var{ld} specifies the number of elements between rows.
  562. a value greater than @var{nx} adds padding, which can be useful for
  563. alignment purposes.
  564. @cartouche
  565. @smallexample
  566. float *matrix;
  567. starpu_data_handle_t matrix_handle;
  568. matrix = (float*)malloc(width * height * sizeof(float));
  569. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  570. width, width, height, sizeof(float));
  571. @end smallexample
  572. @end cartouche
  573. @end deftypefun
  574. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  575. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  576. elements pointed by @var{ptr} and initialize @var{handle} to represent
  577. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  578. between rows and between z planes.
  579. @cartouche
  580. @smallexample
  581. float *block;
  582. starpu_data_handle_t block_handle;
  583. block = (float*)malloc(nx*ny*nz*sizeof(float));
  584. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  585. nx, nx*ny, nx, ny, nz, sizeof(float));
  586. @end smallexample
  587. @end cartouche
  588. @end deftypefun
  589. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  590. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  591. Compressed Sparse Row Representation) sparse matrix interface.
  592. Register the sparse matrix made of @var{nnz} non-zero blocks of elements of size
  593. @var{elemsize} stored in @var{nzval} and initializes @var{handle} to represent
  594. it. Blocks have size @var{r} * @var{c}. @var{nrow} is the number of rows (in
  595. terms of blocks), @code{colind[i]} is the block-column index for block @code{i}
  596. in @code{nzval}, @code{rowptr[i]} is the block-index (in nzval) of the first block of row @code{i}.
  597. @var{firstentry} is the index of the first entry of the given arrays (usually 0
  598. or 1).
  599. @end deftypefun
  600. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  601. This variant of @code{starpu_data_register} uses the CSR (Compressed
  602. Sparse Row Representation) sparse matrix interface.
  603. TODO
  604. @end deftypefun
  605. @deftypefun void starpu_coo_data_register (starpu_data_handle_t *@var{handleptr}, unsigned @var{home_node}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{n_values}, uint32_t *@var{columns}, uint32_t *@var{rows}, uintptr_t @var{values}, size_t @var{elemsize});
  606. Register the @var{nx}x@var{ny} 2D matrix given in the COO format, using the
  607. @var{columns}, @var{rows}, @var{values} arrays, which must have @var{n_values}
  608. elements of size @var{elemsize}. Initialize @var{handleptr}.
  609. @end deftypefun
  610. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  611. Return the interface associated with @var{handle} on @var{memory_node}.
  612. @end deftypefun
  613. @node Accessing Data Interfaces
  614. @subsection Accessing Data Interfaces
  615. Each data interface is provided with a set of field access functions.
  616. The ones using a @code{void *} parameter aimed to be used in codelet
  617. implementations (see for example the code in @ref{Vector Scaling Using StarPU's API}).
  618. @deftp {Data Type} {enum starpu_data_interface_id}
  619. The different values are:
  620. @table @asis
  621. @item @code{STARPU_MATRIX_INTERFACE_ID}
  622. @item @code{STARPU_BLOCK_INTERFACE_ID}
  623. @item @code{STARPU_VECTOR_INTERFACE_ID}
  624. @item @code{STARPU_CSR_INTERFACE_ID}
  625. @item @code{STARPU_BCSR_INTERFACE_ID}
  626. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  627. @item @code{STARPU_VOID_INTERFACE_ID}
  628. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  629. @item @code{STARPU_COO_INTERCACE_ID}
  630. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  631. @end table
  632. @end deftp
  633. @menu
  634. * Accessing Handle::
  635. * Accessing Variable Data Interfaces::
  636. * Accessing Vector Data Interfaces::
  637. * Accessing Matrix Data Interfaces::
  638. * Accessing Block Data Interfaces::
  639. * Accessing BCSR Data Interfaces::
  640. * Accessing CSR Data Interfaces::
  641. * Accessing COO Data Interfaces::
  642. @end menu
  643. @node Accessing Handle
  644. @subsubsection Handle
  645. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, unsigned @var{node})
  646. Return the pointer associated with @var{handle} on node @var{node} or
  647. @code{NULL} if @var{handle}'s interface does not support this
  648. operation or data for this handle is not allocated on that node.
  649. @end deftypefun
  650. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  651. Return the local pointer associated with @var{handle} or @code{NULL}
  652. if @var{handle}'s interface does not have data allocated locally
  653. @end deftypefun
  654. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  655. Return the unique identifier of the interface associated with the given @var{handle}.
  656. @end deftypefun
  657. @deftypefun size_t starpu_handle_get_size (starpu_data_handle_t @var{handle})
  658. Return the size of the data associated with @var{handle}
  659. @end deftypefun
  660. @deftypefun int starpu_handle_pack_data (starpu_data_handle_t @var{handle}, {void **}@var{ptr}, {ssize_t *}@var{count})
  661. Execute the packing operation of the interface of the data registered
  662. at @var{handle} (@pxref{struct starpu_data_interface_ops}). This
  663. packing operation must allocate a buffer large enough at @var{ptr} and
  664. copy into the newly allocated buffer the data associated to
  665. @var{handle}. @var{count} will be set to the size of the allocated
  666. buffer.
  667. If @var{ptr} is @code{NULL}, the function should not copy the data in the
  668. buffer but just set @var{count} to the size of the buffer which
  669. would have been allocated. The special value @code{-1} indicates the
  670. size is yet unknown.
  671. @end deftypefun
  672. @deftypefun int starpu_handle_unpack_data (starpu_data_handle_t @var{handle}, {void *}@var{ptr}, size_t @var{count})
  673. Unpack in @var{handle} the data located at @var{ptr} of size
  674. @var{count} as described by the interface of the data. The interface
  675. registered at @var{handle} must define a unpacking operation
  676. (@pxref{struct starpu_data_interface_ops}). The memory at the address @code{ptr}
  677. is freed after calling the data unpacking operation.
  678. @end deftypefun
  679. @node Accessing Variable Data Interfaces
  680. @subsubsection Variable Data Interfaces
  681. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  682. Return the size of the variable designated by @var{handle}.
  683. @end deftypefun
  684. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  685. Return a pointer to the variable designated by @var{handle}.
  686. @end deftypefun
  687. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  688. Return a pointer to the variable designated by @var{interface}.
  689. @end defmac
  690. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  691. Return the size of the variable designated by @var{interface}.
  692. @end defmac
  693. @defmac STARPU_VARIABLE_GET_DEV_HANDLE ({void *}@var{interface})
  694. Return a device handle for the variable designated by @var{interface}, to be
  695. used on OpenCL. The offset documented below has to be used in addition to this.
  696. @end defmac
  697. @defmac STARPU_VARIABLE_GET_OFFSET ({void *}@var{interface})
  698. Return the offset in the variable designated by @var{interface}, to be used
  699. with the device handle.
  700. @end defmac
  701. @node Accessing Vector Data Interfaces
  702. @subsubsection Vector Data Interfaces
  703. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  704. Return the number of elements registered into the array designated by @var{handle}.
  705. @end deftypefun
  706. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  707. Return the size of each element of the array designated by @var{handle}.
  708. @end deftypefun
  709. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  710. Return the local pointer associated with @var{handle}.
  711. @end deftypefun
  712. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  713. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  714. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  715. @end defmac
  716. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  717. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  718. documented below has to be used in addition to this.
  719. @end defmac
  720. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  721. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  722. @end defmac
  723. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  724. Return the number of elements registered into the array designated by @var{interface}.
  725. @end defmac
  726. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  727. Return the size of each element of the array designated by @var{interface}.
  728. @end defmac
  729. @node Accessing Matrix Data Interfaces
  730. @subsubsection Matrix Data Interfaces
  731. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  732. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  733. @end deftypefun
  734. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  735. Return the number of elements on the y-axis of the matrix designated by
  736. @var{handle}.
  737. @end deftypefun
  738. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  739. Return the number of elements between each row of the matrix designated by
  740. @var{handle}. Maybe be equal to nx when there is no padding.
  741. @end deftypefun
  742. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  743. Return the local pointer associated with @var{handle}.
  744. @end deftypefun
  745. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  746. Return the size of the elements registered into the matrix designated by
  747. @var{handle}.
  748. @end deftypefun
  749. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  750. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  751. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  752. used instead.
  753. @end defmac
  754. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  755. Return a device handle for the matrix designated by @var{interface}, to be used
  756. on OpenCL. The offset documented below has to be used in addition to this.
  757. @end defmac
  758. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  759. Return the offset in the matrix designated by @var{interface}, to be used with
  760. the device handle.
  761. @end defmac
  762. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  763. Return the number of elements on the x-axis of the matrix designated by
  764. @var{interface}.
  765. @end defmac
  766. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  767. Return the number of elements on the y-axis of the matrix designated by
  768. @var{interface}.
  769. @end defmac
  770. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  771. Return the number of elements between each row of the matrix designated by
  772. @var{interface}. May be equal to nx when there is no padding.
  773. @end defmac
  774. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  775. Return the size of the elements registered into the matrix designated by
  776. @var{interface}.
  777. @end defmac
  778. @node Accessing Block Data Interfaces
  779. @subsubsection Block Data Interfaces
  780. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  781. Return the number of elements on the x-axis of the block designated by @var{handle}.
  782. @end deftypefun
  783. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  784. Return the number of elements on the y-axis of the block designated by @var{handle}.
  785. @end deftypefun
  786. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  787. Return the number of elements on the z-axis of the block designated by @var{handle}.
  788. @end deftypefun
  789. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  790. Return the number of elements between each row of the block designated by
  791. @var{handle}, in the format of the current memory node.
  792. @end deftypefun
  793. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  794. Return the number of elements between each z plane of the block designated by
  795. @var{handle}, in the format of the current memory node.
  796. @end deftypefun
  797. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  798. Return the local pointer associated with @var{handle}.
  799. @end deftypefun
  800. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  801. Return the size of the elements of the block designated by @var{handle}.
  802. @end deftypefun
  803. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  804. Return a pointer to the block designated by @var{interface}.
  805. @end defmac
  806. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  807. Return a device handle for the block designated by @var{interface}, to be used
  808. on OpenCL. The offset document below has to be used in addition to this.
  809. @end defmac
  810. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  811. Return the offset in the block designated by @var{interface}, to be used with
  812. the device handle.
  813. @end defmac
  814. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  815. Return the number of elements on the x-axis of the block designated by @var{handle}.
  816. @end defmac
  817. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  818. Return the number of elements on the y-axis of the block designated by @var{handle}.
  819. @end defmac
  820. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  821. Return the number of elements on the z-axis of the block designated by @var{handle}.
  822. @end defmac
  823. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  824. Return the number of elements between each row of the block designated by
  825. @var{interface}. May be equal to nx when there is no padding.
  826. @end defmac
  827. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  828. Return the number of elements between each z plane of the block designated by
  829. @var{interface}. May be equal to nx*ny when there is no padding.
  830. @end defmac
  831. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  832. Return the size of the elements of the matrix designated by @var{interface}.
  833. @end defmac
  834. @node Accessing BCSR Data Interfaces
  835. @subsubsection BCSR Data Interfaces
  836. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  837. Return the number of non-zero elements in the matrix designated by @var{handle}.
  838. @end deftypefun
  839. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  840. Return the number of rows (in terms of blocks of size r*c) in the matrix
  841. designated by @var{handle}.
  842. @end deftypefun
  843. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  844. Return the index at which all arrays (the column indexes, the row pointers...)
  845. of the matrix desginated by @var{handle} start.
  846. @end deftypefun
  847. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  848. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  849. @end deftypefun
  850. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  851. Return a pointer to the column index, which holds the positions of the non-zero
  852. entries in the matrix designated by @var{handle}.
  853. @end deftypefun
  854. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  855. Return the row pointer array of the matrix designated by @var{handle}.
  856. @end deftypefun
  857. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  858. Return the number of rows in a block.
  859. @end deftypefun
  860. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  861. Return the numberof columns in a block.
  862. @end deftypefun
  863. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  864. Return the size of the elements in the matrix designated by @var{handle}.
  865. @end deftypefun
  866. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  867. Return the number of non-zero values in the matrix designated by @var{interface}.
  868. @end defmac
  869. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  870. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  871. @end defmac
  872. @defmac STARPU_BCSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  873. Return a device handle for the array of non-zero values in the matrix designated
  874. by @var{interface}. The offset documented below has to be used in addition to
  875. this.
  876. @end defmac
  877. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  878. Return a pointer to the column index of the matrix designated by @var{interface}.
  879. @end defmac
  880. @defmac STARPU_BCSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  881. Return a device handle for the column index of the matrix designated by
  882. @var{interface}. The offset documented below has to be used in addition to
  883. this.
  884. @end defmac
  885. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  886. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  887. @end defmac
  888. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  889. Return a device handle for the row pointer array of the matrix designated by
  890. @var{interface}. The offset documented below has to be used in addition to
  891. this.
  892. @end defmac
  893. @defmac STARPU_BCSR_GET_OFFSET ({void *}@var{interface})
  894. Return the offset in the arrays (coling, rowptr, nzval) of the matrix
  895. designated by @var{interface}, to be used with the device handles.
  896. @end defmac
  897. @node Accessing CSR Data Interfaces
  898. @subsubsection CSR Data Interfaces
  899. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  900. Return the number of non-zero values in the matrix designated by @var{handle}.
  901. @end deftypefun
  902. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  903. Return the size of the row pointer array of the matrix designated by @var{handle}.
  904. @end deftypefun
  905. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  906. Return the index at which all arrays (the column indexes, the row pointers...)
  907. of the matrix designated by @var{handle} start.
  908. @end deftypefun
  909. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  910. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  911. @end deftypefun
  912. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  913. Return a local pointer to the column index of the matrix designated by @var{handle}.
  914. @end deftypefun
  915. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  916. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  917. @end deftypefun
  918. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  919. Return the size of the elements registered into the matrix designated by @var{handle}.
  920. @end deftypefun
  921. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  922. Return the number of non-zero values in the matrix designated by @var{interface}.
  923. @end defmac
  924. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  925. Return the size of the row pointer array of the matrix designated by @var{interface}.
  926. @end defmac
  927. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  928. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  929. @end defmac
  930. @defmac STARPU_CSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  931. Return a device handle for the array of non-zero values in the matrix designated
  932. by @var{interface}. The offset documented below has to be used in addition to
  933. this.
  934. @end defmac
  935. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  936. Return a pointer to the column index of the matrix designated by @var{interface}.
  937. @end defmac
  938. @defmac STARPU_CSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  939. Return a device handle for the column index of the matrix designated by
  940. @var{interface}. The offset documented below has to be used in addition to
  941. this.
  942. @end defmac
  943. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  944. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  945. @end defmac
  946. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  947. Return a device handle for the row pointer array of the matrix designated by
  948. @var{interface}. The offset documented below has to be used in addition to
  949. this.
  950. @end defmac
  951. @defmac STARPU_CSR_GET_OFFSET ({void *}@var{interface})
  952. Return the offset in the arrays (colind, rowptr, nzval) of the matrix
  953. designated by @var{interface}, to be used with the device handles.
  954. @end defmac
  955. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  956. Return the index at which all arrays (the column indexes, the row pointers...)
  957. of the @var{interface} start.
  958. @end defmac
  959. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  960. Return the size of the elements registered into the matrix designated by @var{interface}.
  961. @end defmac
  962. @node Accessing COO Data Interfaces
  963. @subsubsection COO Data Interfaces
  964. @defmac STARPU_COO_GET_COLUMNS ({void *}@var{interface})
  965. Return a pointer to the column array of the matrix designated by
  966. @var{interface}.
  967. @end defmac
  968. @defmac STARPU_COO_GET_COLUMNS_DEV_HANDLE ({void *}@var{interface})
  969. Return a device handle for the column array of the matrix designated by
  970. @var{interface}, to be used on OpenCL. The offset documented below has to be
  971. used in addition to this.
  972. @end defmac
  973. @defmac STARPU_COO_GET_ROWS (interface)
  974. Return a pointer to the rows array of the matrix designated by @var{interface}.
  975. @end defmac
  976. @defmac STARPU_COO_GET_ROWS_DEV_HANDLE ({void *}@var{interface})
  977. Return a device handle for the row array of the matrix designated by
  978. @var{interface}, to be used on OpenCL. The offset documented below has to be
  979. used in addition to this.
  980. @end defmac
  981. @defmac STARPU_COO_GET_VALUES (interface)
  982. Return a pointer to the values array of the matrix designated by
  983. @var{interface}.
  984. @end defmac
  985. @defmac STARPU_COO_GET_VALUES_DEV_HANDLE ({void *}@var{interface})
  986. Return a device handle for the value array of the matrix designated by
  987. @var{interface}, to be used on OpenCL. The offset documented below has to be
  988. used in addition to this.
  989. @end defmac
  990. @defmac STARPU_COO_GET_OFFSET ({void *}@var{itnerface})
  991. Return the offset in the arrays of the COO matrix designated by @var{interface}.
  992. @end defmac
  993. @defmac STARPU_COO_GET_NX (interface)
  994. Return the number of elements on the x-axis of the matrix designated by
  995. @var{interface}.
  996. @end defmac
  997. @defmac STARPU_COO_GET_NY (interface)
  998. Return the number of elements on the y-axis of the matrix designated by
  999. @var{interface}.
  1000. @end defmac
  1001. @defmac STARPU_COO_GET_NVALUES (interface)
  1002. Return the number of values registered in the matrix designated by
  1003. @var{interface}.
  1004. @end defmac
  1005. @defmac STARPU_COO_GET_ELEMSIZE (interface)
  1006. Return the size of the elements registered into the matrix designated by
  1007. @var{interface}.
  1008. @end defmac
  1009. @node Defining Interface
  1010. @subsection Defining Interface
  1011. Applications can provide their own interface. An example is provided in
  1012. @code{examples/interface}. A few helpers are provided.
  1013. @deftypefun uintptr_t starpu_malloc_on_node (unsigned @var{dst_node}, size_t @var{size})
  1014. Allocate @var{size} bytes on node @var{dst_node}. This returns 0 if allocation
  1015. failed, the allocation method should then return -ENOMEM as allocated size.
  1016. @end deftypefun
  1017. @deftypefun void starpu_free_on_node (unsigned @var{dst_node}, uintptr_t @var{addr}, size_t @var{size})
  1018. Free @var{addr} of @var{size} bytes on node @var{dst_node}.
  1019. @end deftypefun
  1020. @node Data Partition
  1021. @section Data Partition
  1022. @menu
  1023. * Basic API::
  1024. * Predefined filter functions::
  1025. @end menu
  1026. @node Basic API
  1027. @subsection Basic API
  1028. @deftp {Data Type} {struct starpu_data_filter}
  1029. The filter structure describes a data partitioning operation, to be given to the
  1030. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  1031. for an example. The different fields are:
  1032. @table @asis
  1033. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  1034. This function fills the @code{child_interface} structure with interface
  1035. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  1036. @item @code{unsigned nchildren}
  1037. This is the number of parts to partition the data into.
  1038. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  1039. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  1040. children depends on the actual data (e.g. the number of blocks in a sparse
  1041. matrix).
  1042. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  1043. In case the resulting children use a different data interface, this function
  1044. returns which interface is used by child number @code{id}.
  1045. @item @code{unsigned filter_arg}
  1046. Allow to define an additional parameter for the filter function.
  1047. @item @code{void *filter_arg_ptr}
  1048. Allow to define an additional pointer parameter for the filter
  1049. function, such as the sizes of the different parts.
  1050. @end table
  1051. @end deftp
  1052. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  1053. @anchor{starpu_data_partition}
  1054. This requests partitioning one StarPU data @var{initial_handle} into several
  1055. subdata according to the filter @var{f}, as shown in the following example:
  1056. @cartouche
  1057. @smallexample
  1058. struct starpu_data_filter f = @{
  1059. .filter_func = starpu_matrix_filter_block,
  1060. .nchildren = nslicesx,
  1061. .get_nchildren = NULL,
  1062. .get_child_ops = NULL
  1063. @};
  1064. starpu_data_partition(A_handle, &f);
  1065. @end smallexample
  1066. @end cartouche
  1067. @end deftypefun
  1068. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, unsigned @var{gathering_node})
  1069. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  1070. collected back into one big piece in the @var{gathering_node} (usually 0). Tasks
  1071. working on the partitioned data must be already finished when calling @code{starpu_data_unpartition}.
  1072. @cartouche
  1073. @smallexample
  1074. starpu_data_unpartition(A_handle, 0);
  1075. @end smallexample
  1076. @end cartouche
  1077. @end deftypefun
  1078. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  1079. This function returns the number of children.
  1080. @end deftypefun
  1081. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  1082. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  1083. @end deftypefun
  1084. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  1085. After partitioning a StarPU data by applying a filter,
  1086. @code{starpu_data_get_sub_data} can be used to get handles for each of
  1087. the data portions. @var{root_data} is the parent data that was
  1088. partitioned. @var{depth} is the number of filters to traverse (in
  1089. case several filters have been applied, to e.g. partition in row
  1090. blocks, and then in column blocks), and the subsequent
  1091. parameters are the indexes. The function returns a handle to the
  1092. subdata.
  1093. @cartouche
  1094. @smallexample
  1095. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  1096. @end smallexample
  1097. @end cartouche
  1098. @end deftypefun
  1099. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  1100. This function is similar to @code{starpu_data_get_sub_data} but uses a
  1101. va_list for the parameter list.
  1102. @end deftypefun
  1103. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  1104. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1105. recursively. @var{nfilters} pointers to variables of the type
  1106. starpu_data_filter should be given.
  1107. @end deftypefun
  1108. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  1109. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1110. recursively. It uses a va_list of pointers to variables of the typer
  1111. starpu_data_filter.
  1112. @end deftypefun
  1113. @node Predefined filter functions
  1114. @subsection Predefined filter functions
  1115. @menu
  1116. * Partitioning Vector Data::
  1117. * Partitioning Matrix Data::
  1118. * Partitioning 3D Matrix Data::
  1119. * Partitioning BCSR Data::
  1120. @end menu
  1121. This section gives a partial list of the predefined partitioning functions.
  1122. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  1123. list can be found in @code{starpu_data_filters.h} .
  1124. @node Partitioning Vector Data
  1125. @subsubsection Partitioning Vector Data
  1126. @deftypefun void starpu_vector_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1127. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1128. vector represented by @var{father_interface} once partitioned in
  1129. @var{nparts} chunks of equal size.
  1130. @end deftypefun
  1131. @deftypefun void starpu_vector_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1132. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1133. vector represented by @var{father_interface} once partitioned in
  1134. @var{nparts} chunks of equal size with a shadow border @code{filter_arg_ptr}, thus getting a vector of size (n-2*shadow)/nparts+2*shadow
  1135. The @code{filter_arg_ptr} field must be the shadow size casted into @code{void*}.
  1136. IMPORTANT: This can only be used for read-only access, as no coherency is
  1137. enforced for the shadowed parts.
  1138. A usage example is available in examples/filters/shadow.c
  1139. @end deftypefun
  1140. @deftypefun void starpu_vector_filter_list (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1141. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1142. vector represented by @var{father_interface} once partitioned into
  1143. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  1144. @code{*@var{f}}.
  1145. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  1146. @code{uint32_t} elements, each of which specifies the number of elements
  1147. in each chunk of the partition.
  1148. @end deftypefun
  1149. @deftypefun void starpu_vector_filter_divide_in_2 (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1150. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1151. vector represented by @var{father_interface} once partitioned in two
  1152. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  1153. @code{0} or @code{1}.
  1154. @end deftypefun
  1155. @node Partitioning Matrix Data
  1156. @subsubsection Partitioning Matrix Data
  1157. @deftypefun void starpu_matrix_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1158. This partitions a dense Matrix along the x dimension, thus getting (x/nparts,y)
  1159. matrices. If nparts does not divide x, the last submatrix contains the
  1160. remainder.
  1161. @end deftypefun
  1162. @deftypefun void starpu_matrix_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1163. This partitions a dense Matrix along the x dimension, with a shadow border
  1164. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y)
  1165. matrices. If nparts does not divide x-2*shadow, the last submatrix contains the
  1166. remainder.
  1167. IMPORTANT: This can only be used for read-only access, as no coherency is
  1168. enforced for the shadowed parts.
  1169. A usage example is available in examples/filters/shadow2d.c
  1170. @end deftypefun
  1171. @deftypefun void starpu_matrix_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1172. This partitions a dense Matrix along the y dimension, thus getting (x,y/nparts)
  1173. matrices. If nparts does not divide y, the last submatrix contains the
  1174. remainder.
  1175. @end deftypefun
  1176. @deftypefun void starpu_matrix_filter_vertical_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1177. This partitions a dense Matrix along the y dimension, with a shadow border
  1178. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow)
  1179. matrices. If nparts does not divide y-2*shadow, the last submatrix contains the
  1180. remainder.
  1181. IMPORTANT: This can only be used for read-only access, as no coherency is
  1182. enforced for the shadowed parts.
  1183. A usage example is available in examples/filters/shadow2d.c
  1184. @end deftypefun
  1185. @node Partitioning 3D Matrix Data
  1186. @subsubsection Partitioning 3D Matrix Data
  1187. A usage example is available in examples/filters/shadow3d.c
  1188. @deftypefun void starpu_block_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1189. This partitions a 3D matrix along the X dimension, thus getting (x/nparts,y,z)
  1190. 3D matrices. If nparts does not divide x, the last submatrix contains the
  1191. remainder.
  1192. @end deftypefun
  1193. @deftypefun void starpu_block_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1194. This partitions a 3D matrix along the X dimension, with a shadow border
  1195. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y,z) 3D
  1196. matrices. If nparts does not divide x, the last submatrix contains the
  1197. remainder.
  1198. IMPORTANT: This can only be used for read-only access, as no coherency is
  1199. enforced for the shadowed parts.
  1200. @end deftypefun
  1201. @deftypefun void starpu_block_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1202. This partitions a 3D matrix along the Y dimension, thus getting (x,y/nparts,z)
  1203. 3D matrices. If nparts does not divide y, the last submatrix contains the
  1204. remainder.
  1205. @end deftypefun
  1206. @deftypefun void starpu_block_filter_vertical_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1207. This partitions a 3D matrix along the Y dimension, with a shadow border
  1208. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow,z) 3D
  1209. matrices. If nparts does not divide y, the last submatrix contains the
  1210. remainder.
  1211. IMPORTANT: This can only be used for read-only access, as no coherency is
  1212. enforced for the shadowed parts.
  1213. @end deftypefun
  1214. @deftypefun void starpu_block_filter_depth_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1215. This partitions a 3D matrix along the Z dimension, thus getting (x,y,z/nparts)
  1216. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1217. remainder.
  1218. @end deftypefun
  1219. @deftypefun void starpu_block_filter_depth_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1220. This partitions a 3D matrix along the Z dimension, with a shadow border
  1221. @code{filter_arg_ptr}, thus getting (x,y,(z-2*shadow)/nparts+2*shadow)
  1222. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1223. remainder.
  1224. IMPORTANT: This can only be used for read-only access, as no coherency is
  1225. enforced for the shadowed parts.
  1226. @end deftypefun
  1227. @node Partitioning BCSR Data
  1228. @subsubsection Partitioning BCSR Data
  1229. @deftypefun void starpu_bcsr_filter_canonical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1230. This partitions a block-sparse matrix into dense matrices.
  1231. @end deftypefun
  1232. @deftypefun void starpu_csr_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1233. This partitions a block-sparse matrix into vertical block-sparse matrices.
  1234. @end deftypefun
  1235. @node Codelets and Tasks
  1236. @section Codelets and Tasks
  1237. This section describes the interface to manipulate codelets and tasks.
  1238. @deftp {Data Type} {enum starpu_codelet_type}
  1239. Describes the type of parallel task. The different values are:
  1240. @table @asis
  1241. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  1242. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  1243. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  1244. @code{starpu_combined_worker_get_rank} to distribute the work
  1245. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  1246. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  1247. determine how many threads should be started.
  1248. @end table
  1249. See @ref{Parallel Tasks} for details.
  1250. @end deftp
  1251. @defmac STARPU_CPU
  1252. This macro is used when setting the field @code{where} of a @code{struct
  1253. starpu_codelet} to specify the codelet may be executed on a CPU
  1254. processing unit.
  1255. @end defmac
  1256. @defmac STARPU_CUDA
  1257. This macro is used when setting the field @code{where} of a @code{struct
  1258. starpu_codelet} to specify the codelet may be executed on a CUDA
  1259. processing unit.
  1260. @end defmac
  1261. @defmac STARPU_OPENCL
  1262. This macro is used when setting the field @code{where} of a @code{struct
  1263. starpu_codelet} to specify the codelet may be executed on a OpenCL
  1264. processing unit.
  1265. @end defmac
  1266. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  1267. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  1268. with this macro indicates the codelet will have several
  1269. implementations. The use of this macro is deprecated. One should
  1270. always only define the field @code{cpu_funcs}.
  1271. @end defmac
  1272. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  1273. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  1274. with this macro indicates the codelet will have several
  1275. implementations. The use of this macro is deprecated. One should
  1276. always only define the field @code{cuda_funcs}.
  1277. @end defmac
  1278. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  1279. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  1280. with this macro indicates the codelet will have several
  1281. implementations. The use of this macro is deprecated. One should
  1282. always only define the field @code{opencl_funcs}.
  1283. @end defmac
  1284. @deftp {Data Type} {struct starpu_codelet}
  1285. The codelet structure describes a kernel that is possibly implemented on various
  1286. targets. For compatibility, make sure to initialize the whole structure to zero,
  1287. either by using explicit memset, or by letting the compiler implicitly do it in
  1288. e.g. static storage case.
  1289. @table @asis
  1290. @item @code{uint32_t where} (optional)
  1291. Indicates which types of processing units are able to execute the
  1292. codelet. The different values
  1293. @code{STARPU_CPU}, @code{STARPU_CUDA},
  1294. @code{STARPU_OPENCL} can be combined to specify
  1295. on which types of processing units the codelet can be executed.
  1296. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  1297. implemented for both CPU cores and CUDA devices while @code{STARPU_OPENCL}
  1298. indicates that it is only available on OpenCL devices. If the field is
  1299. unset, its value will be automatically set based on the availability
  1300. of the @code{XXX_funcs} fields defined below.
  1301. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  1302. Defines a function which should return 1 if the worker designated by
  1303. @var{workerid} can execute the @var{nimpl}th implementation of the
  1304. given @var{task}, 0 otherwise.
  1305. @item @code{enum starpu_codelet_type type} (optional)
  1306. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  1307. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  1308. implementation is also available. See @ref{Parallel Tasks} for details.
  1309. @item @code{int max_parallelism} (optional)
  1310. If a parallel implementation is available, this denotes the maximum combined
  1311. worker size that StarPU will use to execute parallel tasks for this codelet.
  1312. @item @code{starpu_cpu_func_t cpu_func} (optional)
  1313. This field has been made deprecated. One should use instead the
  1314. @code{cpu_funcs} field.
  1315. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1316. Is an array of function pointers to the CPU implementations of the codelet.
  1317. It must be terminated by a NULL value.
  1318. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1319. argument being the array of data managed by the data management library, and
  1320. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1321. field of the @code{starpu_task} structure.
  1322. If the @code{where} field is set, then the @code{cpu_funcs} field is
  1323. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  1324. field, it must be non-null otherwise.
  1325. @item @code{starpu_cuda_func_t cuda_func} (optional)
  1326. This field has been made deprecated. One should use instead the
  1327. @code{cuda_funcs} field.
  1328. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1329. Is an array of function pointers to the CUDA implementations of the codelet.
  1330. It must be terminated by a NULL value.
  1331. @emph{The functions must be host-functions written in the CUDA runtime
  1332. API}. Their prototype must
  1333. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  1334. If the @code{where} field is set, then the @code{cuda_funcs}
  1335. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  1336. field, it must be non-null otherwise.
  1337. @item @code{starpu_opencl_func_t opencl_func} (optional)
  1338. This field has been made deprecated. One should use instead the
  1339. @code{opencl_funcs} field.
  1340. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1341. Is an array of function pointers to the OpenCL implementations of the codelet.
  1342. It must be terminated by a NULL value.
  1343. The functions prototype must be:
  1344. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  1345. If the @code{where} field is set, then the @code{opencl_funcs} field
  1346. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  1347. field, it must be non-null otherwise.
  1348. @item @code{unsigned nbuffers}
  1349. Specifies the number of arguments taken by the codelet. These arguments are
  1350. managed by the DSM and are accessed from the @code{void *buffers[]}
  1351. array. The constant argument passed with the @code{cl_arg} field of the
  1352. @code{starpu_task} structure is not counted in this number. This value should
  1353. not be above @code{STARPU_NMAXBUFS}.
  1354. @item @code{enum starpu_access_mode modes[STARPU_NMAXBUFS]}
  1355. Is an array of @code{enum starpu_access_mode}. It describes the
  1356. required access modes to the data neeeded by the codelet (e.g.
  1357. @code{STARPU_RW}). The number of entries in this array must be
  1358. specified in the @code{nbuffers} field (defined above), and should not
  1359. exceed @code{STARPU_NMAXBUFS}.
  1360. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1361. option when configuring StarPU.
  1362. @item @code{struct starpu_perfmodel *model} (optional)
  1363. This is a pointer to the task duration performance model associated to this
  1364. codelet. This optional field is ignored when set to @code{NULL} or
  1365. when its @code{symbol} field is not set.
  1366. @item @code{struct starpu_perfmodel *power_model} (optional)
  1367. This is a pointer to the task power consumption performance model associated
  1368. to this codelet. This optional field is ignored when set to
  1369. @code{NULL} or when its @code{symbol} field is not set.
  1370. In the case of parallel codelets, this has to account for all processing units
  1371. involved in the parallel execution.
  1372. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1373. Statistics collected at runtime: this is filled by StarPU and should not be
  1374. accessed directly, but for example by calling the
  1375. @code{starpu_display_codelet_stats} function (See
  1376. @ref{starpu_display_codelet_stats} for details).
  1377. @item @code{const char *name} (optional)
  1378. Define the name of the codelet. This can be useful for debugging purposes.
  1379. @end table
  1380. @end deftp
  1381. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1382. Initialize @var{cl} with default values. Codelets should preferably be
  1383. initialized statically as shown in @ref{Defining a Codelet}. However
  1384. such a initialisation is not always possible, e.g. when using C++.
  1385. @end deftypefun
  1386. @deftp {Data Type} {enum starpu_task_status}
  1387. State of a task, can be either of
  1388. @table @asis
  1389. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1390. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1391. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1392. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1393. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1394. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1395. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1396. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1397. @end table
  1398. @end deftp
  1399. @deftp {Data Type} {struct starpu_buffer_descr}
  1400. This type is used to describe a data handle along with an
  1401. access mode.
  1402. @table @asis
  1403. @item @code{starpu_data_handle_t handle} describes a data,
  1404. @item @code{enum starpu_access_mode mode} describes its access mode
  1405. @end table
  1406. @end deftp
  1407. @deftp {Data Type} {struct starpu_task}
  1408. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1409. processing units managed by StarPU. It instantiates a codelet. It can either be
  1410. allocated dynamically with the @code{starpu_task_create} method, or declared
  1411. statically. In the latter case, the programmer has to zero the
  1412. @code{starpu_task} structure and to fill the different fields properly. The
  1413. indicated default values correspond to the configuration of a task allocated
  1414. with @code{starpu_task_create}.
  1415. @table @asis
  1416. @item @code{struct starpu_codelet *cl}
  1417. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1418. describes where the kernel should be executed, and supplies the appropriate
  1419. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1420. such empty tasks can be useful for synchronization purposes.
  1421. @item @code{struct starpu_buffer_descr buffers[STARPU_NMAXBUFS]}
  1422. This field has been made deprecated. One should use instead the
  1423. @code{handles} field to specify the handles to the data accessed by
  1424. the task. The access modes are now defined in the @code{mode} field of
  1425. the @code{struct starpu_codelet cl} field defined above.
  1426. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1427. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1428. to the different pieces of data accessed by the task. The number
  1429. of entries in this array must be specified in the @code{nbuffers} field of the
  1430. @code{struct starpu_codelet} structure, and should not exceed
  1431. @code{STARPU_NMAXBUFS}.
  1432. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1433. option when configuring StarPU.
  1434. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1435. The actual data pointers to the memory node where execution will happen, managed
  1436. by the DSM.
  1437. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1438. This pointer is passed to the codelet through the second argument
  1439. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1440. @item @code{size_t cl_arg_size} (optional)
  1441. For some specific drivers, the @code{cl_arg} pointer cannot not be directly
  1442. given to the driver function. A buffer of size @code{cl_arg_size}
  1443. needs to be allocated on the driver. This buffer is then filled with
  1444. the @code{cl_arg_size} bytes starting at address @code{cl_arg}. In
  1445. this case, the argument given to the codelet is therefore not the
  1446. @code{cl_arg} pointer, but the address of the buffer in local store
  1447. (LS) instead.
  1448. This field is ignored for CPU, CUDA and OpenCL codelets, where the
  1449. @code{cl_arg} pointer is given as such.
  1450. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1451. This is a function pointer of prototype @code{void (*f)(void *)} which
  1452. specifies a possible callback. If this pointer is non-null, the callback
  1453. function is executed @emph{on the host} after the execution of the task. Tasks
  1454. which depend on it might already be executing. The callback is passed the
  1455. value contained in the @code{callback_arg} field. No callback is executed if the
  1456. field is set to @code{NULL}.
  1457. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1458. This is the pointer passed to the callback function. This field is ignored if
  1459. the @code{callback_func} is set to @code{NULL}.
  1460. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1461. If set, this flag indicates that the task should be associated with the tag
  1462. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1463. with the task and to express task dependencies easily.
  1464. @item @code{starpu_tag_t tag_id}
  1465. This fields contains the tag associated to the task if the @code{use_tag} field
  1466. was set, it is ignored otherwise.
  1467. @item @code{unsigned synchronous}
  1468. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1469. returns only when the task has been executed (or if no worker is able to
  1470. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1471. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1472. This field indicates a level of priority for the task. This is an integer value
  1473. that must be set between the return values of the
  1474. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1475. and that of the @code{starpu_sched_get_max_priority} for the most important
  1476. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1477. are provided for convenience and respectively returns value of
  1478. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1479. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1480. order to allow static task initialization. Scheduling strategies that take
  1481. priorities into account can use this parameter to take better scheduling
  1482. decisions, but the scheduling policy may also ignore it.
  1483. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1484. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1485. task to the worker specified by the @code{workerid} field.
  1486. @item @code{unsigned workerid} (optional)
  1487. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1488. which is the identifier of the worker that should process this task (as
  1489. returned by @code{starpu_worker_get_id}). This field is ignored if
  1490. @code{execute_on_a_specific_worker} field is set to 0.
  1491. @item @code{starpu_task_bundle_t bundle} (optional)
  1492. The bundle that includes this task. If no bundle is used, this should be NULL.
  1493. @item @code{int detach} (optional) (default: @code{1})
  1494. If this flag is set, it is not possible to synchronize with the task
  1495. by the means of @code{starpu_task_wait} later on. Internal data structures
  1496. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1497. flag is not set.
  1498. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1499. If this flag is set, the task structure will automatically be freed, either
  1500. after the execution of the callback if the task is detached, or during
  1501. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1502. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1503. called explicitly. Setting this flag for a statically allocated task structure
  1504. will result in undefined behaviour. The flag is set to 1 when the task is
  1505. created by calling @code{starpu_task_create()}. Note that
  1506. @code{starpu_task_wait_for_all} will not free any task.
  1507. @item @code{int regenerate} (optional)
  1508. If this flag is set, the task will be re-submitted to StarPU once it has been
  1509. executed. This flag must not be set if the destroy flag is set too.
  1510. @item @code{enum starpu_task_status status} (optional)
  1511. Current state of the task.
  1512. @item @code{struct starpu_task_profiling_info *profiling_info} (optional)
  1513. Profiling information for the task.
  1514. @item @code{double predicted} (output field)
  1515. Predicted duration of the task. This field is only set if the scheduling
  1516. strategy used performance models.
  1517. @item @code{double predicted_transfer} (optional)
  1518. Predicted data transfer duration for the task in microseconds. This field is
  1519. only valid if the scheduling strategy uses performance models.
  1520. @item @code{struct starpu_task *prev}
  1521. A pointer to the previous task. This should only be used by StarPU.
  1522. @item @code{struct starpu_task *next}
  1523. A pointer to the next task. This should only be used by StarPU.
  1524. @item @code{unsigned int mf_skip}
  1525. This is only used for tasks that use multiformat handle. This should only be
  1526. used by StarPU.
  1527. @item @code{double flops}
  1528. This can be set to the number of floating points operations that the task
  1529. will have to achieve. This is useful for easily getting GFlops curves from
  1530. @code{starpu_perfmodel_plot}, and for the hypervisor load balancing.
  1531. @item @code{void *starpu_private}
  1532. This is private to StarPU, do not modify. If the task is allocated by hand
  1533. (without starpu_task_create), this field should be set to NULL.
  1534. @item @code{int magic}
  1535. This field is set when initializing a task. It prevents a task from being
  1536. submitted if it has not been properly initialized.
  1537. @end table
  1538. @end deftp
  1539. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1540. Initialize @var{task} with default values. This function is implicitly
  1541. called by @code{starpu_task_create}. By default, tasks initialized with
  1542. @code{starpu_task_init} must be deinitialized explicitly with
  1543. @code{starpu_task_clean}. Tasks can also be initialized statically,
  1544. using @code{STARPU_TASK_INITIALIZER} defined below.
  1545. @end deftypefun
  1546. @defmac STARPU_TASK_INITIALIZER
  1547. It is possible to initialize statically allocated tasks with this
  1548. value. This is equivalent to initializing a starpu_task structure with
  1549. the @code{starpu_task_init} function defined above.
  1550. @end defmac
  1551. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1552. Allocate a task structure and initialize it with default values. Tasks
  1553. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1554. task is terminated. This means that the task pointer can not be used any more
  1555. once the task is submitted, since it can be executed at any time (unless
  1556. dependencies make it wait) and thus freed at any time.
  1557. If the destroy flag is explicitly unset, the resources used
  1558. by the task have to be freed by calling
  1559. @code{starpu_task_destroy}.
  1560. @end deftypefun
  1561. @deftypefun void starpu_task_clean ({struct starpu_task} *@var{task})
  1562. Release all the structures automatically allocated to execute @var{task}, but
  1563. not the task structure itself and values set by the user remain unchanged.
  1564. It is thus useful for statically allocated tasks for instance.
  1565. It is also useful when the user wants to execute the same operation several
  1566. times with as least overhead as possible.
  1567. It is called automatically by @code{starpu_task_destroy}.
  1568. It has to be called only after explicitly waiting for the task or after
  1569. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1570. still manipulates the task after calling the callback).
  1571. @end deftypefun
  1572. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1573. Free the resource allocated during @code{starpu_task_create} and
  1574. associated with @var{task}. This function is already called automatically
  1575. after the execution of a task when the @code{destroy} flag of the
  1576. @code{starpu_task} structure is set, which is the default for tasks created by
  1577. @code{starpu_task_create}. Calling this function on a statically allocated task
  1578. results in an undefined behaviour.
  1579. @end deftypefun
  1580. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1581. This function blocks until @var{task} has been executed. It is not possible to
  1582. synchronize with a task more than once. It is not possible to wait for
  1583. synchronous or detached tasks.
  1584. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1585. indicates that the specified task was either synchronous or detached.
  1586. @end deftypefun
  1587. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1588. This function submits @var{task} to StarPU. Calling this function does
  1589. not mean that the task will be executed immediately as there can be data or task
  1590. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1591. scheduling this task with respect to such dependencies.
  1592. This function returns immediately if the @code{synchronous} field of the
  1593. @code{starpu_task} structure was set to 0, and block until the termination of
  1594. the task otherwise. It is also possible to synchronize the application with
  1595. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1596. function for instance.
  1597. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1598. means that there is no worker able to process this task (e.g. there is no GPU
  1599. available and this task is only implemented for CUDA devices).
  1600. starpu_task_submit() can be called from anywhere, including codelet
  1601. functions and callbacks, provided that the @code{synchronous} field of the
  1602. @code{starpu_task} structure is left to 0.
  1603. @end deftypefun
  1604. @deftypefun int starpu_task_wait_for_all (void)
  1605. This function blocks until all the tasks that were submitted are terminated. It
  1606. does not destroy these tasks.
  1607. @end deftypefun
  1608. @deftypefun int starpu_task_nready (void)
  1609. @end deftypefun
  1610. @deftypefun int starpu_task_nsubmitted (void)
  1611. Return the number of submitted tasks which have not completed yet.
  1612. @end deftypefun
  1613. @deftypefun int starpu_task_nready (void)
  1614. Return the number of submitted tasks which are ready for execution are already
  1615. executing. It thus does not include tasks waiting for dependencies.
  1616. @end deftypefun
  1617. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1618. This function returns the task currently executed by the worker, or
  1619. NULL if it is called either from a thread that is not a task or simply
  1620. because there is no task being executed at the moment.
  1621. @end deftypefun
  1622. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1623. @anchor{starpu_display_codelet_stats}
  1624. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1625. @end deftypefun
  1626. @deftypefun int starpu_task_wait_for_no_ready (void)
  1627. This function waits until there is no more ready task.
  1628. @end deftypefun
  1629. @c Callbacks: what can we put in callbacks ?
  1630. @node Explicit Dependencies
  1631. @section Explicit Dependencies
  1632. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1633. Declare task dependencies between a @var{task} and an array of tasks of length
  1634. @var{ndeps}. This function must be called prior to the submission of the task,
  1635. but it may called after the submission or the execution of the tasks in the
  1636. array, provided the tasks are still valid (ie. they were not automatically
  1637. destroyed). Calling this function on a task that was already submitted or with
  1638. an entry of @var{task_array} that is not a valid task anymore results in an
  1639. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1640. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1641. same task, in this case, the dependencies are added. It is possible to have
  1642. redundancy in the task dependencies.
  1643. @end deftypefun
  1644. @deftp {Data Type} {starpu_tag_t}
  1645. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1646. dependencies between tasks by the means of those tags. To do so, fill the
  1647. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1648. be arbitrary) and set the @code{use_tag} field to 1.
  1649. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1650. not be started until the tasks which holds the declared dependency tags are
  1651. completed.
  1652. @end deftp
  1653. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1654. Specify the dependencies of the task identified by tag @var{id}. The first
  1655. argument specifies the tag which is configured, the second argument gives the
  1656. number of tag(s) on which @var{id} depends. The following arguments are the
  1657. tags which have to be terminated to unlock the task.
  1658. This function must be called before the associated task is submitted to StarPU
  1659. with @code{starpu_task_submit}.
  1660. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1661. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1662. typically need to be explicitly casted. Using the
  1663. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1664. @cartouche
  1665. @smallexample
  1666. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1667. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1668. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1669. @end smallexample
  1670. @end cartouche
  1671. @end deftypefun
  1672. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1673. This function is similar to @code{starpu_tag_declare_deps}, except
  1674. that its does not take a variable number of arguments but an array of
  1675. tags of size @var{ndeps}.
  1676. @cartouche
  1677. @smallexample
  1678. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1679. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1680. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1681. @end smallexample
  1682. @end cartouche
  1683. @end deftypefun
  1684. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  1685. This function blocks until the task associated to tag @var{id} has been
  1686. executed. This is a blocking call which must therefore not be called within
  1687. tasks or callbacks, but only from the application directly. It is possible to
  1688. synchronize with the same tag multiple times, as long as the
  1689. @code{starpu_tag_remove} function is not called. Note that it is still
  1690. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1691. data structure was freed (e.g. if the @code{destroy} flag of the
  1692. @code{starpu_task} was enabled).
  1693. @end deftypefun
  1694. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1695. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1696. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1697. terminated.
  1698. @end deftypefun
  1699. @deftypefun void starpu_tag_restart (starpu_tag_t @var{id})
  1700. This function can be used to clear the "already notified" status
  1701. of a tag which is not associated with a task. Before that, calling
  1702. @code{starpu_tag_notify_from_apps} again will not notify the successors. After
  1703. that, the next call to @code{starpu_tag_notify_from_apps} will notify the
  1704. successors.
  1705. @end deftypefun
  1706. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1707. This function releases the resources associated to tag @var{id}. It can be
  1708. called once the corresponding task has been executed and when there is
  1709. no other tag that depend on this tag anymore.
  1710. @end deftypefun
  1711. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1712. This function explicitly unlocks tag @var{id}. It may be useful in the
  1713. case of applications which execute part of their computation outside StarPU
  1714. tasks (e.g. third-party libraries). It is also provided as a
  1715. convenient tool for the programmer, for instance to entirely construct the task
  1716. DAG before actually giving StarPU the opportunity to execute the tasks. When
  1717. called several times on the same tag, notification will be done only on first
  1718. call, thus implementing "OR" dependencies, until the tag is restarted using
  1719. @code{starpu_tag_restart}.
  1720. @end deftypefun
  1721. @node Implicit Data Dependencies
  1722. @section Implicit Data Dependencies
  1723. In this section, we describe how StarPU makes it possible to insert implicit
  1724. task dependencies in order to enforce sequential data consistency. When this
  1725. data consistency is enabled on a specific data handle, any data access will
  1726. appear as sequentially consistent from the application. For instance, if the
  1727. application submits two tasks that access the same piece of data in read-only
  1728. mode, and then a third task that access it in write mode, dependencies will be
  1729. added between the two first tasks and the third one. Implicit data dependencies
  1730. are also inserted in the case of data accesses from the application.
  1731. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1732. Set the default sequential consistency flag. If a non-zero value is passed, a
  1733. sequential data consistency will be enforced for all handles registered after
  1734. this function call, otherwise it is disabled. By default, StarPU enables
  1735. sequential data consistency. It is also possible to select the data consistency
  1736. mode of a specific data handle with the
  1737. @code{starpu_data_set_sequential_consistency_flag} function.
  1738. @end deftypefun
  1739. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1740. Return the default sequential consistency flag
  1741. @end deftypefun
  1742. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1743. Sets the data consistency mode associated to a data handle. The consistency
  1744. mode set using this function has the priority over the default mode which can
  1745. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  1746. @end deftypefun
  1747. @node Performance Model API
  1748. @section Performance Model API
  1749. @deftp {Data Type} {enum starpu_perf_archtype}
  1750. Enumerates the various types of architectures.
  1751. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1752. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1753. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1754. @table @asis
  1755. @item @code{STARPU_CPU_DEFAULT}
  1756. @item @code{STARPU_CUDA_DEFAULT}
  1757. @item @code{STARPU_OPENCL_DEFAULT}
  1758. @end table
  1759. @end deftp
  1760. @deftp {Data Type} {enum starpu_perfmodel_type}
  1761. The possible values are:
  1762. @table @asis
  1763. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  1764. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  1765. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  1766. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  1767. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  1768. @end table
  1769. @end deftp
  1770. @deftp {Data Type} {struct starpu_perfmodel}
  1771. @anchor{struct starpu_perfmodel}
  1772. contains all information about a performance model. At least the
  1773. @code{type} and @code{symbol} fields have to be filled when defining a
  1774. performance model for a codelet. For compatibility, make sure to initialize the
  1775. whole structure to zero, either by using explicit memset, or by letting the
  1776. compiler implicitly do it in e.g. static storage case.
  1777. If not provided, other fields have to be zero.
  1778. @table @asis
  1779. @item @code{type}
  1780. is the type of performance model @code{enum starpu_perfmodel_type}:
  1781. @code{STARPU_HISTORY_BASED},
  1782. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1783. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1784. @code{per_arch} has to be filled with functions which return the cost in
  1785. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1786. a function that returns the cost in micro-seconds on a CPU, timing on other
  1787. archs will be determined by multiplying by an arch-specific factor.
  1788. @item @code{const char *symbol}
  1789. is the symbol name for the performance model, which will be used as
  1790. file name to store the model. It must be set otherwise the model will
  1791. be ignored.
  1792. @item @code{double (*cost_model)(struct starpu_buffer_descr *)}
  1793. This field is deprecated. Use instead the @code{cost_function} field.
  1794. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  1795. Used by @code{STARPU_COMMON}: takes a task and
  1796. implementation number, and must return a task duration estimation in micro-seconds.
  1797. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  1798. Used by @code{STARPU_HISTORY_BASED} and
  1799. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1800. implementation number, and returns the size to be used as index for
  1801. history and regression.
  1802. @item @code{struct starpu_perfmodel_per_arch per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  1803. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1804. starpu_per_arch_perfmodel} structures.
  1805. @item @code{unsigned is_loaded}
  1806. Whether the performance model is already loaded from the disk.
  1807. @item @code{unsigned benchmarking}
  1808. Whether the performance model is still being calibrated.
  1809. @item @code{pthread_rwlock_t model_rwlock}
  1810. Lock to protect concurrency between loading from disk (W), updating the values
  1811. (W), and making a performance estimation (R).
  1812. @end table
  1813. @end deftp
  1814. @deftp {Data Type} {struct starpu_perfmodel_regression_model}
  1815. @table @asis
  1816. @item @code{double sumlny} sum of ln(measured)
  1817. @item @code{double sumlnx} sum of ln(size)
  1818. @item @code{double sumlnx2} sum of ln(size)^2
  1819. @item @code{unsigned long minx} minimum size
  1820. @item @code{unsigned long maxx} maximum size
  1821. @item @code{double sumlnxlny} sum of ln(size)*ln(measured)
  1822. @item @code{double alpha} estimated = alpha * size ^ beta
  1823. @item @code{double beta}
  1824. @item @code{unsigned valid} whether the linear regression model is valid (i.e. enough measures)
  1825. @item @code{double a, b, c} estimaed = a size ^b + c
  1826. @item @code{unsigned nl_valid} whether the non-linear regression model is valid (i.e. enough measures)
  1827. @item @code{unsigned nsample} number of sample values for non-linear regression
  1828. @end table
  1829. @end deftp
  1830. @deftp {Data Type} {struct starpu_perfmodel_per_arch}
  1831. contains information about the performance model of a given arch.
  1832. @table @asis
  1833. @item @code{double (*cost_model)(struct starpu_buffer_descr *t)}
  1834. This field is deprecated. Use instead the @code{cost_function} field.
  1835. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perf_archtype arch, unsigned nimpl)}
  1836. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1837. target arch and implementation number (as mere conveniency, since the array
  1838. is already indexed by these), and must return a task duration estimation in
  1839. micro-seconds.
  1840. @item @code{size_t (*size_base)(struct starpu_task *, enum
  1841. starpu_perf_archtype arch, unsigned nimpl)}
  1842. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  1843. case it depends on the architecture-specific implementation.
  1844. @item @code{struct starpu_htbl32_node *history}
  1845. The history of performance measurements.
  1846. @item @code{struct starpu_perfmodel_history_list *list}
  1847. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1848. records all execution history measures.
  1849. @item @code{struct starpu_perfmodel_regression_model regression}
  1850. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1851. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1852. regression.
  1853. @end table
  1854. @end deftp
  1855. @deftypefun int starpu_perfmodel_load_symbol ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1856. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{$STARPU_HOME/.starpu}.
  1857. @end deftypefun
  1858. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  1859. returns the path to the debugging information for the performance model.
  1860. @end deftypefun
  1861. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  1862. returns the architecture name for @var{arch}.
  1863. @end deftypefun
  1864. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1865. returns the architecture type of a given worker.
  1866. @end deftypefun
  1867. @deftypefun int starpu_perfmodel_list ({FILE *}@var{output})
  1868. prints a list of all performance models on @var{output}.
  1869. @end deftypefun
  1870. @deftypefun void starpu_perfmodel_print ({struct starpu_perfmodel *}@var{model}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl}, {char *}@var{parameter}, {uint32_t *}footprint, {FILE *}@var{output})
  1871. todo
  1872. @end deftypefun
  1873. @deftypefun int starpu_perfmodel_print_all ({struct starpu_perfmodel *}@var{model}, {char *}@var{arch}, @var{char *}parameter, {uint32_t *}@var{footprint}, {FILE *}@var{output})
  1874. todo
  1875. @end deftypefun
  1876. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  1877. prints a matrix of bus bandwidths on @var{f}.
  1878. @end deftypefun
  1879. @deftypefun void starpu_bus_print_affinity ({FILE *}@var{f})
  1880. prints the affinity devices on @var{f}.
  1881. @end deftypefun
  1882. @deftypefun void starpu_topology_print ({FILE *}@var{f})
  1883. prints a description of the topology on @var{f}.
  1884. @end deftypefun
  1885. @deftypefun void starpu_perfmodel_update_history ({struct starpu_perfmodel *}@var{model}, {struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{cpuid}, unsigned @var{nimpl}, double @var{measured});
  1886. This feeds the performance model @var{model} with an explicit measurement
  1887. @var{measured}, in addition to measurements done by StarPU itself. This can be
  1888. useful when the application already has an existing set of measurements done
  1889. in good conditions, that StarPU could benefit from instead of doing on-line
  1890. measurements. And example of use can be see in @ref{Performance model example}.
  1891. @end deftypefun
  1892. @node Profiling API
  1893. @section Profiling API
  1894. @deftypefun int starpu_profiling_status_set (int @var{status})
  1895. Thie function sets the profiling status. Profiling is activated by passing
  1896. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  1897. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1898. resets all profiling measurements. When profiling is enabled, the
  1899. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1900. to a valid @code{struct starpu_task_profiling_info} structure containing
  1901. information about the execution of the task.
  1902. Negative return values indicate an error, otherwise the previous status is
  1903. returned.
  1904. @end deftypefun
  1905. @deftypefun int starpu_profiling_status_get (void)
  1906. Return the current profiling status or a negative value in case there was an error.
  1907. @end deftypefun
  1908. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  1909. This function sets the ID used for profiling trace filename. It needs to be
  1910. called before starpu_init.
  1911. @end deftypefun
  1912. @deftp {Data Type} {struct starpu_task_profiling_info}
  1913. This structure contains information about the execution of a task. It is
  1914. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1915. structure if profiling was enabled. The different fields are:
  1916. @table @asis
  1917. @item @code{struct timespec submit_time}
  1918. Date of task submission (relative to the initialization of StarPU).
  1919. @item @code{struct timespec push_start_time}
  1920. Time when the task was submitted to the scheduler.
  1921. @item @code{struct timespec push_end_time}
  1922. Time when the scheduler finished with the task submission.
  1923. @item @code{struct timespec pop_start_time}
  1924. Time when the scheduler started to be requested for a task, and eventually gave
  1925. that task.
  1926. @item @code{struct timespec pop_end_time}
  1927. Time when the scheduler finished providing the task for execution.
  1928. @item @code{struct timespec acquire_data_start_time}
  1929. Time when the worker started fetching input data.
  1930. @item @code{struct timespec acquire_data_end_time}
  1931. Time when the worker finished fetching input data.
  1932. @item @code{struct timespec start_time}
  1933. Date of task execution beginning (relative to the initialization of StarPU).
  1934. @item @code{struct timespec end_time}
  1935. Date of task execution termination (relative to the initialization of StarPU).
  1936. @item @code{struct timespec release_data_start_time}
  1937. Time when the worker started releasing data.
  1938. @item @code{struct timespec release_data_end_time}
  1939. Time when the worker finished releasing data.
  1940. @item @code{struct timespec callback_start_time}
  1941. Time when the worker started the application callback for the task.
  1942. @item @code{struct timespec callback_end_time}
  1943. Time when the worker finished the application callback for the task.
  1944. @item @code{workerid}
  1945. Identifier of the worker which has executed the task.
  1946. @item @code{uint64_t used_cycles}
  1947. Number of cycles used by the task, only available in the MoviSim
  1948. @item @code{uint64_t stall_cycles}
  1949. Number of cycles stalled within the task, only available in the MoviSim
  1950. @item @code{double power_consumed}
  1951. Power consumed by the task, only available in the MoviSim
  1952. @end table
  1953. @end deftp
  1954. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1955. This structure contains the profiling information associated to a
  1956. worker. The different fields are:
  1957. @table @asis
  1958. @item @code{struct timespec start_time}
  1959. Starting date for the reported profiling measurements.
  1960. @item @code{struct timespec total_time}
  1961. Duration of the profiling measurement interval.
  1962. @item @code{struct timespec executing_time}
  1963. Time spent by the worker to execute tasks during the profiling measurement interval.
  1964. @item @code{struct timespec sleeping_time}
  1965. Time spent idling by the worker during the profiling measurement interval.
  1966. @item @code{int executed_tasks}
  1967. Number of tasks executed by the worker during the profiling measurement interval.
  1968. @item @code{uint64_t used_cycles}
  1969. Number of cycles used by the worker, only available in the MoviSim
  1970. @item @code{uint64_t stall_cycles}
  1971. Number of cycles stalled within the worker, only available in the MoviSim
  1972. @item @code{double power_consumed}
  1973. Power consumed by the worker, only available in the MoviSim
  1974. @end table
  1975. @end deftp
  1976. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  1977. Get the profiling info associated to the worker identified by @var{workerid},
  1978. and reset the profiling measurements. If the @var{worker_info} argument is
  1979. NULL, only reset the counters associated to worker @var{workerid}.
  1980. Upon successful completion, this function returns 0. Otherwise, a negative
  1981. value is returned.
  1982. @end deftypefun
  1983. @deftp {Data Type} {struct starpu_bus_profiling_info}
  1984. The different fields are:
  1985. @table @asis
  1986. @item @code{struct timespec start_time}
  1987. Time of bus profiling startup.
  1988. @item @code{struct timespec total_time}
  1989. Total time of bus profiling.
  1990. @item @code{int long long transferred_bytes}
  1991. Number of bytes transferred during profiling.
  1992. @item @code{int transfer_count}
  1993. Number of transfers during profiling.
  1994. @end table
  1995. @end deftp
  1996. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  1997. Get the profiling info associated to the worker designated by @var{workerid},
  1998. and reset the profiling measurements. If worker_info is NULL, only reset the
  1999. counters.
  2000. @end deftypefun
  2001. @deftypefun int starpu_bus_get_count (void)
  2002. Return the number of buses in the machine.
  2003. @end deftypefun
  2004. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  2005. Return the identifier of the bus between @var{src} and @var{dst}
  2006. @end deftypefun
  2007. @deftypefun int starpu_bus_get_src (int @var{busid})
  2008. Return the source point of bus @var{busid}
  2009. @end deftypefun
  2010. @deftypefun int starpu_bus_get_dst (int @var{busid})
  2011. Return the destination point of bus @var{busid}
  2012. @end deftypefun
  2013. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  2014. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  2015. @end deftypefun
  2016. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  2017. Converts the given timespec @var{ts} into microseconds.
  2018. @end deftypefun
  2019. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  2020. Displays statistics about the bus on stderr. if the environment
  2021. variable @code{STARPU_BUS_STATS} is defined. The function is called
  2022. automatically by @code{starpu_shutdown()}.
  2023. @end deftypefun
  2024. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  2025. Displays statistics about the workers on stderr if the environment
  2026. variable @code{STARPU_WORKER_STATS} is defined. The function is called
  2027. automatically by @code{starpu_shutdown()}.
  2028. @end deftypefun
  2029. @deftypefun void starpu_memory_display_stats ()
  2030. Display statistics about the current data handles registered within
  2031. StarPU. StarPU must have been configured with the option
  2032. @code{----enable-memory-stats} (@pxref{Memory feedback}).
  2033. @end deftypefun
  2034. @node CUDA extensions
  2035. @section CUDA extensions
  2036. @defmac STARPU_USE_CUDA
  2037. This macro is defined when StarPU has been installed with CUDA
  2038. support. It should be used in your code to detect the availability of
  2039. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2040. @end defmac
  2041. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  2042. This function gets the current worker's CUDA stream.
  2043. StarPU provides a stream for every CUDA device controlled by StarPU. This
  2044. function is only provided for convenience so that programmers can easily use
  2045. asynchronous operations within codelets without having to create a stream by
  2046. hand. Note that the application is not forced to use the stream provided by
  2047. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  2048. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  2049. the likelihood of having all transfers overlapped.
  2050. @end deftypefun
  2051. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  2052. This function returns a pointer to device properties for worker @var{workerid}
  2053. (assumed to be a CUDA worker).
  2054. @end deftypefun
  2055. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  2056. Report a CUDA error.
  2057. @end deftypefun
  2058. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  2059. Calls starpu_cuda_report_error, passing the current function, file and line
  2060. position.
  2061. @end defmac
  2062. @deftypefun int starpu_cuda_copy_async_sync ({void *}@var{src_ptr}, unsigned @var{src_node}, {void *}@var{dst_ptr}, unsigned @var{dst_node}, size_t @var{ssize}, cudaStream_t @var{stream}, {enum cudaMemcpyKind} @var{kind})
  2063. Copy @var{ssize} bytes from the pointer @var{src_ptr} on
  2064. @var{src_node} to the pointer @var{dst_ptr} on @var{dst_node}.
  2065. The function first tries to copy the data asynchronous (unless
  2066. @var{stream} is @code{NULL}. If the asynchronous copy fails or if
  2067. @var{stream} is @code{NULL}, it copies the data synchronously.
  2068. The function returns @code{-EAGAIN} if the asynchronous launch was
  2069. successfull. It returns 0 if the synchronous copy was successful, or
  2070. fails otherwise.
  2071. @end deftypefun
  2072. @deftypefun void starpu_cuda_set_device (unsigned @var{devid})
  2073. Calls @code{cudaSetDevice(devid)} or @code{cudaGLSetGLDevice(devid)}, according to
  2074. whether @code{devid} is among the @code{cuda_opengl_interoperability} field of
  2075. the @code{starpu_conf} structure.
  2076. @end deftypefun
  2077. @deftypefun void starpu_cublas_init (void)
  2078. This function initializes CUBLAS on every CUDA device.
  2079. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  2080. @code{starpu_cublas_init} will initialize CUBLAS on every CUDA device
  2081. controlled by StarPU. This call blocks until CUBLAS has been properly
  2082. initialized on every device.
  2083. @end deftypefun
  2084. @deftypefun void starpu_cublas_shutdown (void)
  2085. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  2086. @end deftypefun
  2087. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  2088. Report a cublas error.
  2089. @end deftypefun
  2090. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  2091. Calls starpu_cublas_report_error, passing the current function, file and line
  2092. position.
  2093. @end defmac
  2094. @node OpenCL extensions
  2095. @section OpenCL extensions
  2096. @menu
  2097. * Writing OpenCL kernels:: Writing OpenCL kernels
  2098. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  2099. * Loading OpenCL kernels:: Loading OpenCL kernels
  2100. * OpenCL statistics:: Collecting statistics from OpenCL
  2101. * OpenCL utilities:: Utilities for OpenCL
  2102. @end menu
  2103. @defmac STARPU_USE_OPENCL
  2104. This macro is defined when StarPU has been installed with OpenCL
  2105. support. It should be used in your code to detect the availability of
  2106. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2107. @end defmac
  2108. @node Writing OpenCL kernels
  2109. @subsection Writing OpenCL kernels
  2110. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  2111. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  2112. @end deftypefun
  2113. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  2114. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  2115. @end deftypefun
  2116. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  2117. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  2118. @end deftypefun
  2119. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  2120. Return the context of the current worker.
  2121. @end deftypefun
  2122. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  2123. Return the computation kernel command queue of the current worker.
  2124. @end deftypefun
  2125. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  2126. Sets the arguments of a given kernel. The list of arguments must be given as
  2127. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  2128. The last argument must be 0. Returns the number of arguments that were
  2129. successfully set. In case of failure, returns the id of the argument
  2130. that could not be set and @var{err} is set to the error returned by
  2131. OpenCL. Otherwise, returns the number of arguments that were set.
  2132. @cartouche
  2133. @smallexample
  2134. int n;
  2135. cl_int err;
  2136. cl_kernel kernel;
  2137. n = starpu_opencl_set_kernel_args(&err, 2, &kernel,
  2138. sizeof(foo), &foo,
  2139. sizeof(bar), &bar,
  2140. 0);
  2141. if (n != 2)
  2142. fprintf(stderr, "Error : %d\n", err);
  2143. @end smallexample
  2144. @end cartouche
  2145. @end deftypefun
  2146. @node Compiling OpenCL kernels
  2147. @subsection Compiling OpenCL kernels
  2148. Source codes for OpenCL kernels can be stored in a file or in a
  2149. string. StarPU provides functions to build the program executable for
  2150. each available OpenCL device as a @code{cl_program} object. This
  2151. program executable can then be loaded within a specific queue as
  2152. explained in the next section. These are only helpers, Applications
  2153. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2154. use (e.g. different programs on the different OpenCL devices, for
  2155. relocation purpose for instance).
  2156. @deftp {Data Type} {struct starpu_opencl_program}
  2157. Stores the OpenCL programs as compiled for the different OpenCL
  2158. devices. The different fields are:
  2159. @table @asis
  2160. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  2161. Stores each program for each OpenCL device.
  2162. @end table
  2163. @end deftp
  2164. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2165. @anchor{starpu_opencl_load_opencl_from_file}
  2166. This function compiles an OpenCL source code stored in a file.
  2167. @end deftypefun
  2168. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2169. This function compiles an OpenCL source code stored in a string.
  2170. @end deftypefun
  2171. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  2172. This function unloads an OpenCL compiled code.
  2173. @end deftypefun
  2174. @deftypefun void starpu_opencl_load_program_source ({const char *}@var{source_file_name}, char *@var{located_file_name}, char *@var{located_dir_name}, char *@var{opencl_program_source})
  2175. @anchor{starpu_opencl_load_program_source}
  2176. Store the contents of the file @var{source_file_name} in the buffer
  2177. @var{opencl_program_source}. The file @var{source_file_name} can be
  2178. located in the current directory, or in the directory specified by the
  2179. environment variable @code{STARPU_OPENCL_PROGRAM_DIR} (@pxref{STARPU_OPENCL_PROGRAM_DIR}), or in the
  2180. directory @code{share/starpu/opencl} of the installation directory of
  2181. StarPU, or in the source directory of StarPU.
  2182. When the file is found, @code{located_file_name} is the full name of
  2183. the file as it has been located on the system, @code{located_dir_name}
  2184. the directory where it has been located. Otherwise, they are both set
  2185. to the empty string.
  2186. @end deftypefun
  2187. @deftypefun int starpu_opencl_compile_opencl_from_file ({const char *}@var{source_file_name}, {const char *} @var{build_options})
  2188. Compile the OpenCL kernel stored in the file @code{source_file_name}
  2189. with the given options @code{build_options} and stores the result in
  2190. the directory @code{$STARPU_HOME/.starpu/opencl} with the same
  2191. filename as @code{source_file_name}. The compilation is done for every
  2192. OpenCL device, and the filename is suffixed with the vendor id and the
  2193. device id of the OpenCL device.
  2194. @end deftypefun
  2195. @deftypefun int starpu_opencl_compile_opencl_from_string ({const char *}@var{opencl_program_source}, {const char *}@var{file_name}, {const char* }@var{build_options})
  2196. Compile the OpenCL kernel in the string @code{opencl_program_source}
  2197. with the given options @code{build_options} and stores the result in
  2198. the directory @code{$STARPU_HOME/.starpu/opencl}
  2199. with the filename
  2200. @code{file_name}. The compilation is done for every
  2201. OpenCL device, and the filename is suffixed with the vendor id and the
  2202. device id of the OpenCL device.
  2203. @end deftypefun
  2204. @deftypefun int starpu_opencl_load_binary_opencl ({const char *}@var{kernel_id}, {struct starpu_opencl_program *}@var{opencl_programs})
  2205. Compile the binary OpenCL kernel identified with @var{id}. For every
  2206. OpenCL device, the binary OpenCL kernel will be loaded from the file
  2207. @code{$STARPU_HOME/.starpu/opencl/<kernel_id>.<device_type>.vendor_id_<vendor_id>_device_id_<device_id>}.
  2208. @end deftypefun
  2209. @node Loading OpenCL kernels
  2210. @subsection Loading OpenCL kernels
  2211. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  2212. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  2213. queue returned in @var{queue}, using program @var{opencl_programs} and name
  2214. @var{kernel_name}
  2215. @end deftypefun
  2216. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  2217. Release the given @var{kernel}, to be called after kernel execution.
  2218. @end deftypefun
  2219. @node OpenCL statistics
  2220. @subsection OpenCL statistics
  2221. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  2222. This function allows to collect statistics on a kernel execution.
  2223. After termination of the kernels, the OpenCL codelet should call this function
  2224. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  2225. collect statistics about the kernel execution (used cycles, consumed power).
  2226. @end deftypefun
  2227. @node OpenCL utilities
  2228. @subsection OpenCL utilities
  2229. @deftypefun {const char *} starpu_opencl_error_string (cl_int @var{status})
  2230. Return the error message in English corresponding to @var{status}, an
  2231. OpenCL error code.
  2232. @end deftypefun
  2233. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2234. Given a valid error @var{status}, prints the corresponding error message on
  2235. stdout, along with the given function name @var{func}, the given filename
  2236. @var{file}, the given line number @var{line} and the given message @var{msg}.
  2237. @end deftypefun
  2238. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  2239. Call the function @code{starpu_opencl_display_error} with the given
  2240. error @var{status}, the current function name, current file and line
  2241. number, and a empty message.
  2242. @end defmac
  2243. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2244. Call the function @code{starpu_opencl_display_error} and abort.
  2245. @end deftypefun
  2246. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  2247. Call the function @code{starpu_opencl_report_error} with the given
  2248. error @var{status}, with the current function name, current file and
  2249. line number, and a empty message.
  2250. @end defmac
  2251. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  2252. Call the function @code{starpu_opencl_report_error} with the given
  2253. message and the given error @var{status}, with the current function
  2254. name, current file and line number.
  2255. @end defmac
  2256. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  2257. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  2258. valid combination of cl_mem_flags values.
  2259. @end deftypefun
  2260. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2261. Copy @var{size} bytes from the given @var{ptr} on
  2262. RAM @var{src_node} to the given @var{buffer} on OpenCL @var{dst_node}.
  2263. @var{offset} is the offset, in bytes, in @var{buffer}.
  2264. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2265. synchronised before returning. If non NULL, @var{event} can be used
  2266. after the call to wait for this particular copy to complete.
  2267. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2268. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2269. was successful, or to 0 if event was NULL.
  2270. @end deftypefun
  2271. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2272. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  2273. OpenCL @var{src_node} to the given @var{ptr} on RAM @var{dst_node}.
  2274. @var{offset} is the offset, in bytes, in @var{buffer}.
  2275. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2276. synchronised before returning. If non NULL, @var{event} can be used
  2277. after the call to wait for this particular copy to complete.
  2278. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2279. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2280. was successful, or to 0 if event was NULL.
  2281. @end deftypefun
  2282. @deftypefun cl_int starpu_opencl_copy_opencl_to_opencl (cl_mem @var{src}, unsigned @var{src_node}, size_t @var{src_offset}, cl_mem @var{dst}, unsigned @var{dst_node}, size_t @var{dst_offset}, size_t @var{size}, {cl_event *}@var{event}, {int *}@var{ret})
  2283. Copy @var{size} bytes asynchronously from byte offset @var{src_offset} of
  2284. @var{src} on OpenCL @var{src_node} to byte offset @var{dst_offset} of @var{dst} on
  2285. OpenCL @var{dst_node}.
  2286. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2287. synchronised before returning. If non NULL, @var{event} can be used
  2288. after the call to wait for this particular copy to complete.
  2289. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2290. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2291. was successful, or to 0 if event was NULL.
  2292. @end deftypefun
  2293. @deftypefun cl_int starpu_opencl_copy_async_sync (uintptr_t @var{src}, size_t @var{src_offset}, unsigned @var{src_node}, uintptr_t @var{dst}, size_t @var{dst_offset}, unsigned @var{dst_node}, size_t @var{size}, {cl_event *}@var{event})
  2294. Copy @var{size} bytes from byte offset @var{src_offset} of
  2295. @var{src} on @var{src_node} to byte offset @var{dst_offset} of @var{dst} on
  2296. @var{dst_node}. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2297. synchronised before returning. If non NULL, @var{event} can be used
  2298. after the call to wait for this particular copy to complete.
  2299. The function returns @code{-EAGAIN} if the asynchronous launch was
  2300. successfull. It returns 0 if the synchronous copy was successful, or
  2301. fails otherwise.
  2302. @end deftypefun
  2303. @node Miscellaneous helpers
  2304. @section Miscellaneous helpers
  2305. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  2306. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  2307. The @var{asynchronous} parameter indicates whether the function should
  2308. block or not. In the case of an asynchronous call, it is possible to
  2309. synchronize with the termination of this operation either by the means of
  2310. implicit dependencies (if enabled) or by calling
  2311. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  2312. this callback function is executed after the handle has been copied, and it is
  2313. given the @var{callback_arg} pointer as argument.
  2314. @end deftypefun
  2315. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  2316. This function executes the given function on a subset of workers.
  2317. When calling this method, the offloaded function specified by the first argument is
  2318. executed by every StarPU worker that may execute the function.
  2319. The second argument is passed to the offloaded function.
  2320. The last argument specifies on which types of processing units the function
  2321. should be executed. Similarly to the @var{where} field of the
  2322. @code{struct starpu_codelet} structure, it is possible to specify that the function
  2323. should be executed on every CUDA device and every CPU by passing
  2324. @code{STARPU_CPU|STARPU_CUDA}.
  2325. This function blocks until the function has been executed on every appropriate
  2326. processing units, so that it may not be called from a callback function for
  2327. instance.
  2328. @end deftypefun