| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327 | 
							- /* dlaic1.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static doublereal c_b5 = 1.;
 
- /* Subroutine */ int _starpu_dlaic1_(integer *job, integer *j, doublereal *x, 
 
- 	doublereal *sest, doublereal *w, doublereal *gamma, doublereal *
 
- 	sestpr, doublereal *s, doublereal *c__)
 
- {
 
-     /* System generated locals */
 
-     doublereal d__1, d__2, d__3, d__4;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal), d_sign(doublereal *, doublereal *);
 
-     /* Local variables */
 
-     doublereal b, t, s1, s2, eps, tmp;
 
-     extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *);
 
-     doublereal sine, test, zeta1, zeta2, alpha, norma;
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     doublereal absgam, absalp, cosine, absest;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAIC1 applies one step of incremental condition estimation in */
 
- /*  its simplest version: */
 
- /*  Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j */
 
- /*  lower triangular matrix L, such that */
 
- /*           twonorm(L*x) = sest */
 
- /*  Then DLAIC1 computes sestpr, s, c such that */
 
- /*  the vector */
 
- /*                  [ s*x ] */
 
- /*           xhat = [  c  ] */
 
- /*  is an approximate singular vector of */
 
- /*                  [ L     0  ] */
 
- /*           Lhat = [ w' gamma ] */
 
- /*  in the sense that */
 
- /*           twonorm(Lhat*xhat) = sestpr. */
 
- /*  Depending on JOB, an estimate for the largest or smallest singular */
 
- /*  value is computed. */
 
- /*  Note that [s c]' and sestpr**2 is an eigenpair of the system */
 
- /*      diag(sest*sest, 0) + [alpha  gamma] * [ alpha ] */
 
- /*                                            [ gamma ] */
 
- /*  where  alpha =  x'*w. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOB     (input) INTEGER */
 
- /*          = 1: an estimate for the largest singular value is computed. */
 
- /*          = 2: an estimate for the smallest singular value is computed. */
 
- /*  J       (input) INTEGER */
 
- /*          Length of X and W */
 
- /*  X       (input) DOUBLE PRECISION array, dimension (J) */
 
- /*          The j-vector x. */
 
- /*  SEST    (input) DOUBLE PRECISION */
 
- /*          Estimated singular value of j by j matrix L */
 
- /*  W       (input) DOUBLE PRECISION array, dimension (J) */
 
- /*          The j-vector w. */
 
- /*  GAMMA   (input) DOUBLE PRECISION */
 
- /*          The diagonal element gamma. */
 
- /*  SESTPR  (output) DOUBLE PRECISION */
 
- /*          Estimated singular value of (j+1) by (j+1) matrix Lhat. */
 
- /*  S       (output) DOUBLE PRECISION */
 
- /*          Sine needed in forming xhat. */
 
- /*  C       (output) DOUBLE PRECISION */
 
- /*          Cosine needed in forming xhat. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     --w;
 
-     --x;
 
-     /* Function Body */
 
-     eps = _starpu_dlamch_("Epsilon");
 
-     alpha = _starpu_ddot_(j, &x[1], &c__1, &w[1], &c__1);
 
-     absalp = abs(alpha);
 
-     absgam = abs(*gamma);
 
-     absest = abs(*sest);
 
-     if (*job == 1) {
 
- /*        Estimating largest singular value */
 
- /*        special cases */
 
- 	if (*sest == 0.) {
 
- 	    s1 = max(absgam,absalp);
 
- 	    if (s1 == 0.) {
 
- 		*s = 0.;
 
- 		*c__ = 1.;
 
- 		*sestpr = 0.;
 
- 	    } else {
 
- 		*s = alpha / s1;
 
- 		*c__ = *gamma / s1;
 
- 		tmp = sqrt(*s * *s + *c__ * *c__);
 
- 		*s /= tmp;
 
- 		*c__ /= tmp;
 
- 		*sestpr = s1 * tmp;
 
- 	    }
 
- 	    return 0;
 
- 	} else if (absgam <= eps * absest) {
 
- 	    *s = 1.;
 
- 	    *c__ = 0.;
 
- 	    tmp = max(absest,absalp);
 
- 	    s1 = absest / tmp;
 
- 	    s2 = absalp / tmp;
 
- 	    *sestpr = tmp * sqrt(s1 * s1 + s2 * s2);
 
- 	    return 0;
 
- 	} else if (absalp <= eps * absest) {
 
- 	    s1 = absgam;
 
- 	    s2 = absest;
 
- 	    if (s1 <= s2) {
 
- 		*s = 1.;
 
- 		*c__ = 0.;
 
- 		*sestpr = s2;
 
- 	    } else {
 
- 		*s = 0.;
 
- 		*c__ = 1.;
 
- 		*sestpr = s1;
 
- 	    }
 
- 	    return 0;
 
- 	} else if (absest <= eps * absalp || absest <= eps * absgam) {
 
- 	    s1 = absgam;
 
- 	    s2 = absalp;
 
- 	    if (s1 <= s2) {
 
- 		tmp = s1 / s2;
 
- 		*s = sqrt(tmp * tmp + 1.);
 
- 		*sestpr = s2 * *s;
 
- 		*c__ = *gamma / s2 / *s;
 
- 		*s = d_sign(&c_b5, &alpha) / *s;
 
- 	    } else {
 
- 		tmp = s2 / s1;
 
- 		*c__ = sqrt(tmp * tmp + 1.);
 
- 		*sestpr = s1 * *c__;
 
- 		*s = alpha / s1 / *c__;
 
- 		*c__ = d_sign(&c_b5, gamma) / *c__;
 
- 	    }
 
- 	    return 0;
 
- 	} else {
 
- /*           normal case */
 
- 	    zeta1 = alpha / absest;
 
- 	    zeta2 = *gamma / absest;
 
- 	    b = (1. - zeta1 * zeta1 - zeta2 * zeta2) * .5;
 
- 	    *c__ = zeta1 * zeta1;
 
- 	    if (b > 0.) {
 
- 		t = *c__ / (b + sqrt(b * b + *c__));
 
- 	    } else {
 
- 		t = sqrt(b * b + *c__) - b;
 
- 	    }
 
- 	    sine = -zeta1 / t;
 
- 	    cosine = -zeta2 / (t + 1.);
 
- 	    tmp = sqrt(sine * sine + cosine * cosine);
 
- 	    *s = sine / tmp;
 
- 	    *c__ = cosine / tmp;
 
- 	    *sestpr = sqrt(t + 1.) * absest;
 
- 	    return 0;
 
- 	}
 
-     } else if (*job == 2) {
 
- /*        Estimating smallest singular value */
 
- /*        special cases */
 
- 	if (*sest == 0.) {
 
- 	    *sestpr = 0.;
 
- 	    if (max(absgam,absalp) == 0.) {
 
- 		sine = 1.;
 
- 		cosine = 0.;
 
- 	    } else {
 
- 		sine = -(*gamma);
 
- 		cosine = alpha;
 
- 	    }
 
- /* Computing MAX */
 
- 	    d__1 = abs(sine), d__2 = abs(cosine);
 
- 	    s1 = max(d__1,d__2);
 
- 	    *s = sine / s1;
 
- 	    *c__ = cosine / s1;
 
- 	    tmp = sqrt(*s * *s + *c__ * *c__);
 
- 	    *s /= tmp;
 
- 	    *c__ /= tmp;
 
- 	    return 0;
 
- 	} else if (absgam <= eps * absest) {
 
- 	    *s = 0.;
 
- 	    *c__ = 1.;
 
- 	    *sestpr = absgam;
 
- 	    return 0;
 
- 	} else if (absalp <= eps * absest) {
 
- 	    s1 = absgam;
 
- 	    s2 = absest;
 
- 	    if (s1 <= s2) {
 
- 		*s = 0.;
 
- 		*c__ = 1.;
 
- 		*sestpr = s1;
 
- 	    } else {
 
- 		*s = 1.;
 
- 		*c__ = 0.;
 
- 		*sestpr = s2;
 
- 	    }
 
- 	    return 0;
 
- 	} else if (absest <= eps * absalp || absest <= eps * absgam) {
 
- 	    s1 = absgam;
 
- 	    s2 = absalp;
 
- 	    if (s1 <= s2) {
 
- 		tmp = s1 / s2;
 
- 		*c__ = sqrt(tmp * tmp + 1.);
 
- 		*sestpr = absest * (tmp / *c__);
 
- 		*s = -(*gamma / s2) / *c__;
 
- 		*c__ = d_sign(&c_b5, &alpha) / *c__;
 
- 	    } else {
 
- 		tmp = s2 / s1;
 
- 		*s = sqrt(tmp * tmp + 1.);
 
- 		*sestpr = absest / *s;
 
- 		*c__ = alpha / s1 / *s;
 
- 		*s = -d_sign(&c_b5, gamma) / *s;
 
- 	    }
 
- 	    return 0;
 
- 	} else {
 
- /*           normal case */
 
- 	    zeta1 = alpha / absest;
 
- 	    zeta2 = *gamma / absest;
 
- /* Computing MAX */
 
- 	    d__3 = zeta1 * zeta1 + 1. + (d__1 = zeta1 * zeta2, abs(d__1)), 
 
- 		    d__4 = (d__2 = zeta1 * zeta2, abs(d__2)) + zeta2 * zeta2;
 
- 	    norma = max(d__3,d__4);
 
- /*           See if root is closer to zero or to ONE */
 
- 	    test = (zeta1 - zeta2) * 2. * (zeta1 + zeta2) + 1.;
 
- 	    if (test >= 0.) {
 
- /*              root is close to zero, compute directly */
 
- 		b = (zeta1 * zeta1 + zeta2 * zeta2 + 1.) * .5;
 
- 		*c__ = zeta2 * zeta2;
 
- 		t = *c__ / (b + sqrt((d__1 = b * b - *c__, abs(d__1))));
 
- 		sine = zeta1 / (1. - t);
 
- 		cosine = -zeta2 / t;
 
- 		*sestpr = sqrt(t + eps * 4. * eps * norma) * absest;
 
- 	    } else {
 
- /*              root is closer to ONE, shift by that amount */
 
- 		b = (zeta2 * zeta2 + zeta1 * zeta1 - 1.) * .5;
 
- 		*c__ = zeta1 * zeta1;
 
- 		if (b >= 0.) {
 
- 		    t = -(*c__) / (b + sqrt(b * b + *c__));
 
- 		} else {
 
- 		    t = b - sqrt(b * b + *c__);
 
- 		}
 
- 		sine = -zeta1 / t;
 
- 		cosine = -zeta2 / (t + 1.);
 
- 		*sestpr = sqrt(t + 1. + eps * 4. * eps * norma) * absest;
 
- 	    }
 
- 	    tmp = sqrt(sine * sine + cosine * cosine);
 
- 	    *s = sine / tmp;
 
- 	    *c__ = cosine / tmp;
 
- 	    return 0;
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DLAIC1 */
 
- } /* _starpu_dlaic1_ */
 
 
  |