123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- /* StarPU --- Runtime system for heterogeneous multicore architectures.
- *
- * Copyright (C) 2010, 2015-2016 Université de Bordeaux
- * Copyright (C) 2010, 2011, 2012, 2013 CNRS
- *
- * StarPU is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or (at
- * your option) any later version.
- *
- * StarPU is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- *
- * See the GNU Lesser General Public License in COPYING.LGPL for more details.
- */
- /*
- * This examples demonstrates how to use multiple linear regression
- models.
- First, there is cl_model_init codelet for which we know the
- parameters, but not the their exponents and relations. This tasks
- should be benchmarked and analyzed to find the model, using
- "tools/starpu_mlr_analysis" script as a template. Before the model
- is defined by the application developer, the default model is
- automatically computed. This default models is a simple constant
- (thus making STARPU_MULTIPLE_REGRESSION_BASED model equal to the
- history based model).
- For the second (codelet cl_model_final), it is assumed that the
- analysis has already been performend and that he duration of the
- task test_mlr will be computed using the following equation:
- T = a + b * (M^2*N) + c * (N^3*K)
- where M, N, K are the parameters of the task, exponents are coming
- from model->combinations[..][..] and finally a, b, c are
- coefficients which mostly depend on the machine speed.
-
- These coefficients are going to be automatically computed using
- least square method.
- */
- #include <stdio.h>
- #include <stdlib.h>
- #include <stdint.h>
- #include <starpu.h>
- static long sum;
- /* Performance function of the task, which is in this case very simple, as the parameter values just need to be written in the array "parameters" */
- static void cl_params(struct starpu_task *task, double *parameters)
- {
- starpu_codelet_unpack_args(task->cl_arg,
- ¶meters[0],
- ¶meters[1],
- ¶meters[2]);
- }
- /* Function of the task that will be executed. In this case running dummy cycles, just to make sure task duration is significant */
- void cpu_func(void *buffers[], void *cl_arg)
- {
- long i;
- double m,n,k;
- starpu_codelet_unpack_args(cl_arg,
- &m,
- &n,
- &k);
-
- for(i=0; i < (long) (m*m*n); i++)
- sum+=i;
- for(i=0; i < (long) (n*n*n*k); i++)
- sum+=i;
- }
- /* ############################################ */
- /* Start of the part specific to multiple linear regression perfmodels */
- /* Defining perfmodel, number of parameters and their names Initially
- application developer only knows these parameters. The execution of
- this codelet will generate traces that can be analyzed using
- "tools/starpu_mlr_analysis" as a template to obtain the parameters
- combinations and exponents.
- */
- static const char * parameters_names[] = { "M", "N", "K", };
- static struct starpu_perfmodel cl_model_init = {
- .type = STARPU_MULTIPLE_REGRESSION_BASED,
- .symbol = "mlr_init",
- .parameters = cl_params,
- .nparameters = 3,
- .parameters_names = parameters_names,
- };
- /* Defining the equation for modeling duration of the task. The
- parameters combinations and exponents are computed externally
- offline, for example using "tools/starpu_mlr_analysis" tool as a
- template.
- */
- static unsigned combi1 [3] = { 2, 1, 0 };
- static unsigned combi2 [3] = { 0, 3, 1 };
- static unsigned *combinations[] = { combi1, combi2 };
- static struct starpu_perfmodel cl_model_final = {
- .type = STARPU_MULTIPLE_REGRESSION_BASED,
- .symbol = "mlr_final",
- .parameters = cl_params,
- .nparameters = 3,
- .parameters_names = parameters_names,
- .ncombinations = 2,
- .combinations = combinations,
- };
- /* End of the part specific to multiple linear regression perfmodels */
- /* ############################################ */
- static struct starpu_codelet cl_init = {
- .cpu_funcs = { cpu_func },
- .cpu_funcs_name = { "mlr_codelet_init" },
- .nbuffers = 0,
- .model = &cl_model_init,
- };
- static struct starpu_codelet cl_final = {
- .cpu_funcs = { cpu_func },
- .cpu_funcs_name = { "mlr_codelet_final" },
- .nbuffers = 0,
- .model = &cl_model_final,
- };
- int main(int argc, char **argv)
- {
- /* Initialization */
- unsigned i,j;
- int ret;
- ret = starpu_init(NULL);
- if (ret == -ENODEV)
- return 77;
-
- sum=0;
- double m,n,k;
- /* Giving pseudo-random values to the M,N,K parameters and inserting tasks */
- for(i=0; i < 42; i++)
- {
- m = (double) ((rand() % 10)+1);
- n = (double) ((rand() % 10)+1);
- k = (double) ((rand() % 10)+1);
-
- for(j=0; j < 42; j++)
- {
- starpu_insert_task(&cl_init,
- STARPU_VALUE, &m, sizeof(double),
- STARPU_VALUE, &n, sizeof(double),
- STARPU_VALUE, &k, sizeof(double),
- 0);
- starpu_insert_task(&cl_final,
- STARPU_VALUE, &m, sizeof(double),
- STARPU_VALUE, &n, sizeof(double),
- STARPU_VALUE, &k, sizeof(double),
- 0);
- }
- }
-
- starpu_shutdown();
- return 0;
- }
|