cl_enqueuendrangekernel.c 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010,2011, 2016-2017 Université de Bordeaux
  4. * Copyright (C) 2016, 2017 CNRS
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. #include "socl.h"
  18. #include "event.h"
  19. void soclEnqueueNDRangeKernel_task(void *descr[], void *args)
  20. {
  21. command_ndrange_kernel cmd = (command_ndrange_kernel)args;
  22. cl_command_queue cq;
  23. int wid;
  24. cl_int err;
  25. cl_event ev = command_event_get(cmd);
  26. ev->prof_start = _socl_nanotime();
  27. gc_entity_release(ev);
  28. wid = starpu_worker_get_id_check();
  29. starpu_opencl_get_queue(wid, &cq);
  30. DEBUG_MSG("[worker %d] [kernel %d] Executing kernel...\n", wid, cmd->kernel->id);
  31. int range = starpu_worker_get_range();
  32. /* Set arguments */
  33. {
  34. unsigned int i;
  35. int buf = 0;
  36. for (i=0; i<cmd->num_args; i++)
  37. {
  38. switch (cmd->arg_types[i])
  39. {
  40. case Null:
  41. err = clSetKernelArg(cmd->kernel->cl_kernels[range], i, cmd->arg_sizes[i], NULL);
  42. break;
  43. case Buffer:
  44. {
  45. cl_mem mem;
  46. mem = (cl_mem)STARPU_VARIABLE_GET_PTR(descr[buf]);
  47. err = clSetKernelArg(cmd->kernel->cl_kernels[range], i, cmd->arg_sizes[i], &mem);
  48. buf++;
  49. }
  50. break;
  51. case Immediate:
  52. err = clSetKernelArg(cmd->kernel->cl_kernels[range], i, cmd->arg_sizes[i], cmd->args[i]);
  53. break;
  54. }
  55. if (err != CL_SUCCESS)
  56. {
  57. DEBUG_CL("clSetKernelArg", err);
  58. DEBUG_ERROR("Aborting\n");
  59. }
  60. }
  61. }
  62. /* Calling Kernel */
  63. cl_event event;
  64. err = clEnqueueNDRangeKernel(cq, cmd->kernel->cl_kernels[range], cmd->work_dim, cmd->global_work_offset, cmd->global_work_size, cmd->local_work_size, 0, NULL, &event);
  65. if (err != CL_SUCCESS)
  66. {
  67. ERROR_MSG("Worker[%d] Unable to Enqueue kernel (error %d)\n", wid, err);
  68. DEBUG_CL("clEnqueueNDRangeKernel", err);
  69. DEBUG_MSG("Workdim %u, global_work_offset %p, global_work_size %p, local_work_size %p\n",
  70. cmd->work_dim, cmd->global_work_offset, cmd->global_work_size, cmd->local_work_size);
  71. DEBUG_MSG("Global work size: %ld %ld %ld\n", (long)cmd->global_work_size[0],
  72. (long)(cmd->work_dim > 1 ? cmd->global_work_size[1] : 1), (long)(cmd->work_dim > 2 ? cmd->global_work_size[2] : 1));
  73. if (cmd->local_work_size != NULL)
  74. DEBUG_MSG("Local work size: %ld %ld %ld\n", (long)cmd->local_work_size[0],
  75. (long)(cmd->work_dim > 1 ? cmd->local_work_size[1] : 1), (long)(cmd->work_dim > 2 ? cmd->local_work_size[2] : 1));
  76. }
  77. else
  78. {
  79. /* Waiting for kernel to terminate */
  80. clWaitForEvents(1, &event);
  81. clReleaseEvent(event);
  82. }
  83. }
  84. /**
  85. * Real kernel enqueuing command
  86. */
  87. cl_int command_ndrange_kernel_submit(command_ndrange_kernel cmd)
  88. {
  89. starpu_task task = task_create();
  90. task->cl = &cmd->codelet;
  91. task->cl->model = cmd->kernel->perfmodel;
  92. task->cl_arg = cmd;
  93. task->cl_arg_size = sizeof(cmd);
  94. /* Execute the task on a specific worker? */
  95. if (cmd->_command.event->cq->device != NULL)
  96. {
  97. task->execute_on_a_specific_worker = 1;
  98. task->workerid = cmd->_command.event->cq->device->worker_id;
  99. }
  100. struct starpu_codelet * codelet = task->cl;
  101. /* We need to detect which parameters are OpenCL's memory objects and
  102. * we retrieve their corresponding StarPU buffers */
  103. cmd->num_buffers = 0;
  104. cmd->buffers = malloc(sizeof(cl_mem) * cmd->num_args);
  105. unsigned int i;
  106. for (i=0; i<cmd->num_args; i++)
  107. {
  108. if (cmd->arg_types[i] == Buffer)
  109. {
  110. cl_mem buf = *(cl_mem*)cmd->args[i];
  111. gc_entity_store(&cmd->buffers[cmd->num_buffers], buf);
  112. task->handles[cmd->num_buffers] = buf->handle;
  113. /* Determine best StarPU buffer access mode */
  114. int mode;
  115. if (buf->mode == CL_MEM_READ_ONLY)
  116. mode = STARPU_R;
  117. else if (buf->mode == CL_MEM_WRITE_ONLY)
  118. {
  119. mode = STARPU_W;
  120. buf->scratch = 0;
  121. }
  122. else if (buf->scratch)
  123. { //RW but never accessed in RW or W mode
  124. mode = STARPU_W;
  125. buf->scratch = 0;
  126. }
  127. else
  128. {
  129. mode = STARPU_RW;
  130. buf->scratch = 0;
  131. }
  132. codelet->modes[cmd->num_buffers] = mode;
  133. cmd->num_buffers += 1;
  134. }
  135. }
  136. codelet->nbuffers = cmd->num_buffers;
  137. task_submit(task, cmd);
  138. return CL_SUCCESS;
  139. }
  140. CL_API_ENTRY cl_int CL_API_CALL
  141. soclEnqueueNDRangeKernel(cl_command_queue cq,
  142. cl_kernel kernel,
  143. cl_uint work_dim,
  144. const size_t * global_work_offset,
  145. const size_t * global_work_size,
  146. const size_t * local_work_size,
  147. cl_uint num_events,
  148. const cl_event * events,
  149. cl_event * event) CL_API_SUFFIX__VERSION_1_1
  150. {
  151. if (kernel->split_func != NULL && !STARPU_PTHREAD_MUTEX_TRYLOCK(&kernel->split_lock))
  152. {
  153. cl_event beforeEvent, afterEvent, totalEvent;
  154. totalEvent = event_create();
  155. gc_entity_store(&totalEvent->cq, cq);
  156. command_marker cmd = command_marker_create();
  157. beforeEvent = command_event_get(cmd);
  158. command_queue_enqueue(cq, cmd, num_events, events);
  159. cl_uint iter = 1;
  160. cl_uint split_min = CL_UINT_MAX;
  161. cl_uint split_min_iter = 1;
  162. while (iter < kernel->split_space && kernel->split_perfs[iter] != 0)
  163. {
  164. if (kernel->split_perfs[iter] < split_min)
  165. {
  166. split_min = kernel->split_perfs[iter];
  167. split_min_iter = iter;
  168. }
  169. iter++;
  170. }
  171. if (iter == kernel->split_space)
  172. {
  173. iter = split_min_iter;
  174. }
  175. cl_int ret = kernel->split_func(cq, iter, kernel->split_data, beforeEvent, &afterEvent);
  176. if (ret == CL_SUCCESS)
  177. {
  178. //FIXME: blocking call
  179. soclWaitForEvents(1, &afterEvent);
  180. /* Store perf */
  181. cl_ulong start,end;
  182. soclGetEventProfilingInfo(beforeEvent, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &start, NULL);
  183. soclGetEventProfilingInfo(afterEvent, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL);
  184. soclReleaseEvent(afterEvent);
  185. kernel->split_perfs[iter] = end-start;
  186. STARPU_PTHREAD_MUTEX_UNLOCK(&kernel->split_lock);
  187. event_complete(totalEvent);
  188. totalEvent->prof_start = start;
  189. totalEvent->prof_submit = start;
  190. totalEvent->prof_queued = start;
  191. totalEvent->prof_end = end;
  192. RETURN_EVENT(totalEvent,event);
  193. }
  194. else
  195. {
  196. STARPU_PTHREAD_MUTEX_UNLOCK(&kernel->split_lock);
  197. soclReleaseEvent(totalEvent);
  198. }
  199. return ret;
  200. }
  201. else
  202. {
  203. command_ndrange_kernel cmd = command_ndrange_kernel_create(kernel, work_dim,
  204. global_work_offset, global_work_size, local_work_size);
  205. cl_event ev = command_event_get(cmd);
  206. command_queue_enqueue(cq, cmd, num_events, events);
  207. RETURN_EVENT(ev, event);
  208. }
  209. return CL_SUCCESS;
  210. }