| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350 | /* dgtsvx.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int _starpu_dgtsvx_(char *fact, char *trans, integer *n, integer *	nrhs, doublereal *dl, doublereal *d__, doublereal *du, doublereal *	dlf, doublereal *df, doublereal *duf, doublereal *du2, integer *ipiv, 	doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *	rcond, doublereal *ferr, doublereal *berr, doublereal *work, integer *	iwork, integer *info){    /* System generated locals */    integer b_dim1, b_offset, x_dim1, x_offset, i__1;    /* Local variables */    char norm[1];    extern logical _starpu_lsame_(char *, char *);    doublereal anorm;    extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    extern doublereal _starpu_dlamch_(char *), _starpu_dlangt_(char *, integer *, 	    doublereal *, doublereal *, doublereal *);    logical nofact;    extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *), 	    _starpu_xerbla_(char *, integer *), _starpu_dgtcon_(char *, integer *, 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 	     doublereal *, doublereal *, doublereal *, integer *, integer *), _starpu_dgtrfs_(char *, integer *, integer *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 	     integer *, integer *), _starpu_dgttrf_(integer *, doublereal *, 	    doublereal *, doublereal *, doublereal *, integer *, integer *);    logical notran;    extern /* Subroutine */ int _starpu_dgttrs_(char *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 	     doublereal *, integer *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGTSVX uses the LU factorization to compute the solution to a real *//*  system of linear equations A * X = B or A**T * X = B, *//*  where A is a tridiagonal matrix of order N and X and B are N-by-NRHS *//*  matrices. *//*  Error bounds on the solution and a condition estimate are also *//*  provided. *//*  Description *//*  =========== *//*  The following steps are performed: *//*  1. If FACT = 'N', the LU decomposition is used to factor the matrix A *//*     as A = L * U, where L is a product of permutation and unit lower *//*     bidiagonal matrices and U is upper triangular with nonzeros in *//*     only the main diagonal and first two superdiagonals. *//*  2. If some U(i,i)=0, so that U is exactly singular, then the routine *//*     returns with INFO = i. Otherwise, the factored form of A is used *//*     to estimate the condition number of the matrix A.  If the *//*     reciprocal of the condition number is less than machine precision, *//*     INFO = N+1 is returned as a warning, but the routine still goes on *//*     to solve for X and compute error bounds as described below. *//*  3. The system of equations is solved for X using the factored form *//*     of A. *//*  4. Iterative refinement is applied to improve the computed solution *//*     matrix and calculate error bounds and backward error estimates *//*     for it. *//*  Arguments *//*  ========= *//*  FACT    (input) CHARACTER*1 *//*          Specifies whether or not the factored form of A has been *//*          supplied on entry. *//*          = 'F':  DLF, DF, DUF, DU2, and IPIV contain the factored *//*                  form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV *//*                  will not be modified. *//*          = 'N':  The matrix will be copied to DLF, DF, and DUF *//*                  and factored. *//*  TRANS   (input) CHARACTER*1 *//*          Specifies the form of the system of equations: *//*          = 'N':  A * X = B     (No transpose) *//*          = 'T':  A**T * X = B  (Transpose) *//*          = 'C':  A**H * X = B  (Conjugate transpose = Transpose) *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrix B.  NRHS >= 0. *//*  DL      (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) subdiagonal elements of A. *//*  D       (input) DOUBLE PRECISION array, dimension (N) *//*          The n diagonal elements of A. *//*  DU      (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) superdiagonal elements of A. *//*  DLF     (input or output) DOUBLE PRECISION array, dimension (N-1) *//*          If FACT = 'F', then DLF is an input argument and on entry *//*          contains the (n-1) multipliers that define the matrix L from *//*          the LU factorization of A as computed by DGTTRF. *//*          If FACT = 'N', then DLF is an output argument and on exit *//*          contains the (n-1) multipliers that define the matrix L from *//*          the LU factorization of A. *//*  DF      (input or output) DOUBLE PRECISION array, dimension (N) *//*          If FACT = 'F', then DF is an input argument and on entry *//*          contains the n diagonal elements of the upper triangular *//*          matrix U from the LU factorization of A. *//*          If FACT = 'N', then DF is an output argument and on exit *//*          contains the n diagonal elements of the upper triangular *//*          matrix U from the LU factorization of A. *//*  DUF     (input or output) DOUBLE PRECISION array, dimension (N-1) *//*          If FACT = 'F', then DUF is an input argument and on entry *//*          contains the (n-1) elements of the first superdiagonal of U. *//*          If FACT = 'N', then DUF is an output argument and on exit *//*          contains the (n-1) elements of the first superdiagonal of U. *//*  DU2     (input or output) DOUBLE PRECISION array, dimension (N-2) *//*          If FACT = 'F', then DU2 is an input argument and on entry *//*          contains the (n-2) elements of the second superdiagonal of *//*          U. *//*          If FACT = 'N', then DU2 is an output argument and on exit *//*          contains the (n-2) elements of the second superdiagonal of *//*          U. *//*  IPIV    (input or output) INTEGER array, dimension (N) *//*          If FACT = 'F', then IPIV is an input argument and on entry *//*          contains the pivot indices from the LU factorization of A as *//*          computed by DGTTRF. *//*          If FACT = 'N', then IPIV is an output argument and on exit *//*          contains the pivot indices from the LU factorization of A; *//*          row i of the matrix was interchanged with row IPIV(i). *//*          IPIV(i) will always be either i or i+1; IPIV(i) = i indicates *//*          a row interchange was not required. *//*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          The N-by-NRHS right hand side matrix B. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) *//*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. *//*  LDX     (input) INTEGER *//*          The leading dimension of the array X.  LDX >= max(1,N). *//*  RCOND   (output) DOUBLE PRECISION *//*          The estimate of the reciprocal condition number of the matrix *//*          A.  If RCOND is less than the machine precision (in *//*          particular, if RCOND = 0), the matrix is singular to working *//*          precision.  This condition is indicated by a return code of *//*          INFO > 0. *//*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) *//*          The estimated forward error bound for each solution vector *//*          X(j) (the j-th column of the solution matrix X). *//*          If XTRUE is the true solution corresponding to X(j), FERR(j) *//*          is an estimated upper bound for the magnitude of the largest *//*          element in (X(j) - XTRUE) divided by the magnitude of the *//*          largest element in X(j).  The estimate is as reliable as *//*          the estimate for RCOND, and is almost always a slight *//*          overestimate of the true error. *//*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) *//*          The componentwise relative backward error of each solution *//*          vector X(j) (i.e., the smallest relative change in *//*          any element of A or B that makes X(j) an exact solution). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) *//*  IWORK   (workspace) INTEGER array, dimension (N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, and i is *//*                <= N:  U(i,i) is exactly zero.  The factorization *//*                       has not been completed unless i = N, but the *//*                       factor U is exactly singular, so the solution *//*                       and error bounds could not be computed. *//*                       RCOND = 0 is returned. *//*                = N+1: U is nonsingular, but RCOND is less than machine *//*                       precision, meaning that the matrix is singular *//*                       to working precision.  Nevertheless, the *//*                       solution and error bounds are computed because *//*                       there are a number of situations where the *//*                       computed solution can be more accurate than the *//*                       value of RCOND would suggest. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --dl;    --d__;    --du;    --dlf;    --df;    --duf;    --du2;    --ipiv;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    x_dim1 = *ldx;    x_offset = 1 + x_dim1;    x -= x_offset;    --ferr;    --berr;    --work;    --iwork;    /* Function Body */    *info = 0;    nofact = _starpu_lsame_(fact, "N");    notran = _starpu_lsame_(trans, "N");    if (! nofact && ! _starpu_lsame_(fact, "F")) {	*info = -1;    } else if (! notran && ! _starpu_lsame_(trans, "T") && ! 	    _starpu_lsame_(trans, "C")) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*nrhs < 0) {	*info = -4;    } else if (*ldb < max(1,*n)) {	*info = -14;    } else if (*ldx < max(1,*n)) {	*info = -16;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGTSVX", &i__1);	return 0;    }    if (nofact) {/*        Compute the LU factorization of A. */	_starpu_dcopy_(n, &d__[1], &c__1, &df[1], &c__1);	if (*n > 1) {	    i__1 = *n - 1;	    _starpu_dcopy_(&i__1, &dl[1], &c__1, &dlf[1], &c__1);	    i__1 = *n - 1;	    _starpu_dcopy_(&i__1, &du[1], &c__1, &duf[1], &c__1);	}	_starpu_dgttrf_(n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], info);/*        Return if INFO is non-zero. */	if (*info > 0) {	    *rcond = 0.;	    return 0;	}    }/*     Compute the norm of the matrix A. */    if (notran) {	*(unsigned char *)norm = '1';    } else {	*(unsigned char *)norm = 'I';    }    anorm = _starpu_dlangt_(norm, n, &dl[1], &d__[1], &du[1]);/*     Compute the reciprocal of the condition number of A. */    _starpu_dgtcon_(norm, n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &anorm, 	    rcond, &work[1], &iwork[1], info);/*     Compute the solution vectors X. */    _starpu_dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);    _starpu_dgttrs_(trans, n, nrhs, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &x[	    x_offset], ldx, info);/*     Use iterative refinement to improve the computed solutions and *//*     compute error bounds and backward error estimates for them. */    _starpu_dgtrfs_(trans, n, nrhs, &dl[1], &d__[1], &du[1], &dlf[1], &df[1], &duf[1], 	     &du2[1], &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1], &iwork[1], info);/*     Set INFO = N+1 if the matrix is singular to working precision. */    if (*rcond < _starpu_dlamch_("Epsilon")) {	*info = *n + 1;    }    return 0;/*     End of DGTSVX */} /* _starpu_dgtsvx_ */
 |