| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 | /* dpteqr.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b7 = 0.;static doublereal c_b8 = 1.;static integer c__0 = 0;static integer c__1 = 1;/* Subroutine */ int _starpu_dpteqr_(char *compz, integer *n, doublereal *d__, 	doublereal *e, doublereal *z__, integer *ldz, doublereal *work, 	integer *info){    /* System generated locals */    integer z_dim1, z_offset, i__1;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    doublereal c__[1]	/* was [1][1] */;    integer i__;    doublereal vt[1]	/* was [1][1] */;    integer nru;    extern logical _starpu_lsame_(char *, char *);    extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *), 	    _starpu_xerbla_(char *, integer *), _starpu_dbdsqr_(char *, integer *, 	    integer *, integer *, integer *, doublereal *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, integer *);    integer icompz;    extern /* Subroutine */ int _starpu_dpttrf_(integer *, doublereal *, doublereal *, 	     integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DPTEQR computes all eigenvalues and, optionally, eigenvectors of a *//*  symmetric positive definite tridiagonal matrix by first factoring the *//*  matrix using DPTTRF, and then calling DBDSQR to compute the singular *//*  values of the bidiagonal factor. *//*  This routine computes the eigenvalues of the positive definite *//*  tridiagonal matrix to high relative accuracy.  This means that if the *//*  eigenvalues range over many orders of magnitude in size, then the *//*  small eigenvalues and corresponding eigenvectors will be computed *//*  more accurately than, for example, with the standard QR method. *//*  The eigenvectors of a full or band symmetric positive definite matrix *//*  can also be found if DSYTRD, DSPTRD, or DSBTRD has been used to *//*  reduce this matrix to tridiagonal form. (The reduction to tridiagonal *//*  form, however, may preclude the possibility of obtaining high *//*  relative accuracy in the small eigenvalues of the original matrix, if *//*  these eigenvalues range over many orders of magnitude.) *//*  Arguments *//*  ========= *//*  COMPZ   (input) CHARACTER*1 *//*          = 'N':  Compute eigenvalues only. *//*          = 'V':  Compute eigenvectors of original symmetric *//*                  matrix also.  Array Z contains the orthogonal *//*                  matrix used to reduce the original matrix to *//*                  tridiagonal form. *//*          = 'I':  Compute eigenvectors of tridiagonal matrix also. *//*  N       (input) INTEGER *//*          The order of the matrix.  N >= 0. *//*  D       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, the n diagonal elements of the tridiagonal *//*          matrix. *//*          On normal exit, D contains the eigenvalues, in descending *//*          order. *//*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) *//*          On entry, the (n-1) subdiagonal elements of the tridiagonal *//*          matrix. *//*          On exit, E has been destroyed. *//*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N) *//*          On entry, if COMPZ = 'V', the orthogonal matrix used in the *//*          reduction to tridiagonal form. *//*          On exit, if COMPZ = 'V', the orthonormal eigenvectors of the *//*          original symmetric matrix; *//*          if COMPZ = 'I', the orthonormal eigenvectors of the *//*          tridiagonal matrix. *//*          If INFO > 0 on exit, Z contains the eigenvectors associated *//*          with only the stored eigenvalues. *//*          If  COMPZ = 'N', then Z is not referenced. *//*  LDZ     (input) INTEGER *//*          The leading dimension of the array Z.  LDZ >= 1, and if *//*          COMPZ = 'V' or 'I', LDZ >= max(1,N). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (4*N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          > 0:  if INFO = i, and i is: *//*                <= N  the Cholesky factorization of the matrix could *//*                      not be performed because the i-th principal minor *//*                      was not positive definite. *//*                > N   the SVD algorithm failed to converge; *//*                      if INFO = N+i, i off-diagonal elements of the *//*                      bidiagonal factor did not converge to zero. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --e;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    --work;    /* Function Body */    *info = 0;    if (_starpu_lsame_(compz, "N")) {	icompz = 0;    } else if (_starpu_lsame_(compz, "V")) {	icompz = 1;    } else if (_starpu_lsame_(compz, "I")) {	icompz = 2;    } else {	icompz = -1;    }    if (icompz < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {	*info = -6;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DPTEQR", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }    if (*n == 1) {	if (icompz > 0) {	    z__[z_dim1 + 1] = 1.;	}	return 0;    }    if (icompz == 2) {	_starpu_dlaset_("Full", n, n, &c_b7, &c_b8, &z__[z_offset], ldz);    }/*     Call DPTTRF to factor the matrix. */    _starpu_dpttrf_(n, &d__[1], &e[1], info);    if (*info != 0) {	return 0;    }    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {	d__[i__] = sqrt(d__[i__]);/* L10: */    }    i__1 = *n - 1;    for (i__ = 1; i__ <= i__1; ++i__) {	e[i__] *= d__[i__];/* L20: */    }/*     Call DBDSQR to compute the singular values/vectors of the *//*     bidiagonal factor. */    if (icompz > 0) {	nru = *n;    } else {	nru = 0;    }    _starpu_dbdsqr_("Lower", n, &c__0, &nru, &c__0, &d__[1], &e[1], vt, &c__1, &z__[	    z_offset], ldz, c__, &c__1, &work[1], info);/*     Square the singular values. */    if (*info == 0) {	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    d__[i__] *= d__[i__];/* L30: */	}    } else {	*info = *n + *info;    }    return 0;/*     End of DPTEQR */} /* _starpu_dpteqr_ */
 |