| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 | /* _starpu_dla_gbrpvgrw.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"doublereal _starpu_dla_gbrpvgrw__(integer *n, integer *kl, integer *ku, integer *	ncols, doublereal *ab, integer *ldab, doublereal *afb, integer *ldafb){    /* System generated locals */    integer ab_dim1, ab_offset, afb_dim1, afb_offset, i__1, i__2, i__3, i__4;    doublereal ret_val, d__1, d__2;    /* Local variables */    integer i__, j, kd;    doublereal amax, umax, rpvgrw;/*     -- LAPACK routine (version 3.2.1)                                 -- *//*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- *//*     -- Jason Riedy of Univ. of California Berkeley.                 -- *//*     -- April 2009                                                   -- *//*     -- LAPACK is a software package provided by Univ. of Tennessee, -- *//*     -- Univ. of California Berkeley and NAG Ltd.                    -- *//*     .. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLA_GBRPVGRW computes the reciprocal pivot growth factor *//*  norm(A)/norm(U). The "max absolute element" norm is used. If this is *//*  much less than 1, the stability of the LU factorization of the *//*  (equilibrated) matrix A could be poor. This also means that the *//*  solution X, estimated condition numbers, and error bounds could be *//*  unreliable. *//*  Arguments *//*  ========= *//*     N       (input) INTEGER *//*     The number of linear equations, i.e., the order of the *//*     matrix A.  N >= 0. *//*     KL      (input) INTEGER *//*     The number of subdiagonals within the band of A.  KL >= 0. *//*     KU      (input) INTEGER *//*     The number of superdiagonals within the band of A.  KU >= 0. *//*     NCOLS   (input) INTEGER *//*     The number of columns of the matrix A.  NCOLS >= 0. *//*     AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) *//*     On entry, the matrix A in band storage, in rows 1 to KL+KU+1. *//*     The j-th column of A is stored in the j-th column of the *//*     array AB as follows: *//*     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) *//*     LDAB    (input) INTEGER *//*     The leading dimension of the array AB.  LDAB >= KL+KU+1. *//*     AFB     (input) DOUBLE PRECISION array, dimension (LDAFB,N) *//*     Details of the LU factorization of the band matrix A, as *//*     computed by DGBTRF.  U is stored as an upper triangular *//*     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, *//*     and the multipliers used during the factorization are stored *//*     in rows KL+KU+2 to 2*KL+KU+1. *//*     LDAFB   (input) INTEGER *//*     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1. *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    ab_dim1 = *ldab;    ab_offset = 1 + ab_dim1;    ab -= ab_offset;    afb_dim1 = *ldafb;    afb_offset = 1 + afb_dim1;    afb -= afb_offset;    /* Function Body */    rpvgrw = 1.;    kd = *ku + 1;    i__1 = *ncols;    for (j = 1; j <= i__1; ++j) {	amax = 0.;	umax = 0.;/* Computing MAX */	i__2 = j - *ku;/* Computing MIN */	i__4 = j + *kl;	i__3 = min(i__4,*n);	for (i__ = max(i__2,1); i__ <= i__3; ++i__) {/* Computing MAX */	    d__2 = (d__1 = ab[kd + i__ - j + j * ab_dim1], abs(d__1));	    amax = max(d__2,amax);	}/* Computing MAX */	i__3 = j - *ku;	i__2 = j;	for (i__ = max(i__3,1); i__ <= i__2; ++i__) {/* Computing MAX */	    d__2 = (d__1 = afb[kd + i__ - j + j * afb_dim1], abs(d__1));	    umax = max(d__2,umax);	}	if (umax != 0.) {/* Computing MIN */	    d__1 = amax / umax;	    rpvgrw = min(d__1,rpvgrw);	}    }    ret_val = rpvgrw;    return ret_val;} /* _starpu_dla_gbrpvgrw__ */
 |