| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427 | /* dtbsv.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dtbsv_(char *uplo, char *trans, char *diag, integer *n, 	integer *k, doublereal *a, integer *lda, doublereal *x, integer *incx){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;    /* Local variables */    integer i__, j, l, ix, jx, kx, info;    doublereal temp;    extern logical lsame_(char *, char *);    integer kplus1;    extern /* Subroutine */ int xerbla_(char *, integer *);    logical nounit;/*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTBSV  solves one of the systems of equations *//*     A*x = b,   or   A'*x = b, *//*  where b and x are n element vectors and A is an n by n unit, or *//*  non-unit, upper or lower triangular band matrix, with ( k + 1 ) *//*  diagonals. *//*  No test for singularity or near-singularity is included in this *//*  routine. Such tests must be performed before calling this routine. *//*  Arguments *//*  ========== *//*  UPLO   - CHARACTER*1. *//*           On entry, UPLO specifies whether the matrix is an upper or *//*           lower triangular matrix as follows: *//*              UPLO = 'U' or 'u'   A is an upper triangular matrix. *//*              UPLO = 'L' or 'l'   A is a lower triangular matrix. *//*           Unchanged on exit. *//*  TRANS  - CHARACTER*1. *//*           On entry, TRANS specifies the equations to be solved as *//*           follows: *//*              TRANS = 'N' or 'n'   A*x = b. *//*              TRANS = 'T' or 't'   A'*x = b. *//*              TRANS = 'C' or 'c'   A'*x = b. *//*           Unchanged on exit. *//*  DIAG   - CHARACTER*1. *//*           On entry, DIAG specifies whether or not A is unit *//*           triangular as follows: *//*              DIAG = 'U' or 'u'   A is assumed to be unit triangular. *//*              DIAG = 'N' or 'n'   A is not assumed to be unit *//*                                  triangular. *//*           Unchanged on exit. *//*  N      - INTEGER. *//*           On entry, N specifies the order of the matrix A. *//*           N must be at least zero. *//*           Unchanged on exit. *//*  K      - INTEGER. *//*           On entry with UPLO = 'U' or 'u', K specifies the number of *//*           super-diagonals of the matrix A. *//*           On entry with UPLO = 'L' or 'l', K specifies the number of *//*           sub-diagonals of the matrix A. *//*           K must satisfy  0 .le. K. *//*           Unchanged on exit. *//*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ). *//*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) *//*           by n part of the array A must contain the upper triangular *//*           band part of the matrix of coefficients, supplied column by *//*           column, with the leading diagonal of the matrix in row *//*           ( k + 1 ) of the array, the first super-diagonal starting at *//*           position 2 in row k, and so on. The top left k by k triangle *//*           of the array A is not referenced. *//*           The following program segment will transfer an upper *//*           triangular band matrix from conventional full matrix storage *//*           to band storage: *//*                 DO 20, J = 1, N *//*                    M = K + 1 - J *//*                    DO 10, I = MAX( 1, J - K ), J *//*                       A( M + I, J ) = matrix( I, J ) *//*              10    CONTINUE *//*              20 CONTINUE *//*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) *//*           by n part of the array A must contain the lower triangular *//*           band part of the matrix of coefficients, supplied column by *//*           column, with the leading diagonal of the matrix in row 1 of *//*           the array, the first sub-diagonal starting at position 1 in *//*           row 2, and so on. The bottom right k by k triangle of the *//*           array A is not referenced. *//*           The following program segment will transfer a lower *//*           triangular band matrix from conventional full matrix storage *//*           to band storage: *//*                 DO 20, J = 1, N *//*                    M = 1 - J *//*                    DO 10, I = J, MIN( N, J + K ) *//*                       A( M + I, J ) = matrix( I, J ) *//*              10    CONTINUE *//*              20 CONTINUE *//*           Note that when DIAG = 'U' or 'u' the elements of the array A *//*           corresponding to the diagonal elements of the matrix are not *//*           referenced, but are assumed to be unity. *//*           Unchanged on exit. *//*  LDA    - INTEGER. *//*           On entry, LDA specifies the first dimension of A as declared *//*           in the calling (sub) program. LDA must be at least *//*           ( k + 1 ). *//*           Unchanged on exit. *//*  X      - DOUBLE PRECISION array of dimension at least *//*           ( 1 + ( n - 1 )*abs( INCX ) ). *//*           Before entry, the incremented array X must contain the n *//*           element right-hand side vector b. On exit, X is overwritten *//*           with the solution vector x. *//*  INCX   - INTEGER. *//*           On entry, INCX specifies the increment for the elements of *//*           X. INCX must not be zero. *//*           Unchanged on exit. *//*  Level 2 Blas routine. *//*  -- Written on 22-October-1986. *//*     Jack Dongarra, Argonne National Lab. *//*     Jeremy Du Croz, Nag Central Office. *//*     Sven Hammarling, Nag Central Office. *//*     Richard Hanson, Sandia National Labs. *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --x;    /* Function Body */    info = 0;    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {	info = 1;    } else if (! lsame_(trans, "N") && ! lsame_(trans, 	    "T") && ! lsame_(trans, "C")) {	info = 2;    } else if (! lsame_(diag, "U") && ! lsame_(diag, 	    "N")) {	info = 3;    } else if (*n < 0) {	info = 4;    } else if (*k < 0) {	info = 5;    } else if (*lda < *k + 1) {	info = 7;    } else if (*incx == 0) {	info = 9;    }    if (info != 0) {	xerbla_("DTBSV ", &info);	return 0;    }/*     Quick return if possible. */    if (*n == 0) {	return 0;    }    nounit = lsame_(diag, "N");/*     Set up the start point in X if the increment is not unity. This *//*     will be  ( N - 1 )*INCX  too small for descending loops. */    if (*incx <= 0) {	kx = 1 - (*n - 1) * *incx;    } else if (*incx != 1) {	kx = 1;    }/*     Start the operations. In this version the elements of A are *//*     accessed by sequentially with one pass through A. */    if (lsame_(trans, "N")) {/*        Form  x := inv( A )*x. */	if (lsame_(uplo, "U")) {	    kplus1 = *k + 1;	    if (*incx == 1) {		for (j = *n; j >= 1; --j) {		    if (x[j] != 0.) {			l = kplus1 - j;			if (nounit) {			    x[j] /= a[kplus1 + j * a_dim1];			}			temp = x[j];/* Computing MAX */			i__2 = 1, i__3 = j - *k;			i__1 = max(i__2,i__3);			for (i__ = j - 1; i__ >= i__1; --i__) {			    x[i__] -= temp * a[l + i__ + j * a_dim1];/* L10: */			}		    }/* L20: */		}	    } else {		kx += (*n - 1) * *incx;		jx = kx;		for (j = *n; j >= 1; --j) {		    kx -= *incx;		    if (x[jx] != 0.) {			ix = kx;			l = kplus1 - j;			if (nounit) {			    x[jx] /= a[kplus1 + j * a_dim1];			}			temp = x[jx];/* Computing MAX */			i__2 = 1, i__3 = j - *k;			i__1 = max(i__2,i__3);			for (i__ = j - 1; i__ >= i__1; --i__) {			    x[ix] -= temp * a[l + i__ + j * a_dim1];			    ix -= *incx;/* L30: */			}		    }		    jx -= *incx;/* L40: */		}	    }	} else {	    if (*incx == 1) {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    if (x[j] != 0.) {			l = 1 - j;			if (nounit) {			    x[j] /= a[j * a_dim1 + 1];			}			temp = x[j];/* Computing MIN */			i__3 = *n, i__4 = j + *k;			i__2 = min(i__3,i__4);			for (i__ = j + 1; i__ <= i__2; ++i__) {			    x[i__] -= temp * a[l + i__ + j * a_dim1];/* L50: */			}		    }/* L60: */		}	    } else {		jx = kx;		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    kx += *incx;		    if (x[jx] != 0.) {			ix = kx;			l = 1 - j;			if (nounit) {			    x[jx] /= a[j * a_dim1 + 1];			}			temp = x[jx];/* Computing MIN */			i__3 = *n, i__4 = j + *k;			i__2 = min(i__3,i__4);			for (i__ = j + 1; i__ <= i__2; ++i__) {			    x[ix] -= temp * a[l + i__ + j * a_dim1];			    ix += *incx;/* L70: */			}		    }		    jx += *incx;/* L80: */		}	    }	}    } else {/*        Form  x := inv( A')*x. */	if (lsame_(uplo, "U")) {	    kplus1 = *k + 1;	    if (*incx == 1) {		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    temp = x[j];		    l = kplus1 - j;/* Computing MAX */		    i__2 = 1, i__3 = j - *k;		    i__4 = j - 1;		    for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {			temp -= a[l + i__ + j * a_dim1] * x[i__];/* L90: */		    }		    if (nounit) {			temp /= a[kplus1 + j * a_dim1];		    }		    x[j] = temp;/* L100: */		}	    } else {		jx = kx;		i__1 = *n;		for (j = 1; j <= i__1; ++j) {		    temp = x[jx];		    ix = kx;		    l = kplus1 - j;/* Computing MAX */		    i__4 = 1, i__2 = j - *k;		    i__3 = j - 1;		    for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {			temp -= a[l + i__ + j * a_dim1] * x[ix];			ix += *incx;/* L110: */		    }		    if (nounit) {			temp /= a[kplus1 + j * a_dim1];		    }		    x[jx] = temp;		    jx += *incx;		    if (j > *k) {			kx += *incx;		    }/* L120: */		}	    }	} else {	    if (*incx == 1) {		for (j = *n; j >= 1; --j) {		    temp = x[j];		    l = 1 - j;/* Computing MIN */		    i__1 = *n, i__3 = j + *k;		    i__4 = j + 1;		    for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {			temp -= a[l + i__ + j * a_dim1] * x[i__];/* L130: */		    }		    if (nounit) {			temp /= a[j * a_dim1 + 1];		    }		    x[j] = temp;/* L140: */		}	    } else {		kx += (*n - 1) * *incx;		jx = kx;		for (j = *n; j >= 1; --j) {		    temp = x[jx];		    ix = kx;		    l = 1 - j;/* Computing MIN */		    i__4 = *n, i__1 = j + *k;		    i__3 = j + 1;		    for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {			temp -= a[l + i__ + j * a_dim1] * x[ix];			ix -= *incx;/* L150: */		    }		    if (nounit) {			temp /= a[j * a_dim1 + 1];		    }		    x[jx] = temp;		    jx -= *incx;		    if (*n - j >= *k) {			kx -= *incx;		    }/* L160: */		}	    }	}    }    return 0;/*     End of DTBSV . */} /* dtbsv_ */
 |