123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222 |
- /* dtzrqf.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static doublereal c_b8 = 1.;
- /* Subroutine */ int dtzrqf_(integer *m, integer *n, doublereal *a, integer *
- lda, doublereal *tau, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
- doublereal d__1;
- /* Local variables */
- integer i__, k, m1;
- extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *), dgemv_(char *, integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *), dcopy_(integer *, doublereal *,
- integer *, doublereal *, integer *), daxpy_(integer *, doublereal
- *, doublereal *, integer *, doublereal *, integer *), dlarfp_(
- integer *, doublereal *, doublereal *, integer *, doublereal *),
- xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* This routine is deprecated and has been replaced by routine DTZRZF. */
- /* DTZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A */
- /* to upper triangular form by means of orthogonal transformations. */
- /* The upper trapezoidal matrix A is factored as */
- /* A = ( R 0 ) * Z, */
- /* where Z is an N-by-N orthogonal matrix and R is an M-by-M upper */
- /* triangular matrix. */
- /* Arguments */
- /* ========= */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix A. N >= M. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the leading M-by-N upper trapezoidal part of the */
- /* array A must contain the matrix to be factorized. */
- /* On exit, the leading M-by-M upper triangular part of A */
- /* contains the upper triangular matrix R, and elements M+1 to */
- /* N of the first M rows of A, with the array TAU, represent the */
- /* orthogonal matrix Z as a product of M elementary reflectors. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,M). */
- /* TAU (output) DOUBLE PRECISION array, dimension (M) */
- /* The scalar factors of the elementary reflectors. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* Further Details */
- /* =============== */
- /* The factorization is obtained by Householder's method. The kth */
- /* transformation matrix, Z( k ), which is used to introduce zeros into */
- /* the ( m - k + 1 )th row of A, is given in the form */
- /* Z( k ) = ( I 0 ), */
- /* ( 0 T( k ) ) */
- /* where */
- /* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), */
- /* ( 0 ) */
- /* ( z( k ) ) */
- /* tau is a scalar and z( k ) is an ( n - m ) element vector. */
- /* tau and z( k ) are chosen to annihilate the elements of the kth row */
- /* of X. */
- /* The scalar tau is returned in the kth element of TAU and the vector */
- /* u( k ) in the kth row of A, such that the elements of z( k ) are */
- /* in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */
- /* the upper triangular part of A. */
- /* Z is given by */
- /* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --tau;
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < *m) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DTZRQF", &i__1);
- return 0;
- }
- /* Perform the factorization. */
- if (*m == 0) {
- return 0;
- }
- if (*m == *n) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- tau[i__] = 0.;
- /* L10: */
- }
- } else {
- /* Computing MIN */
- i__1 = *m + 1;
- m1 = min(i__1,*n);
- for (k = *m; k >= 1; --k) {
- /* Use a Householder reflection to zero the kth row of A. */
- /* First set up the reflection. */
- i__1 = *n - *m + 1;
- dlarfp_(&i__1, &a[k + k * a_dim1], &a[k + m1 * a_dim1], lda, &tau[
- k]);
- if (tau[k] != 0. && k > 1) {
- /* We now perform the operation A := A*P( k ). */
- /* Use the first ( k - 1 ) elements of TAU to store a( k ), */
- /* where a( k ) consists of the first ( k - 1 ) elements of */
- /* the kth column of A. Also let B denote the first */
- /* ( k - 1 ) rows of the last ( n - m ) columns of A. */
- i__1 = k - 1;
- dcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &tau[1], &c__1);
- /* Form w = a( k ) + B*z( k ) in TAU. */
- i__1 = k - 1;
- i__2 = *n - *m;
- dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[m1 * a_dim1 +
- 1], lda, &a[k + m1 * a_dim1], lda, &c_b8, &tau[1], &
- c__1);
- /* Now form a( k ) := a( k ) - tau*w */
- /* and B := B - tau*w*z( k )'. */
- i__1 = k - 1;
- d__1 = -tau[k];
- daxpy_(&i__1, &d__1, &tau[1], &c__1, &a[k * a_dim1 + 1], &
- c__1);
- i__1 = k - 1;
- i__2 = *n - *m;
- d__1 = -tau[k];
- dger_(&i__1, &i__2, &d__1, &tau[1], &c__1, &a[k + m1 * a_dim1]
- , lda, &a[m1 * a_dim1 + 1], lda);
- }
- /* L20: */
- }
- }
- return 0;
- /* End of DTZRQF */
- } /* dtzrqf_ */
|