1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114 |
- /* dtgsy2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__8 = 8;
- static integer c__1 = 1;
- static doublereal c_b27 = -1.;
- static doublereal c_b42 = 1.;
- static doublereal c_b56 = 0.;
- /* Subroutine */ int dtgsy2_(char *trans, integer *ijob, integer *m, integer *
- n, doublereal *a, integer *lda, doublereal *b, integer *ldb,
- doublereal *c__, integer *ldc, doublereal *d__, integer *ldd,
- doublereal *e, integer *lde, doublereal *f, integer *ldf, doublereal *
- scale, doublereal *rdsum, doublereal *rdscal, integer *iwork, integer
- *pq, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1,
- d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3;
- /* Local variables */
- integer i__, j, k, p, q;
- doublereal z__[64] /* was [8][8] */;
- integer ie, je, mb, nb, ii, jj, is, js;
- doublereal rhs[8];
- integer isp1, jsp1;
- extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *);
- integer ierr, zdim, ipiv[8], jpiv[8];
- doublereal alpha;
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *), dgemm_(char *, char *, integer *, integer *, integer *
- , doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *), dcopy_(integer *,
- doublereal *, integer *, doublereal *, integer *), daxpy_(integer
- *, doublereal *, doublereal *, integer *, doublereal *, integer *)
- , dgesc2_(integer *, doublereal *, integer *, doublereal *,
- integer *, integer *, doublereal *), dgetc2_(integer *,
- doublereal *, integer *, integer *, integer *, integer *),
- dlatdf_(integer *, integer *, doublereal *, integer *, doublereal
- *, doublereal *, doublereal *, integer *, integer *);
- doublereal scaloc;
- extern /* Subroutine */ int dlaset_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *),
- xerbla_(char *, integer *);
- logical notran;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* January 2007 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DTGSY2 solves the generalized Sylvester equation: */
- /* A * R - L * B = scale * C (1) */
- /* D * R - L * E = scale * F, */
- /* using Level 1 and 2 BLAS. where R and L are unknown M-by-N matrices, */
- /* (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M, */
- /* N-by-N and M-by-N, respectively, with real entries. (A, D) and (B, E) */
- /* must be in generalized Schur canonical form, i.e. A, B are upper */
- /* quasi triangular and D, E are upper triangular. The solution (R, L) */
- /* overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor */
- /* chosen to avoid overflow. */
- /* In matrix notation solving equation (1) corresponds to solve */
- /* Z*x = scale*b, where Z is defined as */
- /* Z = [ kron(In, A) -kron(B', Im) ] (2) */
- /* [ kron(In, D) -kron(E', Im) ], */
- /* Ik is the identity matrix of size k and X' is the transpose of X. */
- /* kron(X, Y) is the Kronecker product between the matrices X and Y. */
- /* In the process of solving (1), we solve a number of such systems */
- /* where Dim(In), Dim(In) = 1 or 2. */
- /* If TRANS = 'T', solve the transposed system Z'*y = scale*b for y, */
- /* which is equivalent to solve for R and L in */
- /* A' * R + D' * L = scale * C (3) */
- /* R * B' + L * E' = scale * -F */
- /* This case is used to compute an estimate of Dif[(A, D), (B, E)] = */
- /* sigma_min(Z) using reverse communicaton with DLACON. */
- /* DTGSY2 also (IJOB >= 1) contributes to the computation in DTGSYL */
- /* of an upper bound on the separation between to matrix pairs. Then */
- /* the input (A, D), (B, E) are sub-pencils of the matrix pair in */
- /* DTGSYL. See DTGSYL for details. */
- /* Arguments */
- /* ========= */
- /* TRANS (input) CHARACTER*1 */
- /* = 'N', solve the generalized Sylvester equation (1). */
- /* = 'T': solve the 'transposed' system (3). */
- /* IJOB (input) INTEGER */
- /* Specifies what kind of functionality to be performed. */
- /* = 0: solve (1) only. */
- /* = 1: A contribution from this subsystem to a Frobenius */
- /* norm-based estimate of the separation between two matrix */
- /* pairs is computed. (look ahead strategy is used). */
- /* = 2: A contribution from this subsystem to a Frobenius */
- /* norm-based estimate of the separation between two matrix */
- /* pairs is computed. (DGECON on sub-systems is used.) */
- /* Not referenced if TRANS = 'T'. */
- /* M (input) INTEGER */
- /* On entry, M specifies the order of A and D, and the row */
- /* dimension of C, F, R and L. */
- /* N (input) INTEGER */
- /* On entry, N specifies the order of B and E, and the column */
- /* dimension of C, F, R and L. */
- /* A (input) DOUBLE PRECISION array, dimension (LDA, M) */
- /* On entry, A contains an upper quasi triangular matrix. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the matrix A. LDA >= max(1, M). */
- /* B (input) DOUBLE PRECISION array, dimension (LDB, N) */
- /* On entry, B contains an upper quasi triangular matrix. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the matrix B. LDB >= max(1, N). */
- /* C (input/output) DOUBLE PRECISION array, dimension (LDC, N) */
- /* On entry, C contains the right-hand-side of the first matrix */
- /* equation in (1). */
- /* On exit, if IJOB = 0, C has been overwritten by the */
- /* solution R. */
- /* LDC (input) INTEGER */
- /* The leading dimension of the matrix C. LDC >= max(1, M). */
- /* D (input) DOUBLE PRECISION array, dimension (LDD, M) */
- /* On entry, D contains an upper triangular matrix. */
- /* LDD (input) INTEGER */
- /* The leading dimension of the matrix D. LDD >= max(1, M). */
- /* E (input) DOUBLE PRECISION array, dimension (LDE, N) */
- /* On entry, E contains an upper triangular matrix. */
- /* LDE (input) INTEGER */
- /* The leading dimension of the matrix E. LDE >= max(1, N). */
- /* F (input/output) DOUBLE PRECISION array, dimension (LDF, N) */
- /* On entry, F contains the right-hand-side of the second matrix */
- /* equation in (1). */
- /* On exit, if IJOB = 0, F has been overwritten by the */
- /* solution L. */
- /* LDF (input) INTEGER */
- /* The leading dimension of the matrix F. LDF >= max(1, M). */
- /* SCALE (output) DOUBLE PRECISION */
- /* On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions */
- /* R and L (C and F on entry) will hold the solutions to a */
- /* slightly perturbed system but the input matrices A, B, D and */
- /* E have not been changed. If SCALE = 0, R and L will hold the */
- /* solutions to the homogeneous system with C = F = 0. Normally, */
- /* SCALE = 1. */
- /* RDSUM (input/output) DOUBLE PRECISION */
- /* On entry, the sum of squares of computed contributions to */
- /* the Dif-estimate under computation by DTGSYL, where the */
- /* scaling factor RDSCAL (see below) has been factored out. */
- /* On exit, the corresponding sum of squares updated with the */
- /* contributions from the current sub-system. */
- /* If TRANS = 'T' RDSUM is not touched. */
- /* NOTE: RDSUM only makes sense when DTGSY2 is called by DTGSYL. */
- /* RDSCAL (input/output) DOUBLE PRECISION */
- /* On entry, scaling factor used to prevent overflow in RDSUM. */
- /* On exit, RDSCAL is updated w.r.t. the current contributions */
- /* in RDSUM. */
- /* If TRANS = 'T', RDSCAL is not touched. */
- /* NOTE: RDSCAL only makes sense when DTGSY2 is called by */
- /* DTGSYL. */
- /* IWORK (workspace) INTEGER array, dimension (M+N+2) */
- /* PQ (output) INTEGER */
- /* On exit, the number of subsystems (of size 2-by-2, 4-by-4 and */
- /* 8-by-8) solved by this routine. */
- /* INFO (output) INTEGER */
- /* On exit, if INFO is set to */
- /* =0: Successful exit */
- /* <0: If INFO = -i, the i-th argument had an illegal value. */
- /* >0: The matrix pairs (A, D) and (B, E) have common or very */
- /* close eigenvalues. */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
- /* Umea University, S-901 87 Umea, Sweden. */
- /* ===================================================================== */
- /* Replaced various illegal calls to DCOPY by calls to DLASET. */
- /* Sven Hammarling, 27/5/02. */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Decode and test input parameters */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1;
- c__ -= c_offset;
- d_dim1 = *ldd;
- d_offset = 1 + d_dim1;
- d__ -= d_offset;
- e_dim1 = *lde;
- e_offset = 1 + e_dim1;
- e -= e_offset;
- f_dim1 = *ldf;
- f_offset = 1 + f_dim1;
- f -= f_offset;
- --iwork;
- /* Function Body */
- *info = 0;
- ierr = 0;
- notran = lsame_(trans, "N");
- if (! notran && ! lsame_(trans, "T")) {
- *info = -1;
- } else if (notran) {
- if (*ijob < 0 || *ijob > 2) {
- *info = -2;
- }
- }
- if (*info == 0) {
- if (*m <= 0) {
- *info = -3;
- } else if (*n <= 0) {
- *info = -4;
- } else if (*lda < max(1,*m)) {
- *info = -5;
- } else if (*ldb < max(1,*n)) {
- *info = -8;
- } else if (*ldc < max(1,*m)) {
- *info = -10;
- } else if (*ldd < max(1,*m)) {
- *info = -12;
- } else if (*lde < max(1,*n)) {
- *info = -14;
- } else if (*ldf < max(1,*m)) {
- *info = -16;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DTGSY2", &i__1);
- return 0;
- }
- /* Determine block structure of A */
- *pq = 0;
- p = 0;
- i__ = 1;
- L10:
- if (i__ > *m) {
- goto L20;
- }
- ++p;
- iwork[p] = i__;
- if (i__ == *m) {
- goto L20;
- }
- if (a[i__ + 1 + i__ * a_dim1] != 0.) {
- i__ += 2;
- } else {
- ++i__;
- }
- goto L10;
- L20:
- iwork[p + 1] = *m + 1;
- /* Determine block structure of B */
- q = p + 1;
- j = 1;
- L30:
- if (j > *n) {
- goto L40;
- }
- ++q;
- iwork[q] = j;
- if (j == *n) {
- goto L40;
- }
- if (b[j + 1 + j * b_dim1] != 0.) {
- j += 2;
- } else {
- ++j;
- }
- goto L30;
- L40:
- iwork[q + 1] = *n + 1;
- *pq = p * (q - p - 1);
- if (notran) {
- /* Solve (I, J) - subsystem */
- /* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) */
- /* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) */
- /* for I = P, P - 1, ..., 1; J = 1, 2, ..., Q */
- *scale = 1.;
- scaloc = 1.;
- i__1 = q;
- for (j = p + 2; j <= i__1; ++j) {
- js = iwork[j];
- jsp1 = js + 1;
- je = iwork[j + 1] - 1;
- nb = je - js + 1;
- for (i__ = p; i__ >= 1; --i__) {
- is = iwork[i__];
- isp1 = is + 1;
- ie = iwork[i__ + 1] - 1;
- mb = ie - is + 1;
- zdim = mb * nb << 1;
- if (mb == 1 && nb == 1) {
- /* Build a 2-by-2 system Z * x = RHS */
- z__[0] = a[is + is * a_dim1];
- z__[1] = d__[is + is * d_dim1];
- z__[8] = -b[js + js * b_dim1];
- z__[9] = -e[js + js * e_dim1];
- /* Set up right hand side(s) */
- rhs[0] = c__[is + js * c_dim1];
- rhs[1] = f[is + js * f_dim1];
- /* Solve Z * x = RHS */
- dgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);
- if (ierr > 0) {
- *info = ierr;
- }
- if (*ijob == 0) {
- dgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);
- if (scaloc != 1.) {
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &
- c__1);
- dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L50: */
- }
- *scale *= scaloc;
- }
- } else {
- dlatdf_(ijob, &zdim, z__, &c__8, rhs, rdsum, rdscal,
- ipiv, jpiv);
- }
- /* Unpack solution vector(s) */
- c__[is + js * c_dim1] = rhs[0];
- f[is + js * f_dim1] = rhs[1];
- /* Substitute R(I, J) and L(I, J) into remaining */
- /* equation. */
- if (i__ > 1) {
- alpha = -rhs[0];
- i__2 = is - 1;
- daxpy_(&i__2, &alpha, &a[is * a_dim1 + 1], &c__1, &
- c__[js * c_dim1 + 1], &c__1);
- i__2 = is - 1;
- daxpy_(&i__2, &alpha, &d__[is * d_dim1 + 1], &c__1, &
- f[js * f_dim1 + 1], &c__1);
- }
- if (j < q) {
- i__2 = *n - je;
- daxpy_(&i__2, &rhs[1], &b[js + (je + 1) * b_dim1],
- ldb, &c__[is + (je + 1) * c_dim1], ldc);
- i__2 = *n - je;
- daxpy_(&i__2, &rhs[1], &e[js + (je + 1) * e_dim1],
- lde, &f[is + (je + 1) * f_dim1], ldf);
- }
- } else if (mb == 1 && nb == 2) {
- /* Build a 4-by-4 system Z * x = RHS */
- z__[0] = a[is + is * a_dim1];
- z__[1] = 0.;
- z__[2] = d__[is + is * d_dim1];
- z__[3] = 0.;
- z__[8] = 0.;
- z__[9] = a[is + is * a_dim1];
- z__[10] = 0.;
- z__[11] = d__[is + is * d_dim1];
- z__[16] = -b[js + js * b_dim1];
- z__[17] = -b[js + jsp1 * b_dim1];
- z__[18] = -e[js + js * e_dim1];
- z__[19] = -e[js + jsp1 * e_dim1];
- z__[24] = -b[jsp1 + js * b_dim1];
- z__[25] = -b[jsp1 + jsp1 * b_dim1];
- z__[26] = 0.;
- z__[27] = -e[jsp1 + jsp1 * e_dim1];
- /* Set up right hand side(s) */
- rhs[0] = c__[is + js * c_dim1];
- rhs[1] = c__[is + jsp1 * c_dim1];
- rhs[2] = f[is + js * f_dim1];
- rhs[3] = f[is + jsp1 * f_dim1];
- /* Solve Z * x = RHS */
- dgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);
- if (ierr > 0) {
- *info = ierr;
- }
- if (*ijob == 0) {
- dgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);
- if (scaloc != 1.) {
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &
- c__1);
- dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L60: */
- }
- *scale *= scaloc;
- }
- } else {
- dlatdf_(ijob, &zdim, z__, &c__8, rhs, rdsum, rdscal,
- ipiv, jpiv);
- }
- /* Unpack solution vector(s) */
- c__[is + js * c_dim1] = rhs[0];
- c__[is + jsp1 * c_dim1] = rhs[1];
- f[is + js * f_dim1] = rhs[2];
- f[is + jsp1 * f_dim1] = rhs[3];
- /* Substitute R(I, J) and L(I, J) into remaining */
- /* equation. */
- if (i__ > 1) {
- i__2 = is - 1;
- dger_(&i__2, &nb, &c_b27, &a[is * a_dim1 + 1], &c__1,
- rhs, &c__1, &c__[js * c_dim1 + 1], ldc);
- i__2 = is - 1;
- dger_(&i__2, &nb, &c_b27, &d__[is * d_dim1 + 1], &
- c__1, rhs, &c__1, &f[js * f_dim1 + 1], ldf);
- }
- if (j < q) {
- i__2 = *n - je;
- daxpy_(&i__2, &rhs[2], &b[js + (je + 1) * b_dim1],
- ldb, &c__[is + (je + 1) * c_dim1], ldc);
- i__2 = *n - je;
- daxpy_(&i__2, &rhs[2], &e[js + (je + 1) * e_dim1],
- lde, &f[is + (je + 1) * f_dim1], ldf);
- i__2 = *n - je;
- daxpy_(&i__2, &rhs[3], &b[jsp1 + (je + 1) * b_dim1],
- ldb, &c__[is + (je + 1) * c_dim1], ldc);
- i__2 = *n - je;
- daxpy_(&i__2, &rhs[3], &e[jsp1 + (je + 1) * e_dim1],
- lde, &f[is + (je + 1) * f_dim1], ldf);
- }
- } else if (mb == 2 && nb == 1) {
- /* Build a 4-by-4 system Z * x = RHS */
- z__[0] = a[is + is * a_dim1];
- z__[1] = a[isp1 + is * a_dim1];
- z__[2] = d__[is + is * d_dim1];
- z__[3] = 0.;
- z__[8] = a[is + isp1 * a_dim1];
- z__[9] = a[isp1 + isp1 * a_dim1];
- z__[10] = d__[is + isp1 * d_dim1];
- z__[11] = d__[isp1 + isp1 * d_dim1];
- z__[16] = -b[js + js * b_dim1];
- z__[17] = 0.;
- z__[18] = -e[js + js * e_dim1];
- z__[19] = 0.;
- z__[24] = 0.;
- z__[25] = -b[js + js * b_dim1];
- z__[26] = 0.;
- z__[27] = -e[js + js * e_dim1];
- /* Set up right hand side(s) */
- rhs[0] = c__[is + js * c_dim1];
- rhs[1] = c__[isp1 + js * c_dim1];
- rhs[2] = f[is + js * f_dim1];
- rhs[3] = f[isp1 + js * f_dim1];
- /* Solve Z * x = RHS */
- dgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);
- if (ierr > 0) {
- *info = ierr;
- }
- if (*ijob == 0) {
- dgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);
- if (scaloc != 1.) {
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &
- c__1);
- dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L70: */
- }
- *scale *= scaloc;
- }
- } else {
- dlatdf_(ijob, &zdim, z__, &c__8, rhs, rdsum, rdscal,
- ipiv, jpiv);
- }
- /* Unpack solution vector(s) */
- c__[is + js * c_dim1] = rhs[0];
- c__[isp1 + js * c_dim1] = rhs[1];
- f[is + js * f_dim1] = rhs[2];
- f[isp1 + js * f_dim1] = rhs[3];
- /* Substitute R(I, J) and L(I, J) into remaining */
- /* equation. */
- if (i__ > 1) {
- i__2 = is - 1;
- dgemv_("N", &i__2, &mb, &c_b27, &a[is * a_dim1 + 1],
- lda, rhs, &c__1, &c_b42, &c__[js * c_dim1 + 1]
- , &c__1);
- i__2 = is - 1;
- dgemv_("N", &i__2, &mb, &c_b27, &d__[is * d_dim1 + 1],
- ldd, rhs, &c__1, &c_b42, &f[js * f_dim1 + 1],
- &c__1);
- }
- if (j < q) {
- i__2 = *n - je;
- dger_(&mb, &i__2, &c_b42, &rhs[2], &c__1, &b[js + (je
- + 1) * b_dim1], ldb, &c__[is + (je + 1) *
- c_dim1], ldc);
- i__2 = *n - je;
- dger_(&mb, &i__2, &c_b42, &rhs[2], &c__1, &e[js + (je
- + 1) * e_dim1], lde, &f[is + (je + 1) *
- f_dim1], ldf);
- }
- } else if (mb == 2 && nb == 2) {
- /* Build an 8-by-8 system Z * x = RHS */
- dlaset_("F", &c__8, &c__8, &c_b56, &c_b56, z__, &c__8);
- z__[0] = a[is + is * a_dim1];
- z__[1] = a[isp1 + is * a_dim1];
- z__[4] = d__[is + is * d_dim1];
- z__[8] = a[is + isp1 * a_dim1];
- z__[9] = a[isp1 + isp1 * a_dim1];
- z__[12] = d__[is + isp1 * d_dim1];
- z__[13] = d__[isp1 + isp1 * d_dim1];
- z__[18] = a[is + is * a_dim1];
- z__[19] = a[isp1 + is * a_dim1];
- z__[22] = d__[is + is * d_dim1];
- z__[26] = a[is + isp1 * a_dim1];
- z__[27] = a[isp1 + isp1 * a_dim1];
- z__[30] = d__[is + isp1 * d_dim1];
- z__[31] = d__[isp1 + isp1 * d_dim1];
- z__[32] = -b[js + js * b_dim1];
- z__[34] = -b[js + jsp1 * b_dim1];
- z__[36] = -e[js + js * e_dim1];
- z__[38] = -e[js + jsp1 * e_dim1];
- z__[41] = -b[js + js * b_dim1];
- z__[43] = -b[js + jsp1 * b_dim1];
- z__[45] = -e[js + js * e_dim1];
- z__[47] = -e[js + jsp1 * e_dim1];
- z__[48] = -b[jsp1 + js * b_dim1];
- z__[50] = -b[jsp1 + jsp1 * b_dim1];
- z__[54] = -e[jsp1 + jsp1 * e_dim1];
- z__[57] = -b[jsp1 + js * b_dim1];
- z__[59] = -b[jsp1 + jsp1 * b_dim1];
- z__[63] = -e[jsp1 + jsp1 * e_dim1];
- /* Set up right hand side(s) */
- k = 1;
- ii = mb * nb + 1;
- i__2 = nb - 1;
- for (jj = 0; jj <= i__2; ++jj) {
- dcopy_(&mb, &c__[is + (js + jj) * c_dim1], &c__1, &
- rhs[k - 1], &c__1);
- dcopy_(&mb, &f[is + (js + jj) * f_dim1], &c__1, &rhs[
- ii - 1], &c__1);
- k += mb;
- ii += mb;
- /* L80: */
- }
- /* Solve Z * x = RHS */
- dgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);
- if (ierr > 0) {
- *info = ierr;
- }
- if (*ijob == 0) {
- dgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);
- if (scaloc != 1.) {
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &
- c__1);
- dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L90: */
- }
- *scale *= scaloc;
- }
- } else {
- dlatdf_(ijob, &zdim, z__, &c__8, rhs, rdsum, rdscal,
- ipiv, jpiv);
- }
- /* Unpack solution vector(s) */
- k = 1;
- ii = mb * nb + 1;
- i__2 = nb - 1;
- for (jj = 0; jj <= i__2; ++jj) {
- dcopy_(&mb, &rhs[k - 1], &c__1, &c__[is + (js + jj) *
- c_dim1], &c__1);
- dcopy_(&mb, &rhs[ii - 1], &c__1, &f[is + (js + jj) *
- f_dim1], &c__1);
- k += mb;
- ii += mb;
- /* L100: */
- }
- /* Substitute R(I, J) and L(I, J) into remaining */
- /* equation. */
- if (i__ > 1) {
- i__2 = is - 1;
- dgemm_("N", "N", &i__2, &nb, &mb, &c_b27, &a[is *
- a_dim1 + 1], lda, rhs, &mb, &c_b42, &c__[js *
- c_dim1 + 1], ldc);
- i__2 = is - 1;
- dgemm_("N", "N", &i__2, &nb, &mb, &c_b27, &d__[is *
- d_dim1 + 1], ldd, rhs, &mb, &c_b42, &f[js *
- f_dim1 + 1], ldf);
- }
- if (j < q) {
- k = mb * nb + 1;
- i__2 = *n - je;
- dgemm_("N", "N", &mb, &i__2, &nb, &c_b42, &rhs[k - 1],
- &mb, &b[js + (je + 1) * b_dim1], ldb, &c_b42,
- &c__[is + (je + 1) * c_dim1], ldc);
- i__2 = *n - je;
- dgemm_("N", "N", &mb, &i__2, &nb, &c_b42, &rhs[k - 1],
- &mb, &e[js + (je + 1) * e_dim1], lde, &c_b42,
- &f[is + (je + 1) * f_dim1], ldf);
- }
- }
- /* L110: */
- }
- /* L120: */
- }
- } else {
- /* Solve (I, J) - subsystem */
- /* A(I, I)' * R(I, J) + D(I, I)' * L(J, J) = C(I, J) */
- /* R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J) */
- /* for I = 1, 2, ..., P, J = Q, Q - 1, ..., 1 */
- *scale = 1.;
- scaloc = 1.;
- i__1 = p;
- for (i__ = 1; i__ <= i__1; ++i__) {
- is = iwork[i__];
- isp1 = is + 1;
- ie = i__;
- mb = ie - is + 1;
- i__2 = p + 2;
- for (j = q; j >= i__2; --j) {
- js = iwork[j];
- jsp1 = js + 1;
- je = iwork[j + 1] - 1;
- nb = je - js + 1;
- zdim = mb * nb << 1;
- if (mb == 1 && nb == 1) {
- /* Build a 2-by-2 system Z' * x = RHS */
- z__[0] = a[is + is * a_dim1];
- z__[1] = -b[js + js * b_dim1];
- z__[8] = d__[is + is * d_dim1];
- z__[9] = -e[js + js * e_dim1];
- /* Set up right hand side(s) */
- rhs[0] = c__[is + js * c_dim1];
- rhs[1] = f[is + js * f_dim1];
- /* Solve Z' * x = RHS */
- dgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);
- if (ierr > 0) {
- *info = ierr;
- }
- dgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);
- if (scaloc != 1.) {
- i__3 = *n;
- for (k = 1; k <= i__3; ++k) {
- dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
- dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L130: */
- }
- *scale *= scaloc;
- }
- /* Unpack solution vector(s) */
- c__[is + js * c_dim1] = rhs[0];
- f[is + js * f_dim1] = rhs[1];
- /* Substitute R(I, J) and L(I, J) into remaining */
- /* equation. */
- if (j > p + 2) {
- alpha = rhs[0];
- i__3 = js - 1;
- daxpy_(&i__3, &alpha, &b[js * b_dim1 + 1], &c__1, &f[
- is + f_dim1], ldf);
- alpha = rhs[1];
- i__3 = js - 1;
- daxpy_(&i__3, &alpha, &e[js * e_dim1 + 1], &c__1, &f[
- is + f_dim1], ldf);
- }
- if (i__ < p) {
- alpha = -rhs[0];
- i__3 = *m - ie;
- daxpy_(&i__3, &alpha, &a[is + (ie + 1) * a_dim1], lda,
- &c__[ie + 1 + js * c_dim1], &c__1);
- alpha = -rhs[1];
- i__3 = *m - ie;
- daxpy_(&i__3, &alpha, &d__[is + (ie + 1) * d_dim1],
- ldd, &c__[ie + 1 + js * c_dim1], &c__1);
- }
- } else if (mb == 1 && nb == 2) {
- /* Build a 4-by-4 system Z' * x = RHS */
- z__[0] = a[is + is * a_dim1];
- z__[1] = 0.;
- z__[2] = -b[js + js * b_dim1];
- z__[3] = -b[jsp1 + js * b_dim1];
- z__[8] = 0.;
- z__[9] = a[is + is * a_dim1];
- z__[10] = -b[js + jsp1 * b_dim1];
- z__[11] = -b[jsp1 + jsp1 * b_dim1];
- z__[16] = d__[is + is * d_dim1];
- z__[17] = 0.;
- z__[18] = -e[js + js * e_dim1];
- z__[19] = 0.;
- z__[24] = 0.;
- z__[25] = d__[is + is * d_dim1];
- z__[26] = -e[js + jsp1 * e_dim1];
- z__[27] = -e[jsp1 + jsp1 * e_dim1];
- /* Set up right hand side(s) */
- rhs[0] = c__[is + js * c_dim1];
- rhs[1] = c__[is + jsp1 * c_dim1];
- rhs[2] = f[is + js * f_dim1];
- rhs[3] = f[is + jsp1 * f_dim1];
- /* Solve Z' * x = RHS */
- dgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);
- if (ierr > 0) {
- *info = ierr;
- }
- dgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);
- if (scaloc != 1.) {
- i__3 = *n;
- for (k = 1; k <= i__3; ++k) {
- dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
- dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L140: */
- }
- *scale *= scaloc;
- }
- /* Unpack solution vector(s) */
- c__[is + js * c_dim1] = rhs[0];
- c__[is + jsp1 * c_dim1] = rhs[1];
- f[is + js * f_dim1] = rhs[2];
- f[is + jsp1 * f_dim1] = rhs[3];
- /* Substitute R(I, J) and L(I, J) into remaining */
- /* equation. */
- if (j > p + 2) {
- i__3 = js - 1;
- daxpy_(&i__3, rhs, &b[js * b_dim1 + 1], &c__1, &f[is
- + f_dim1], ldf);
- i__3 = js - 1;
- daxpy_(&i__3, &rhs[1], &b[jsp1 * b_dim1 + 1], &c__1, &
- f[is + f_dim1], ldf);
- i__3 = js - 1;
- daxpy_(&i__3, &rhs[2], &e[js * e_dim1 + 1], &c__1, &f[
- is + f_dim1], ldf);
- i__3 = js - 1;
- daxpy_(&i__3, &rhs[3], &e[jsp1 * e_dim1 + 1], &c__1, &
- f[is + f_dim1], ldf);
- }
- if (i__ < p) {
- i__3 = *m - ie;
- dger_(&i__3, &nb, &c_b27, &a[is + (ie + 1) * a_dim1],
- lda, rhs, &c__1, &c__[ie + 1 + js * c_dim1],
- ldc);
- i__3 = *m - ie;
- dger_(&i__3, &nb, &c_b27, &d__[is + (ie + 1) * d_dim1]
- , ldd, &rhs[2], &c__1, &c__[ie + 1 + js *
- c_dim1], ldc);
- }
- } else if (mb == 2 && nb == 1) {
- /* Build a 4-by-4 system Z' * x = RHS */
- z__[0] = a[is + is * a_dim1];
- z__[1] = a[is + isp1 * a_dim1];
- z__[2] = -b[js + js * b_dim1];
- z__[3] = 0.;
- z__[8] = a[isp1 + is * a_dim1];
- z__[9] = a[isp1 + isp1 * a_dim1];
- z__[10] = 0.;
- z__[11] = -b[js + js * b_dim1];
- z__[16] = d__[is + is * d_dim1];
- z__[17] = d__[is + isp1 * d_dim1];
- z__[18] = -e[js + js * e_dim1];
- z__[19] = 0.;
- z__[24] = 0.;
- z__[25] = d__[isp1 + isp1 * d_dim1];
- z__[26] = 0.;
- z__[27] = -e[js + js * e_dim1];
- /* Set up right hand side(s) */
- rhs[0] = c__[is + js * c_dim1];
- rhs[1] = c__[isp1 + js * c_dim1];
- rhs[2] = f[is + js * f_dim1];
- rhs[3] = f[isp1 + js * f_dim1];
- /* Solve Z' * x = RHS */
- dgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);
- if (ierr > 0) {
- *info = ierr;
- }
- dgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);
- if (scaloc != 1.) {
- i__3 = *n;
- for (k = 1; k <= i__3; ++k) {
- dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
- dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L150: */
- }
- *scale *= scaloc;
- }
- /* Unpack solution vector(s) */
- c__[is + js * c_dim1] = rhs[0];
- c__[isp1 + js * c_dim1] = rhs[1];
- f[is + js * f_dim1] = rhs[2];
- f[isp1 + js * f_dim1] = rhs[3];
- /* Substitute R(I, J) and L(I, J) into remaining */
- /* equation. */
- if (j > p + 2) {
- i__3 = js - 1;
- dger_(&mb, &i__3, &c_b42, rhs, &c__1, &b[js * b_dim1
- + 1], &c__1, &f[is + f_dim1], ldf);
- i__3 = js - 1;
- dger_(&mb, &i__3, &c_b42, &rhs[2], &c__1, &e[js *
- e_dim1 + 1], &c__1, &f[is + f_dim1], ldf);
- }
- if (i__ < p) {
- i__3 = *m - ie;
- dgemv_("T", &mb, &i__3, &c_b27, &a[is + (ie + 1) *
- a_dim1], lda, rhs, &c__1, &c_b42, &c__[ie + 1
- + js * c_dim1], &c__1);
- i__3 = *m - ie;
- dgemv_("T", &mb, &i__3, &c_b27, &d__[is + (ie + 1) *
- d_dim1], ldd, &rhs[2], &c__1, &c_b42, &c__[ie
- + 1 + js * c_dim1], &c__1);
- }
- } else if (mb == 2 && nb == 2) {
- /* Build an 8-by-8 system Z' * x = RHS */
- dlaset_("F", &c__8, &c__8, &c_b56, &c_b56, z__, &c__8);
- z__[0] = a[is + is * a_dim1];
- z__[1] = a[is + isp1 * a_dim1];
- z__[4] = -b[js + js * b_dim1];
- z__[6] = -b[jsp1 + js * b_dim1];
- z__[8] = a[isp1 + is * a_dim1];
- z__[9] = a[isp1 + isp1 * a_dim1];
- z__[13] = -b[js + js * b_dim1];
- z__[15] = -b[jsp1 + js * b_dim1];
- z__[18] = a[is + is * a_dim1];
- z__[19] = a[is + isp1 * a_dim1];
- z__[20] = -b[js + jsp1 * b_dim1];
- z__[22] = -b[jsp1 + jsp1 * b_dim1];
- z__[26] = a[isp1 + is * a_dim1];
- z__[27] = a[isp1 + isp1 * a_dim1];
- z__[29] = -b[js + jsp1 * b_dim1];
- z__[31] = -b[jsp1 + jsp1 * b_dim1];
- z__[32] = d__[is + is * d_dim1];
- z__[33] = d__[is + isp1 * d_dim1];
- z__[36] = -e[js + js * e_dim1];
- z__[41] = d__[isp1 + isp1 * d_dim1];
- z__[45] = -e[js + js * e_dim1];
- z__[50] = d__[is + is * d_dim1];
- z__[51] = d__[is + isp1 * d_dim1];
- z__[52] = -e[js + jsp1 * e_dim1];
- z__[54] = -e[jsp1 + jsp1 * e_dim1];
- z__[59] = d__[isp1 + isp1 * d_dim1];
- z__[61] = -e[js + jsp1 * e_dim1];
- z__[63] = -e[jsp1 + jsp1 * e_dim1];
- /* Set up right hand side(s) */
- k = 1;
- ii = mb * nb + 1;
- i__3 = nb - 1;
- for (jj = 0; jj <= i__3; ++jj) {
- dcopy_(&mb, &c__[is + (js + jj) * c_dim1], &c__1, &
- rhs[k - 1], &c__1);
- dcopy_(&mb, &f[is + (js + jj) * f_dim1], &c__1, &rhs[
- ii - 1], &c__1);
- k += mb;
- ii += mb;
- /* L160: */
- }
- /* Solve Z' * x = RHS */
- dgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);
- if (ierr > 0) {
- *info = ierr;
- }
- dgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);
- if (scaloc != 1.) {
- i__3 = *n;
- for (k = 1; k <= i__3; ++k) {
- dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
- dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L170: */
- }
- *scale *= scaloc;
- }
- /* Unpack solution vector(s) */
- k = 1;
- ii = mb * nb + 1;
- i__3 = nb - 1;
- for (jj = 0; jj <= i__3; ++jj) {
- dcopy_(&mb, &rhs[k - 1], &c__1, &c__[is + (js + jj) *
- c_dim1], &c__1);
- dcopy_(&mb, &rhs[ii - 1], &c__1, &f[is + (js + jj) *
- f_dim1], &c__1);
- k += mb;
- ii += mb;
- /* L180: */
- }
- /* Substitute R(I, J) and L(I, J) into remaining */
- /* equation. */
- if (j > p + 2) {
- i__3 = js - 1;
- dgemm_("N", "T", &mb, &i__3, &nb, &c_b42, &c__[is +
- js * c_dim1], ldc, &b[js * b_dim1 + 1], ldb, &
- c_b42, &f[is + f_dim1], ldf);
- i__3 = js - 1;
- dgemm_("N", "T", &mb, &i__3, &nb, &c_b42, &f[is + js *
- f_dim1], ldf, &e[js * e_dim1 + 1], lde, &
- c_b42, &f[is + f_dim1], ldf);
- }
- if (i__ < p) {
- i__3 = *m - ie;
- dgemm_("T", "N", &i__3, &nb, &mb, &c_b27, &a[is + (ie
- + 1) * a_dim1], lda, &c__[is + js * c_dim1],
- ldc, &c_b42, &c__[ie + 1 + js * c_dim1], ldc);
- i__3 = *m - ie;
- dgemm_("T", "N", &i__3, &nb, &mb, &c_b27, &d__[is + (
- ie + 1) * d_dim1], ldd, &f[is + js * f_dim1],
- ldf, &c_b42, &c__[ie + 1 + js * c_dim1], ldc);
- }
- }
- /* L190: */
- }
- /* L200: */
- }
- }
- return 0;
- /* End of DTGSY2 */
- } /* dtgsy2_ */
|