123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346 |
- /* dlaqps.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static doublereal c_b8 = -1.;
- static doublereal c_b9 = 1.;
- static doublereal c_b16 = 0.;
- /* Subroutine */ int dlaqps_(integer *m, integer *n, integer *offset, integer
- *nb, integer *kb, doublereal *a, integer *lda, integer *jpvt,
- doublereal *tau, doublereal *vn1, doublereal *vn2, doublereal *auxv,
- doublereal *f, integer *ldf)
- {
- /* System generated locals */
- integer a_dim1, a_offset, f_dim1, f_offset, i__1, i__2;
- doublereal d__1, d__2;
- /* Builtin functions */
- double sqrt(doublereal);
- integer i_dnnt(doublereal *);
- /* Local variables */
- integer j, k, rk;
- doublereal akk;
- integer pvt;
- doublereal temp;
- extern doublereal dnrm2_(integer *, doublereal *, integer *);
- doublereal temp2, tol3z;
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *),
- dgemv_(char *, integer *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *);
- integer itemp;
- extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- extern doublereal dlamch_(char *);
- extern integer idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int dlarfp_(integer *, doublereal *, doublereal *,
- integer *, doublereal *);
- integer lsticc, lastrk;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLAQPS computes a step of QR factorization with column pivoting */
- /* of a real M-by-N matrix A by using Blas-3. It tries to factorize */
- /* NB columns from A starting from the row OFFSET+1, and updates all */
- /* of the matrix with Blas-3 xGEMM. */
- /* In some cases, due to catastrophic cancellations, it cannot */
- /* factorize NB columns. Hence, the actual number of factorized */
- /* columns is returned in KB. */
- /* Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. */
- /* Arguments */
- /* ========= */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix A. N >= 0 */
- /* OFFSET (input) INTEGER */
- /* The number of rows of A that have been factorized in */
- /* previous steps. */
- /* NB (input) INTEGER */
- /* The number of columns to factorize. */
- /* KB (output) INTEGER */
- /* The number of columns actually factorized. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the M-by-N matrix A. */
- /* On exit, block A(OFFSET+1:M,1:KB) is the triangular */
- /* factor obtained and block A(1:OFFSET,1:N) has been */
- /* accordingly pivoted, but no factorized. */
- /* The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has */
- /* been updated. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,M). */
- /* JPVT (input/output) INTEGER array, dimension (N) */
- /* JPVT(I) = K <==> Column K of the full matrix A has been */
- /* permuted into position I in AP. */
- /* TAU (output) DOUBLE PRECISION array, dimension (KB) */
- /* The scalar factors of the elementary reflectors. */
- /* VN1 (input/output) DOUBLE PRECISION array, dimension (N) */
- /* The vector with the partial column norms. */
- /* VN2 (input/output) DOUBLE PRECISION array, dimension (N) */
- /* The vector with the exact column norms. */
- /* AUXV (input/output) DOUBLE PRECISION array, dimension (NB) */
- /* Auxiliar vector. */
- /* F (input/output) DOUBLE PRECISION array, dimension (LDF,NB) */
- /* Matrix F' = L*Y'*A. */
- /* LDF (input) INTEGER */
- /* The leading dimension of the array F. LDF >= max(1,N). */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */
- /* X. Sun, Computer Science Dept., Duke University, USA */
- /* Partial column norm updating strategy modified by */
- /* Z. Drmac and Z. Bujanovic, Dept. of Mathematics, */
- /* University of Zagreb, Croatia. */
- /* June 2006. */
- /* For more details see LAPACK Working Note 176. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --jpvt;
- --tau;
- --vn1;
- --vn2;
- --auxv;
- f_dim1 = *ldf;
- f_offset = 1 + f_dim1;
- f -= f_offset;
- /* Function Body */
- /* Computing MIN */
- i__1 = *m, i__2 = *n + *offset;
- lastrk = min(i__1,i__2);
- lsticc = 0;
- k = 0;
- tol3z = sqrt(dlamch_("Epsilon"));
- /* Beginning of while loop. */
- L10:
- if (k < *nb && lsticc == 0) {
- ++k;
- rk = *offset + k;
- /* Determine ith pivot column and swap if necessary */
- i__1 = *n - k + 1;
- pvt = k - 1 + idamax_(&i__1, &vn1[k], &c__1);
- if (pvt != k) {
- dswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1);
- i__1 = k - 1;
- dswap_(&i__1, &f[pvt + f_dim1], ldf, &f[k + f_dim1], ldf);
- itemp = jpvt[pvt];
- jpvt[pvt] = jpvt[k];
- jpvt[k] = itemp;
- vn1[pvt] = vn1[k];
- vn2[pvt] = vn2[k];
- }
- /* Apply previous Householder reflectors to column K: */
- /* A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'. */
- if (k > 1) {
- i__1 = *m - rk + 1;
- i__2 = k - 1;
- dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[rk + a_dim1], lda,
- &f[k + f_dim1], ldf, &c_b9, &a[rk + k * a_dim1], &c__1);
- }
- /* Generate elementary reflector H(k). */
- if (rk < *m) {
- i__1 = *m - rk + 1;
- dlarfp_(&i__1, &a[rk + k * a_dim1], &a[rk + 1 + k * a_dim1], &
- c__1, &tau[k]);
- } else {
- dlarfp_(&c__1, &a[rk + k * a_dim1], &a[rk + k * a_dim1], &c__1, &
- tau[k]);
- }
- akk = a[rk + k * a_dim1];
- a[rk + k * a_dim1] = 1.;
- /* Compute Kth column of F: */
- /* Compute F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K). */
- if (k < *n) {
- i__1 = *m - rk + 1;
- i__2 = *n - k;
- dgemv_("Transpose", &i__1, &i__2, &tau[k], &a[rk + (k + 1) *
- a_dim1], lda, &a[rk + k * a_dim1], &c__1, &c_b16, &f[k +
- 1 + k * f_dim1], &c__1);
- }
- /* Padding F(1:K,K) with zeros. */
- i__1 = k;
- for (j = 1; j <= i__1; ++j) {
- f[j + k * f_dim1] = 0.;
- /* L20: */
- }
- /* Incremental updating of F: */
- /* F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)' */
- /* *A(RK:M,K). */
- if (k > 1) {
- i__1 = *m - rk + 1;
- i__2 = k - 1;
- d__1 = -tau[k];
- dgemv_("Transpose", &i__1, &i__2, &d__1, &a[rk + a_dim1], lda, &a[
- rk + k * a_dim1], &c__1, &c_b16, &auxv[1], &c__1);
- i__1 = k - 1;
- dgemv_("No transpose", n, &i__1, &c_b9, &f[f_dim1 + 1], ldf, &
- auxv[1], &c__1, &c_b9, &f[k * f_dim1 + 1], &c__1);
- }
- /* Update the current row of A: */
- /* A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'. */
- if (k < *n) {
- i__1 = *n - k;
- dgemv_("No transpose", &i__1, &k, &c_b8, &f[k + 1 + f_dim1], ldf,
- &a[rk + a_dim1], lda, &c_b9, &a[rk + (k + 1) * a_dim1],
- lda);
- }
- /* Update partial column norms. */
- if (rk < lastrk) {
- i__1 = *n;
- for (j = k + 1; j <= i__1; ++j) {
- if (vn1[j] != 0.) {
- /* NOTE: The following 4 lines follow from the analysis in */
- /* Lapack Working Note 176. */
- temp = (d__1 = a[rk + j * a_dim1], abs(d__1)) / vn1[j];
- /* Computing MAX */
- d__1 = 0., d__2 = (temp + 1.) * (1. - temp);
- temp = max(d__1,d__2);
- /* Computing 2nd power */
- d__1 = vn1[j] / vn2[j];
- temp2 = temp * (d__1 * d__1);
- if (temp2 <= tol3z) {
- vn2[j] = (doublereal) lsticc;
- lsticc = j;
- } else {
- vn1[j] *= sqrt(temp);
- }
- }
- /* L30: */
- }
- }
- a[rk + k * a_dim1] = akk;
- /* End of while loop. */
- goto L10;
- }
- *kb = k;
- rk = *offset + *kb;
- /* Apply the block reflector to the rest of the matrix: */
- /* A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - */
- /* A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'. */
- /* Computing MIN */
- i__1 = *n, i__2 = *m - *offset;
- if (*kb < min(i__1,i__2)) {
- i__1 = *m - rk;
- i__2 = *n - *kb;
- dgemm_("No transpose", "Transpose", &i__1, &i__2, kb, &c_b8, &a[rk +
- 1 + a_dim1], lda, &f[*kb + 1 + f_dim1], ldf, &c_b9, &a[rk + 1
- + (*kb + 1) * a_dim1], lda);
- }
- /* Recomputation of difficult columns. */
- L40:
- if (lsticc > 0) {
- itemp = i_dnnt(&vn2[lsticc]);
- i__1 = *m - rk;
- vn1[lsticc] = dnrm2_(&i__1, &a[rk + 1 + lsticc * a_dim1], &c__1);
- /* NOTE: The computation of VN1( LSTICC ) relies on the fact that */
- /* SNRM2 does not fail on vectors with norm below the value of */
- /* SQRT(DLAMCH('S')) */
- vn2[lsticc] = vn1[lsticc];
- lsticc = itemp;
- goto L40;
- }
- return 0;
- /* End of DLAQPS */
- } /* dlaqps_ */
|