123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250 |
- /* dlaed1.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- /* Subroutine */ int dlaed1_(integer *n, doublereal *d__, doublereal *q,
- integer *ldq, integer *indxq, doublereal *rho, integer *cutpnt,
- doublereal *work, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer q_dim1, q_offset, i__1, i__2;
- /* Local variables */
- integer i__, k, n1, n2, is, iw, iz, iq2, zpp1, indx, indxc;
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- integer indxp;
- extern /* Subroutine */ int dlaed2_(integer *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- integer *, integer *, integer *, integer *), dlaed3_(integer *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, doublereal *, doublereal *, integer *, integer *,
- doublereal *, doublereal *, integer *);
- integer idlmda;
- extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
- integer *, integer *, integer *), xerbla_(char *, integer *);
- integer coltyp;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLAED1 computes the updated eigensystem of a diagonal */
- /* matrix after modification by a rank-one symmetric matrix. This */
- /* routine is used only for the eigenproblem which requires all */
- /* eigenvalues and eigenvectors of a tridiagonal matrix. DLAED7 handles */
- /* the case in which eigenvalues only or eigenvalues and eigenvectors */
- /* of a full symmetric matrix (which was reduced to tridiagonal form) */
- /* are desired. */
- /* T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) */
- /* where Z = Q'u, u is a vector of length N with ones in the */
- /* CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */
- /* The eigenvectors of the original matrix are stored in Q, and the */
- /* eigenvalues are in D. The algorithm consists of three stages: */
- /* The first stage consists of deflating the size of the problem */
- /* when there are multiple eigenvalues or if there is a zero in */
- /* the Z vector. For each such occurence the dimension of the */
- /* secular equation problem is reduced by one. This stage is */
- /* performed by the routine DLAED2. */
- /* The second stage consists of calculating the updated */
- /* eigenvalues. This is done by finding the roots of the secular */
- /* equation via the routine DLAED4 (as called by DLAED3). */
- /* This routine also calculates the eigenvectors of the current */
- /* problem. */
- /* The final stage consists of computing the updated eigenvectors */
- /* directly using the updated eigenvalues. The eigenvectors for */
- /* the current problem are multiplied with the eigenvectors from */
- /* the overall problem. */
- /* Arguments */
- /* ========= */
- /* N (input) INTEGER */
- /* The dimension of the symmetric tridiagonal matrix. N >= 0. */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the eigenvalues of the rank-1-perturbed matrix. */
- /* On exit, the eigenvalues of the repaired matrix. */
- /* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */
- /* On entry, the eigenvectors of the rank-1-perturbed matrix. */
- /* On exit, the eigenvectors of the repaired tridiagonal matrix. */
- /* LDQ (input) INTEGER */
- /* The leading dimension of the array Q. LDQ >= max(1,N). */
- /* INDXQ (input/output) INTEGER array, dimension (N) */
- /* On entry, the permutation which separately sorts the two */
- /* subproblems in D into ascending order. */
- /* On exit, the permutation which will reintegrate the */
- /* subproblems back into sorted order, */
- /* i.e. D( INDXQ( I = 1, N ) ) will be in ascending order. */
- /* RHO (input) DOUBLE PRECISION */
- /* The subdiagonal entry used to create the rank-1 modification. */
- /* CUTPNT (input) INTEGER */
- /* The location of the last eigenvalue in the leading sub-matrix. */
- /* min(1,N) <= CUTPNT <= N/2. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (4*N + N**2) */
- /* IWORK (workspace) INTEGER array, dimension (4*N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > 0: if INFO = 1, an eigenvalue did not converge */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Jeff Rutter, Computer Science Division, University of California */
- /* at Berkeley, USA */
- /* Modified by Francoise Tisseur, University of Tennessee. */
- /* ===================================================================== */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1;
- q -= q_offset;
- --indxq;
- --work;
- --iwork;
- /* Function Body */
- *info = 0;
- if (*n < 0) {
- *info = -1;
- } else if (*ldq < max(1,*n)) {
- *info = -4;
- } else /* if(complicated condition) */ {
- /* Computing MIN */
- i__1 = 1, i__2 = *n / 2;
- if (min(i__1,i__2) > *cutpnt || *n / 2 < *cutpnt) {
- *info = -7;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLAED1", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* The following values are integer pointers which indicate */
- /* the portion of the workspace */
- /* used by a particular array in DLAED2 and DLAED3. */
- iz = 1;
- idlmda = iz + *n;
- iw = idlmda + *n;
- iq2 = iw + *n;
- indx = 1;
- indxc = indx + *n;
- coltyp = indxc + *n;
- indxp = coltyp + *n;
- /* Form the z-vector which consists of the last row of Q_1 and the */
- /* first row of Q_2. */
- dcopy_(cutpnt, &q[*cutpnt + q_dim1], ldq, &work[iz], &c__1);
- zpp1 = *cutpnt + 1;
- i__1 = *n - *cutpnt;
- dcopy_(&i__1, &q[zpp1 + zpp1 * q_dim1], ldq, &work[iz + *cutpnt], &c__1);
- /* Deflate eigenvalues. */
- dlaed2_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, &indxq[1], rho, &work[
- iz], &work[idlmda], &work[iw], &work[iq2], &iwork[indx], &iwork[
- indxc], &iwork[indxp], &iwork[coltyp], info);
- if (*info != 0) {
- goto L20;
- }
- /* Solve Secular Equation. */
- if (k != 0) {
- is = (iwork[coltyp] + iwork[coltyp + 1]) * *cutpnt + (iwork[coltyp +
- 1] + iwork[coltyp + 2]) * (*n - *cutpnt) + iq2;
- dlaed3_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, rho, &work[idlmda],
- &work[iq2], &iwork[indxc], &iwork[coltyp], &work[iw], &work[
- is], info);
- if (*info != 0) {
- goto L20;
- }
- /* Prepare the INDXQ sorting permutation. */
- n1 = k;
- n2 = *n - k;
- dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- indxq[i__] = i__;
- /* L10: */
- }
- }
- L20:
- return 0;
- /* End of DLAED1 */
- } /* dlaed1_ */
|