123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346 |
- /* dla_gbrcond.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- doublereal dla_gbrcond__(char *trans, integer *n, integer *kl, integer *ku,
- doublereal *ab, integer *ldab, doublereal *afb, integer *ldafb,
- integer *ipiv, integer *cmode, doublereal *c__, integer *info,
- doublereal *work, integer *iwork, ftnlen trans_len)
- {
- /* System generated locals */
- integer ab_dim1, ab_offset, afb_dim1, afb_offset, i__1, i__2, i__3, i__4;
- doublereal ret_val, d__1;
- /* Local variables */
- integer i__, j, kd, ke;
- doublereal tmp;
- integer kase;
- extern logical lsame_(char *, char *);
- integer isave[3];
- extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *), xerbla_(char *,
- integer *), dgbtrs_(char *, integer *, integer *, integer
- *, integer *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *);
- doublereal ainvnm;
- logical notrans;
- /* -- LAPACK routine (version 3.2.1) -- */
- /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
- /* -- Jason Riedy of Univ. of California Berkeley. -- */
- /* -- April 2009 -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley and NAG Ltd. -- */
- /* .. */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLA_GERCOND Estimates the Skeel condition number of op(A) * op2(C) */
- /* where op2 is determined by CMODE as follows */
- /* CMODE = 1 op2(C) = C */
- /* CMODE = 0 op2(C) = I */
- /* CMODE = -1 op2(C) = inv(C) */
- /* The Skeel condition number cond(A) = norminf( |inv(A)||A| ) */
- /* is computed by computing scaling factors R such that */
- /* diag(R)*A*op2(C) is row equilibrated and computing the standard */
- /* infinity-norm condition number. */
- /* Arguments */
- /* ========= */
- /* TRANS (input) CHARACTER*1 */
- /* Specifies the form of the system of equations: */
- /* = 'N': A * X = B (No transpose) */
- /* = 'T': A**T * X = B (Transpose) */
- /* = 'C': A**H * X = B (Conjugate Transpose = Transpose) */
- /* N (input) INTEGER */
- /* The number of linear equations, i.e., the order of the */
- /* matrix A. N >= 0. */
- /* KL (input) INTEGER */
- /* The number of subdiagonals within the band of A. KL >= 0. */
- /* KU (input) INTEGER */
- /* The number of superdiagonals within the band of A. KU >= 0. */
- /* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */
- /* On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
- /* The j-th column of A is stored in the j-th column of the */
- /* array AB as follows: */
- /* AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) */
- /* LDAB (input) INTEGER */
- /* The leading dimension of the array AB. LDAB >= KL+KU+1. */
- /* AFB (input) DOUBLE PRECISION array, dimension (LDAFB,N) */
- /* Details of the LU factorization of the band matrix A, as */
- /* computed by DGBTRF. U is stored as an upper triangular */
- /* band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */
- /* and the multipliers used during the factorization are stored */
- /* in rows KL+KU+2 to 2*KL+KU+1. */
- /* LDAFB (input) INTEGER */
- /* The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. */
- /* IPIV (input) INTEGER array, dimension (N) */
- /* The pivot indices from the factorization A = P*L*U */
- /* as computed by DGBTRF; row i of the matrix was interchanged */
- /* with row IPIV(i). */
- /* CMODE (input) INTEGER */
- /* Determines op2(C) in the formula op(A) * op2(C) as follows: */
- /* CMODE = 1 op2(C) = C */
- /* CMODE = 0 op2(C) = I */
- /* CMODE = -1 op2(C) = inv(C) */
- /* C (input) DOUBLE PRECISION array, dimension (N) */
- /* The vector C in the formula op(A) * op2(C). */
- /* INFO (output) INTEGER */
- /* = 0: Successful exit. */
- /* i > 0: The ith argument is invalid. */
- /* WORK (input) DOUBLE PRECISION array, dimension (5*N). */
- /* Workspace. */
- /* IWORK (input) INTEGER array, dimension (N). */
- /* Workspace. */
- /* ===================================================================== */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1;
- ab -= ab_offset;
- afb_dim1 = *ldafb;
- afb_offset = 1 + afb_dim1;
- afb -= afb_offset;
- --ipiv;
- --c__;
- --work;
- --iwork;
- /* Function Body */
- ret_val = 0.;
- *info = 0;
- notrans = lsame_(trans, "N");
- if (! notrans && ! lsame_(trans, "T") && ! lsame_(
- trans, "C")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*kl < 0 || *kl > *n - 1) {
- *info = -3;
- } else if (*ku < 0 || *ku > *n - 1) {
- *info = -4;
- } else if (*ldab < *kl + *ku + 1) {
- *info = -6;
- } else if (*ldafb < (*kl << 1) + *ku + 1) {
- *info = -8;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLA_GBRCOND", &i__1);
- return ret_val;
- }
- if (*n == 0) {
- ret_val = 1.;
- return ret_val;
- }
- /* Compute the equilibration matrix R such that */
- /* inv(R)*A*C has unit 1-norm. */
- kd = *ku + 1;
- ke = *kl + 1;
- if (notrans) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- tmp = 0.;
- if (*cmode == 1) {
- /* Computing MAX */
- i__2 = i__ - *kl;
- /* Computing MIN */
- i__4 = i__ + *ku;
- i__3 = min(i__4,*n);
- for (j = max(i__2,1); j <= i__3; ++j) {
- tmp += (d__1 = ab[kd + i__ - j + j * ab_dim1] * c__[j],
- abs(d__1));
- }
- } else if (*cmode == 0) {
- /* Computing MAX */
- i__3 = i__ - *kl;
- /* Computing MIN */
- i__4 = i__ + *ku;
- i__2 = min(i__4,*n);
- for (j = max(i__3,1); j <= i__2; ++j) {
- tmp += (d__1 = ab[kd + i__ - j + j * ab_dim1], abs(d__1));
- }
- } else {
- /* Computing MAX */
- i__2 = i__ - *kl;
- /* Computing MIN */
- i__4 = i__ + *ku;
- i__3 = min(i__4,*n);
- for (j = max(i__2,1); j <= i__3; ++j) {
- tmp += (d__1 = ab[kd + i__ - j + j * ab_dim1] / c__[j],
- abs(d__1));
- }
- }
- work[(*n << 1) + i__] = tmp;
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- tmp = 0.;
- if (*cmode == 1) {
- /* Computing MAX */
- i__3 = i__ - *kl;
- /* Computing MIN */
- i__4 = i__ + *ku;
- i__2 = min(i__4,*n);
- for (j = max(i__3,1); j <= i__2; ++j) {
- tmp += (d__1 = ab[ke - i__ + j + i__ * ab_dim1] * c__[j],
- abs(d__1));
- }
- } else if (*cmode == 0) {
- /* Computing MAX */
- i__2 = i__ - *kl;
- /* Computing MIN */
- i__4 = i__ + *ku;
- i__3 = min(i__4,*n);
- for (j = max(i__2,1); j <= i__3; ++j) {
- tmp += (d__1 = ab[ke - i__ + j + i__ * ab_dim1], abs(d__1)
- );
- }
- } else {
- /* Computing MAX */
- i__3 = i__ - *kl;
- /* Computing MIN */
- i__4 = i__ + *ku;
- i__2 = min(i__4,*n);
- for (j = max(i__3,1); j <= i__2; ++j) {
- tmp += (d__1 = ab[ke - i__ + j + i__ * ab_dim1] / c__[j],
- abs(d__1));
- }
- }
- work[(*n << 1) + i__] = tmp;
- }
- }
- /* Estimate the norm of inv(op(A)). */
- ainvnm = 0.;
- kase = 0;
- L10:
- dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave);
- if (kase != 0) {
- if (kase == 2) {
- /* Multiply by R. */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] *= work[(*n << 1) + i__];
- }
- if (notrans) {
- dgbtrs_("No transpose", n, kl, ku, &c__1, &afb[afb_offset],
- ldafb, &ipiv[1], &work[1], n, info);
- } else {
- dgbtrs_("Transpose", n, kl, ku, &c__1, &afb[afb_offset],
- ldafb, &ipiv[1], &work[1], n, info);
- }
- /* Multiply by inv(C). */
- if (*cmode == 1) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] /= c__[i__];
- }
- } else if (*cmode == -1) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] *= c__[i__];
- }
- }
- } else {
- /* Multiply by inv(C'). */
- if (*cmode == 1) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] /= c__[i__];
- }
- } else if (*cmode == -1) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] *= c__[i__];
- }
- }
- if (notrans) {
- dgbtrs_("Transpose", n, kl, ku, &c__1, &afb[afb_offset],
- ldafb, &ipiv[1], &work[1], n, info);
- } else {
- dgbtrs_("No transpose", n, kl, ku, &c__1, &afb[afb_offset],
- ldafb, &ipiv[1], &work[1], n, info);
- }
- /* Multiply by R. */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] *= work[(*n << 1) + i__];
- }
- }
- goto L10;
- }
- /* Compute the estimate of the reciprocal condition number. */
- if (ainvnm != 0.) {
- ret_val = 1. / ainvnm;
- }
- return ret_val;
- } /* dla_gbrcond__ */
|