123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263 |
- /* dgbtf2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static doublereal c_b9 = -1.;
- /* Subroutine */ int dgbtf2_(integer *m, integer *n, integer *kl, integer *ku,
- doublereal *ab, integer *ldab, integer *ipiv, integer *info)
- {
- /* System generated locals */
- integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
- doublereal d__1;
- /* Local variables */
- integer i__, j, km, jp, ju, kv;
- extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *), dscal_(integer *, doublereal *, doublereal *, integer
- *), dswap_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- extern integer idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGBTF2 computes an LU factorization of a real m-by-n band matrix A */
- /* using partial pivoting with row interchanges. */
- /* This is the unblocked version of the algorithm, calling Level 2 BLAS. */
- /* Arguments */
- /* ========= */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix A. N >= 0. */
- /* KL (input) INTEGER */
- /* The number of subdiagonals within the band of A. KL >= 0. */
- /* KU (input) INTEGER */
- /* The number of superdiagonals within the band of A. KU >= 0. */
- /* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
- /* On entry, the matrix A in band storage, in rows KL+1 to */
- /* 2*KL+KU+1; rows 1 to KL of the array need not be set. */
- /* The j-th column of A is stored in the j-th column of the */
- /* array AB as follows: */
- /* AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl) */
- /* On exit, details of the factorization: U is stored as an */
- /* upper triangular band matrix with KL+KU superdiagonals in */
- /* rows 1 to KL+KU+1, and the multipliers used during the */
- /* factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */
- /* See below for further details. */
- /* LDAB (input) INTEGER */
- /* The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */
- /* IPIV (output) INTEGER array, dimension (min(M,N)) */
- /* The pivot indices; for 1 <= i <= min(M,N), row i of the */
- /* matrix was interchanged with row IPIV(i). */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = +i, U(i,i) is exactly zero. The factorization */
- /* has been completed, but the factor U is exactly */
- /* singular, and division by zero will occur if it is used */
- /* to solve a system of equations. */
- /* Further Details */
- /* =============== */
- /* The band storage scheme is illustrated by the following example, when */
- /* M = N = 6, KL = 2, KU = 1: */
- /* On entry: On exit: */
- /* * * * + + + * * * u14 u25 u36 */
- /* * * + + + + * * u13 u24 u35 u46 */
- /* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */
- /* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */
- /* a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * */
- /* a31 a42 a53 a64 * * m31 m42 m53 m64 * * */
- /* Array elements marked * are not used by the routine; elements marked */
- /* + need not be set on entry, but are required by the routine to store */
- /* elements of U, because of fill-in resulting from the row */
- /* interchanges. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* KV is the number of superdiagonals in the factor U, allowing for */
- /* fill-in. */
- /* Parameter adjustments */
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1;
- ab -= ab_offset;
- --ipiv;
- /* Function Body */
- kv = *ku + *kl;
- /* Test the input parameters. */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*kl < 0) {
- *info = -3;
- } else if (*ku < 0) {
- *info = -4;
- } else if (*ldab < *kl + kv + 1) {
- *info = -6;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGBTF2", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*m == 0 || *n == 0) {
- return 0;
- }
- /* Gaussian elimination with partial pivoting */
- /* Set fill-in elements in columns KU+2 to KV to zero. */
- i__1 = min(kv,*n);
- for (j = *ku + 2; j <= i__1; ++j) {
- i__2 = *kl;
- for (i__ = kv - j + 2; i__ <= i__2; ++i__) {
- ab[i__ + j * ab_dim1] = 0.;
- /* L10: */
- }
- /* L20: */
- }
- /* JU is the index of the last column affected by the current stage */
- /* of the factorization. */
- ju = 1;
- i__1 = min(*m,*n);
- for (j = 1; j <= i__1; ++j) {
- /* Set fill-in elements in column J+KV to zero. */
- if (j + kv <= *n) {
- i__2 = *kl;
- for (i__ = 1; i__ <= i__2; ++i__) {
- ab[i__ + (j + kv) * ab_dim1] = 0.;
- /* L30: */
- }
- }
- /* Find pivot and test for singularity. KM is the number of */
- /* subdiagonal elements in the current column. */
- /* Computing MIN */
- i__2 = *kl, i__3 = *m - j;
- km = min(i__2,i__3);
- i__2 = km + 1;
- jp = idamax_(&i__2, &ab[kv + 1 + j * ab_dim1], &c__1);
- ipiv[j] = jp + j - 1;
- if (ab[kv + jp + j * ab_dim1] != 0.) {
- /* Computing MAX */
- /* Computing MIN */
- i__4 = j + *ku + jp - 1;
- i__2 = ju, i__3 = min(i__4,*n);
- ju = max(i__2,i__3);
- /* Apply interchange to columns J to JU. */
- if (jp != 1) {
- i__2 = ju - j + 1;
- i__3 = *ldab - 1;
- i__4 = *ldab - 1;
- dswap_(&i__2, &ab[kv + jp + j * ab_dim1], &i__3, &ab[kv + 1 +
- j * ab_dim1], &i__4);
- }
- if (km > 0) {
- /* Compute multipliers. */
- d__1 = 1. / ab[kv + 1 + j * ab_dim1];
- dscal_(&km, &d__1, &ab[kv + 2 + j * ab_dim1], &c__1);
- /* Update trailing submatrix within the band. */
- if (ju > j) {
- i__2 = ju - j;
- i__3 = *ldab - 1;
- i__4 = *ldab - 1;
- dger_(&km, &i__2, &c_b9, &ab[kv + 2 + j * ab_dim1], &c__1,
- &ab[kv + (j + 1) * ab_dim1], &i__3, &ab[kv + 1 +
- (j + 1) * ab_dim1], &i__4);
- }
- }
- } else {
- /* If pivot is zero, set INFO to the index of the pivot */
- /* unless a zero pivot has already been found. */
- if (*info == 0) {
- *info = j;
- }
- }
- /* L40: */
- }
- return 0;
- /* End of DGBTF2 */
- } /* dgbtf2_ */
|