sendrecv_parallel_tasks_bench.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2020 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
  4. *
  5. * StarPU is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * StarPU is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. /*
  17. * sendrecv benchmark from different tasks, executed simultaneously on serveral
  18. * workers.
  19. * Inspired a lot from NewMadeleine examples/piom/nm_piom_pingpong.c
  20. *
  21. * The goal is to measure impact of calls to starpu_mpi_* from different threads.
  22. *
  23. * Use STARPU_NCPU to set the number of parallel ping pongs
  24. */
  25. #include <starpu_mpi.h>
  26. #include "helper.h"
  27. #include "bench_helper.h"
  28. #include "abstract_sendrecv_bench.h"
  29. #define NB_WARMUP_PINGPONGS 10
  30. /* We reduce NX_MAX, since some NICs don't support exchanging simultaneously such amount of memory */
  31. #undef NX_MAX
  32. #define NX_MAX (64 * 1024 * 1024)
  33. void cpu_task(void* descr[], void* args)
  34. {
  35. int mpi_rank;
  36. uint64_t iterations = LOOPS_DEFAULT / 100;
  37. uint64_t s;
  38. starpu_data_handle_t handle_send, handle_recv;
  39. double t1, t2;
  40. int asked_worker;
  41. int current_worker = starpu_worker_get_id();
  42. starpu_codelet_unpack_args(args, &mpi_rank, &asked_worker, &s, &handle_send, &handle_recv);
  43. STARPU_ASSERT(asked_worker == current_worker);
  44. iterations = bench_nb_iterations(iterations, s);
  45. double* lats = malloc(sizeof(double) * iterations);
  46. for (uint64_t j = 0; j < NB_WARMUP_PINGPONGS; j++)
  47. {
  48. if (mpi_rank == 0)
  49. {
  50. starpu_mpi_send(handle_send, 1, 0, MPI_COMM_WORLD);
  51. starpu_mpi_recv(handle_recv, 1, 1, MPI_COMM_WORLD, NULL);
  52. }
  53. else
  54. {
  55. starpu_mpi_recv(handle_recv, 0, 0, MPI_COMM_WORLD, NULL);
  56. starpu_mpi_send(handle_send, 0, 1, MPI_COMM_WORLD);
  57. }
  58. }
  59. for (uint64_t j = 0; j < iterations; j++)
  60. {
  61. if (mpi_rank == 0)
  62. {
  63. t1 = starpu_timing_now();
  64. starpu_mpi_send(handle_send, 1, 0, MPI_COMM_WORLD);
  65. starpu_mpi_recv(handle_recv, 1, 1, MPI_COMM_WORLD, NULL);
  66. t2 = starpu_timing_now();
  67. lats[j] = (t2 - t1) / 2;
  68. }
  69. else
  70. {
  71. starpu_mpi_recv(handle_recv, 0, 0, MPI_COMM_WORLD, NULL);
  72. starpu_mpi_send(handle_send, 0, 1, MPI_COMM_WORLD);
  73. }
  74. }
  75. if (mpi_rank == 0)
  76. {
  77. qsort(lats, iterations, sizeof(double), &comp_double);
  78. const double min_lat = lats[0];
  79. const double max_lat = lats[iterations - 1];
  80. const double med_lat = lats[(iterations - 1) / 2];
  81. const double d1_lat = lats[(iterations - 1) / 10];
  82. const double d9_lat = lats[9 * (iterations - 1) / 10];
  83. double avg_lat = 0.0;
  84. for(uint64_t k = 0; k < iterations; k++)
  85. {
  86. avg_lat += lats[k];
  87. }
  88. avg_lat /= iterations;
  89. const double bw_million_byte = s / min_lat;
  90. const double bw_mbyte = bw_million_byte / 1.048576;
  91. printf("%2d\t\t%9lld\t%9.3lf\t%9.3f\t%9.3f\t%9.3lf\t%9.3lf\t%9.3lf\t%9.3lf\t%9.3lf\n",
  92. current_worker, (long long) s, min_lat, bw_million_byte, bw_mbyte, d1_lat, med_lat, avg_lat, d9_lat, max_lat);
  93. fflush(stdout);
  94. }
  95. }
  96. static struct starpu_codelet cl =
  97. {
  98. .cpu_funcs = { cpu_task },
  99. .cpu_funcs_name = { "cpu_task" },
  100. .nbuffers = 0
  101. };
  102. int main(int argc, char **argv)
  103. {
  104. int ret, rank, worldsize;
  105. int mpi_init;
  106. MPI_INIT_THREAD(&argc, &argv, MPI_THREAD_SERIALIZED, &mpi_init);
  107. ret = starpu_mpi_init_conf(&argc, &argv, mpi_init, MPI_COMM_WORLD, NULL);
  108. STARPU_CHECK_RETURN_VALUE(ret, "starpu_mpi_init_conf");
  109. starpu_mpi_comm_rank(MPI_COMM_WORLD, &rank);
  110. starpu_mpi_comm_size(MPI_COMM_WORLD, &worldsize);
  111. if (worldsize < 2)
  112. {
  113. if (rank == 0)
  114. FPRINTF(stderr, "We need 2 processes.\n");
  115. starpu_mpi_shutdown();
  116. if (!mpi_init)
  117. MPI_Finalize();
  118. return STARPU_TEST_SKIPPED;
  119. }
  120. if (rank == 0)
  121. {
  122. printf("Times in us\n");
  123. printf("# worker | size (Bytes)\t| latency \t| 10^6 B/s \t| MB/s \t| d1 \t|median \t| avg \t| d9 \t| max\n");
  124. }
  125. else if (rank >= 2)
  126. {
  127. starpu_mpi_shutdown();
  128. if (!mpi_init)
  129. MPI_Finalize();
  130. return 0;
  131. }
  132. unsigned cpu_count = starpu_cpu_worker_get_count();
  133. unsigned* mpi_tags = malloc(cpu_count * sizeof(unsigned));
  134. unsigned tag = 0;
  135. int* workers = malloc(cpu_count * sizeof(int));
  136. float** vectors_send = malloc(cpu_count * sizeof(float*));
  137. float** vectors_recv = malloc(cpu_count * sizeof(float*));
  138. starpu_data_handle_t* handles_send = malloc(cpu_count * sizeof(starpu_data_handle_t));
  139. starpu_data_handle_t* handles_recv = malloc(cpu_count * sizeof(starpu_data_handle_t));
  140. for (uint64_t s = NX_MIN; s <= NX_MAX; s = bench_next_size(s))
  141. {
  142. starpu_pause();
  143. for (int i = 0; i < cpu_count; i++)
  144. {
  145. workers[i] = i;
  146. vectors_send[i] = malloc(s);
  147. vectors_recv[i] = malloc(s);
  148. memset(vectors_send[i], 0, s);
  149. memset(vectors_recv[i], 0, s);
  150. starpu_vector_data_register(&handles_send[i], STARPU_MAIN_RAM, (uintptr_t) vectors_send[i], s, 1);
  151. starpu_vector_data_register(&handles_recv[i], STARPU_MAIN_RAM, (uintptr_t) vectors_recv[i], s, 1);
  152. starpu_task_insert(&cl,
  153. STARPU_EXECUTE_ON_WORKER, workers[i],
  154. STARPU_VALUE, &rank, sizeof(int),
  155. STARPU_VALUE, workers + i, sizeof(int),
  156. STARPU_VALUE, &s, sizeof(uint64_t),
  157. STARPU_VALUE, &handles_send[i], sizeof(starpu_data_handle_t),
  158. STARPU_VALUE, &handles_recv[i], sizeof(starpu_data_handle_t), 0);
  159. }
  160. starpu_resume();
  161. starpu_task_wait_for_all();
  162. for (unsigned i = 0; i < cpu_count; i++)
  163. {
  164. starpu_data_unregister(handles_send[i]);
  165. starpu_data_unregister(handles_recv[i]);
  166. free(vectors_send[i]);
  167. free(vectors_recv[i]);
  168. }
  169. }
  170. free(workers);
  171. free(vectors_send);
  172. free(vectors_recv);
  173. free(handles_send);
  174. free(handles_recv);
  175. free(mpi_tags);
  176. starpu_mpi_shutdown();
  177. if (!mpi_init)
  178. MPI_Finalize();
  179. return 0;
  180. }