basic-api.texi 121 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Initialization and Termination:: Initialization and Termination methods
  9. * Workers' Properties:: Methods to enumerate workers' properties
  10. * Data Management:: Methods to manipulate data
  11. * Data Interfaces::
  12. * Data Partition::
  13. * Codelets and Tasks:: Methods to construct tasks
  14. * Explicit Dependencies:: Explicit Dependencies
  15. * Implicit Data Dependencies:: Implicit Data Dependencies
  16. * Performance Model API::
  17. * Profiling API:: Profiling API
  18. * CUDA extensions:: CUDA extensions
  19. * OpenCL extensions:: OpenCL extensions
  20. * Cell extensions:: Cell extensions
  21. * Miscellaneous helpers::
  22. @end menu
  23. @node Initialization and Termination
  24. @section Initialization and Termination
  25. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  26. This is StarPU initialization method, which must be called prior to any other
  27. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  28. policy, number of cores, ...) by passing a non-null argument. Default
  29. configuration is used if the passed argument is @code{NULL}.
  30. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  31. indicates that no worker was available (so that StarPU was not initialized).
  32. @end deftypefun
  33. @deftp {Data Type} {struct starpu_driver}
  34. @table @asis
  35. @item @code{enum starpu_archtype type}
  36. The type of the driver. Only STARPU_CPU_DRIVER, STARPU_CUDA_DRIVER and
  37. STARPU_OPENCL_DRIVER are currently supported.
  38. @item @code{union id} Anonymous union
  39. @table @asis
  40. @item @code{unsigned cpu_id}
  41. Should only be used if type is STARPU_CPU_WORKER.
  42. @item @code{unsigned cuda_id}
  43. Should only be used if type is STARPU_CUDA_WORKER.
  44. @item @code{cl_device_id opencl_id}
  45. Should only be used if type is STARPU_OPENCL_WORKER.
  46. @end table
  47. @end table
  48. @end deftp
  49. @deftp {Data Type} {struct starpu_conf}
  50. This structure is passed to the @code{starpu_init} function in order
  51. to configure StarPU. It has to be initialized with @code{starpu_conf_init}.
  52. When the default value is used, StarPU automatically selects the number of
  53. processing units and takes the default scheduling policy. The environment
  54. variables overwrite the equivalent parameters.
  55. @table @asis
  56. @item @code{const char *sched_policy_name} (default = NULL)
  57. This is the name of the scheduling policy. This can also be specified
  58. with the @code{STARPU_SCHED} environment variable.
  59. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  60. This is the definition of the scheduling policy. This field is ignored
  61. if @code{sched_policy_name} is set.
  62. @item @code{int ncpus} (default = -1)
  63. This is the number of CPU cores that StarPU can use. This can also be
  64. specified with the @code{STARPU_NCPU} environment variable.
  65. @item @code{int ncuda} (default = -1)
  66. This is the number of CUDA devices that StarPU can use. This can also
  67. be specified with the @code{STARPU_NCUDA} environment variable.
  68. @item @code{int nopencl} (default = -1)
  69. This is the number of OpenCL devices that StarPU can use. This can
  70. also be specified with the @code{STARPU_NOPENCL} environment variable.
  71. @item @code{int nspus} (default = -1)
  72. This is the number of Cell SPUs that StarPU can use. This can also be
  73. specified with the @code{STARPU_NGORDON} environment variable.
  74. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  75. If this flag is set, the @code{workers_bindid} array indicates where the
  76. different workers are bound, otherwise StarPU automatically selects where to
  77. bind the different workers. This can also be specified with the
  78. @code{STARPU_WORKERS_CPUID} environment variable.
  79. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  80. If the @code{use_explicit_workers_bindid} flag is set, this array
  81. indicates where to bind the different workers. The i-th entry of the
  82. @code{workers_bindid} indicates the logical identifier of the
  83. processor which should execute the i-th worker. Note that the logical
  84. ordering of the CPUs is either determined by the OS, or provided by
  85. the @code{hwloc} library in case it is available.
  86. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  87. If this flag is set, the CUDA workers will be attached to the CUDA devices
  88. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  89. CUDA devices in a round-robin fashion. This can also be specified with the
  90. @code{STARPU_WORKERS_CUDAID} environment variable.
  91. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  92. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  93. contains the logical identifiers of the CUDA devices (as used by
  94. @code{cudaGetDevice}).
  95. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  96. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  97. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  98. the OpenCL devices in a round-robin fashion. This can also be specified with
  99. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  100. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  101. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  102. contains the logical identifiers of the OpenCL devices to be used.
  103. @item @code{int calibrate} (default = 0)
  104. If this flag is set, StarPU will calibrate the performance models when
  105. executing tasks. If this value is equal to @code{-1}, the default value is
  106. used. If the value is equal to @code{1}, it will force continuing
  107. calibration. If the value is equal to @code{2}, the existing performance
  108. models will be overwritten. This can also be specified with the
  109. @code{STARPU_CALIBRATE} environment variable.
  110. @item @code{int bus_calibrate} (default = 0)
  111. If this flag is set, StarPU will recalibrate the bus. If this value is equal
  112. to @code{-1}, the default value is used. This can also be specified with the
  113. @code{STARPU_BUS_CALIBRATE} environment variable.
  114. @item @code{int single_combined_worker} (default = 0)
  115. By default, StarPU executes parallel tasks concurrently.
  116. Some parallel libraries (e.g. most OpenMP implementations) however do
  117. not support concurrent calls to parallel code. In such case, setting this flag
  118. makes StarPU only start one parallel task at a time (but other
  119. CPU and GPU tasks are not affected and can be run concurrently). The parallel
  120. task scheduler will however still however still try varying combined worker
  121. sizes to look for the most efficient ones.
  122. This can also be specified with the @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  123. @item @code{int disable_asynchronous_copy} (default = 0)
  124. This flag should be set to 1 to disable asynchronous copies between
  125. CPUs and all accelerators. This can also be specified with the
  126. @code{STARPU_DISABLE_ASYNCHRONOUS_COPY} environment variable.
  127. The AMD implementation of OpenCL is known to
  128. fail when copying data asynchronously. When using this implementation,
  129. it is therefore necessary to disable asynchronous data transfers.
  130. This can also be specified at compilation time by giving to the
  131. configure script the option @code{--disable-asynchronous-copy}.
  132. @item @code{int disable_cuda_asynchronous_copy} (default = 0)
  133. This flag should be set to 1 to disable asynchronous copies between
  134. CPUs and CUDA accelerators. This can also be specified with the
  135. @code{STARPU_DISABLE_CUDA_ASYNCHRONOUS_COPY} environment variable.
  136. This can also be specified at compilation time by giving to the
  137. configure script the option @code{--disable-asynchronous-cuda-copy}.
  138. @item @code{int disable_opencl_asynchronous_copy} (default = 0)
  139. This flag should be set to 1 to disable asynchronous copies between
  140. CPUs and OpenCL accelerators. This can also be specified with the
  141. @code{STARPU_DISABLE_OPENCL_ASYNCHRONOUS_COPY} environment variable.
  142. The AMD implementation of OpenCL is known to
  143. fail when copying data asynchronously. When using this implementation,
  144. it is therefore necessary to disable asynchronous data transfers.
  145. This can also be specified at compilation time by giving to the
  146. configure script the option @code{--disable-asynchronous-opencl-copy}.
  147. @item @code{int *cuda_opengl_interoperability} (default = NULL)
  148. This can be set to an array of CUDA device identifiers for which
  149. @code{cudaGLSetGLDevice} should be called instead of @code{cudaSetDevice}. Its
  150. size is specified by the @code{n_cuda_opengl_interoperability} field below
  151. @item @code{int *n_cuda_opengl_interoperability} (default = 0)
  152. This has to be set to the size of the array pointed to by the
  153. @code{cuda_opengl_interoperability} field.
  154. @item @code{struct starpu_driver *not_launched_drivers}
  155. The drivers that should not be launched by StarPU.
  156. @item @code{unsigned nnot_launched_drivers}
  157. The number of StarPU drivers that should not be launched by StarPU.
  158. @end table
  159. @end deftp
  160. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  161. This function initializes the @var{conf} structure passed as argument
  162. with the default values. In case some configuration parameters are already
  163. specified through environment variables, @code{starpu_conf_init} initializes
  164. the fields of the structure according to the environment variables. For
  165. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  166. @code{.calibrate} field of the structure passed as argument.
  167. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  168. indicates that the argument was NULL.
  169. @end deftypefun
  170. @deftypefun void starpu_shutdown (void)
  171. This is StarPU termination method. It must be called at the end of the
  172. application: statistics and other post-mortem debugging information are not
  173. guaranteed to be available until this method has been called.
  174. @end deftypefun
  175. @deftypefun int starpu_asynchronous_copy_disabled (void)
  176. Return 1 if asynchronous data transfers between CPU and accelerators
  177. are disabled.
  178. @end deftypefun
  179. @deftypefun int starpu_asynchronous_cuda_copy_disabled (void)
  180. Return 1 if asynchronous data transfers between CPU and CUDA accelerators
  181. are disabled.
  182. @end deftypefun
  183. @deftypefun int starpu_asynchronous_opencl_copy_disabled (void)
  184. Return 1 if asynchronous data transfers between CPU and OpenCL accelerators
  185. are disabled.
  186. @end deftypefun
  187. @node Workers' Properties
  188. @section Workers' Properties
  189. @deftp {Data Type} {enum starpu_archtype}
  190. The different values are:
  191. @table @asis
  192. @item @code{STARPU_CPU_WORKER}
  193. @item @code{STARPU_CUDA_WORKER}
  194. @item @code{STARPU_OPENCL_WORKER}
  195. @item @code{STARPU_GORDON_WORKER}
  196. @end table
  197. @end deftp
  198. @deftypefun unsigned starpu_worker_get_count (void)
  199. This function returns the number of workers (i.e. processing units executing
  200. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  201. @end deftypefun
  202. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  203. Returns the number of workers of the given @var{type}. A positive
  204. (or @code{NULL}) value is returned in case of success, @code{-EINVAL} indicates that
  205. the type is not valid otherwise.
  206. @end deftypefun
  207. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  208. This function returns the number of CPUs controlled by StarPU. The returned
  209. value should be at most @code{STARPU_MAXCPUS}.
  210. @end deftypefun
  211. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  212. This function returns the number of CUDA devices controlled by StarPU. The returned
  213. value should be at most @code{STARPU_MAXCUDADEVS}.
  214. @end deftypefun
  215. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  216. This function returns the number of OpenCL devices controlled by StarPU. The returned
  217. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  218. @end deftypefun
  219. @deftypefun unsigned starpu_spu_worker_get_count (void)
  220. This function returns the number of Cell SPUs controlled by StarPU.
  221. @end deftypefun
  222. @deftypefun int starpu_worker_get_id (void)
  223. This function returns the identifier of the current worker, i.e the one associated to the calling
  224. thread. The returned value is either -1 if the current context is not a StarPU
  225. worker (i.e. when called from the application outside a task or a callback), or
  226. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  227. @end deftypefun
  228. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  229. This function gets the list of identifiers of workers with the given
  230. type. It fills the workerids array with the identifiers of the workers that have the type
  231. indicated in the first argument. The maxsize argument indicates the size of the
  232. workids array. The returned value gives the number of identifiers that were put
  233. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  234. workers with the appropriate type: in that case, the array is filled with the
  235. maxsize first elements. To avoid such overflows, the value of maxsize can be
  236. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  237. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  238. @end deftypefun
  239. @deftypefun int starpu_worker_get_devid (int @var{id})
  240. This functions returns the device id of the given worker. The worker
  241. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  242. CUDA worker, this device identifier is the logical device identifier exposed by
  243. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  244. identifier of a CPU worker is the logical identifier of the core on which the
  245. worker was bound; this identifier is either provided by the OS or by the
  246. @code{hwloc} library in case it is available.
  247. @end deftypefun
  248. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  249. This function returns the type of processing unit associated to a
  250. worker. The worker identifier is a value returned by the
  251. @code{starpu_worker_get_id} function). The returned value
  252. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  253. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  254. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  255. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  256. identifier is unspecified.
  257. @end deftypefun
  258. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  259. This function allows to get the name of a given worker.
  260. StarPU associates a unique human readable string to each processing unit. This
  261. function copies at most the @var{maxlen} first bytes of the unique string
  262. associated to a worker identified by its identifier @var{id} into the
  263. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  264. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  265. function on an invalid identifier results in an unspecified behaviour.
  266. @end deftypefun
  267. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  268. This function returns the identifier of the memory node associated to the
  269. worker identified by @var{workerid}.
  270. @end deftypefun
  271. @deftp {Data Type} {enum starpu_node_kind}
  272. todo
  273. @table @asis
  274. @item @code{STARPU_UNUSED}
  275. @item @code{STARPU_CPU_RAM}
  276. @item @code{STARPU_CUDA_RAM}
  277. @item @code{STARPU_OPENCL_RAM}
  278. @item @code{STARPU_SPU_LS}
  279. @end table
  280. @end deftp
  281. @deftypefun {enum starpu_node_kind} starpu_node_get_kind (uint32_t @var{node})
  282. Returns the type of the given node as defined by @code{enum
  283. starpu_node_kind}. For example, when defining a new data interface,
  284. this function should be used in the allocation function to determine
  285. on which device the memory needs to be allocated.
  286. @end deftypefun
  287. @node Data Management
  288. @section Data Management
  289. @menu
  290. * Introduction to Data Management::
  291. * Basic Data Management API::
  292. * Access registered data from the application::
  293. @end menu
  294. This section describes the data management facilities provided by StarPU.
  295. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  296. design their own data interfaces if required.
  297. @node Introduction to Data Management
  298. @subsection Introduction
  299. Data management is done at a high-level in StarPU: rather than accessing a mere
  300. list of contiguous buffers, the tasks may manipulate data that are described by
  301. a high-level construct which we call data interface.
  302. An example of data interface is the "vector" interface which describes a
  303. contiguous data array on a spefic memory node. This interface is a simple
  304. structure containing the number of elements in the array, the size of the
  305. elements, and the address of the array in the appropriate address space (this
  306. address may be invalid if there is no valid copy of the array in the memory
  307. node). More informations on the data interfaces provided by StarPU are
  308. given in @ref{Data Interfaces}.
  309. When a piece of data managed by StarPU is used by a task, the task
  310. implementation is given a pointer to an interface describing a valid copy of
  311. the data that is accessible from the current processing unit.
  312. Every worker is associated to a memory node which is a logical abstraction of
  313. the address space from which the processing unit gets its data. For instance,
  314. the memory node associated to the different CPU workers represents main memory
  315. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  316. Every memory node is identified by a logical index which is accessible from the
  317. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  318. to StarPU, the specified memory node indicates where the piece of data
  319. initially resides (we also call this memory node the home node of a piece of
  320. data).
  321. @node Basic Data Management API
  322. @subsection Basic Data Management API
  323. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  324. This function allocates data of the given size in main memory. It will also try to pin it in
  325. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  326. thus permit data transfer and computation overlapping. The allocated buffer must
  327. be freed thanks to the @code{starpu_free} function.
  328. @end deftypefun
  329. @deftypefun int starpu_free (void *@var{A})
  330. This function frees memory which has previously allocated with
  331. @code{starpu_malloc}.
  332. @end deftypefun
  333. @deftp {Data Type} {enum starpu_access_mode}
  334. This datatype describes a data access mode. The different available modes are:
  335. @table @asis
  336. @item @code{STARPU_R}: read-only mode.
  337. @item @code{STARPU_W}: write-only mode.
  338. @item @code{STARPU_RW}: read-write mode.
  339. This is equivalent to @code{STARPU_R|STARPU_W}.
  340. @item @code{STARPU_SCRATCH}: scratch memory.
  341. A temporary buffer is allocated for the task, but StarPU does not
  342. enforce data consistency---i.e. each device has its own buffer,
  343. independently from each other (even for CPUs), and no data transfer is
  344. ever performed. This is useful for temporary variables to avoid
  345. allocating/freeing buffers inside each task.
  346. Currently, no behavior is defined concerning the relation with the
  347. @code{STARPU_R} and @code{STARPU_W} modes and the value provided at
  348. registration---i.e., the value of the scratch buffer is undefined at
  349. entry of the codelet function. It is being considered for future
  350. extensions at least to define the initial value. For now, data to be
  351. used in @code{SCRATCH} mode should be registered with node @code{-1} and
  352. a @code{NULL} pointer, since the value of the provided buffer is simply
  353. ignored for now.
  354. @item @code{STARPU_REDUX} reduction mode.
  355. @end table
  356. @end deftp
  357. @deftp {Data Type} {starpu_data_handle_t}
  358. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  359. data. Once a piece of data has been registered to StarPU, it is associated to a
  360. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  361. over the entire machine, so that we can maintain data consistency and locate
  362. data replicates for instance.
  363. @end deftp
  364. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  365. Register a piece of data into the handle located at the @var{handleptr}
  366. address. The @var{data_interface} buffer contains the initial description of the
  367. data in the home node. The @var{ops} argument is a pointer to a structure
  368. describing the different methods used to manipulate this type of interface. See
  369. @ref{struct starpu_data_interface_ops} for more details on this structure.
  370. If @code{home_node} is -1, StarPU will automatically
  371. allocate the memory when it is used for the
  372. first time in write-only mode. Once such data handle has been automatically
  373. allocated, it is possible to access it using any access mode.
  374. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  375. matrix) which can be registered by the means of helper functions (e.g.
  376. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  377. @end deftypefun
  378. @deftypefun void starpu_data_register_same ({starpu_data_handle_t *}@var{handledst}, starpu_data_handle_t @var{handlesrc})
  379. Register a new piece of data into the handle @var{handledst} with the
  380. same interface as the handle @var{handlesrc}.
  381. @end deftypefun
  382. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  383. This function unregisters a data handle from StarPU. If the data was
  384. automatically allocated by StarPU because the home node was -1, all
  385. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  386. is put back into the home node in the buffer that was initially registered.
  387. Using a data handle that has been unregistered from StarPU results in an
  388. undefined behaviour.
  389. @end deftypefun
  390. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  391. This is the same as starpu_data_unregister, except that StarPU does not put back
  392. a valid copy into the home node, in the buffer that was initially registered.
  393. @end deftypefun
  394. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  395. Destroy all replicates of the data handle. After data invalidation, the first
  396. access to the handle must be performed in write-only mode. Accessing an
  397. invalidated data in read-mode results in undefined behaviour.
  398. @end deftypefun
  399. @deftypefun void starpu_data_invalidate_submit (starpu_data_handle_t @var{handle})
  400. Submits invalidation of the data handle after completion of previously submitted tasks.
  401. @end deftypefun
  402. @c TODO create a specific sections about user interaction with the DSM ?
  403. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  404. This function sets the write-through mask of a given data, i.e. a bitmask of
  405. nodes where the data should be always replicated after modification. It also
  406. prevents the data from being evicted from these nodes when memory gets scarse.
  407. @end deftypefun
  408. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  409. Issue a prefetch request for a given data to a given node, i.e.
  410. requests that the data be replicated to the given node, so that it is available
  411. there for tasks. If the @var{async} parameter is 0, the call will block until
  412. the transfer is achieved, else the call will return as soon as the request is
  413. scheduled (which may however have to wait for a task completion).
  414. @end deftypefun
  415. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  416. Return the handle corresponding to the data pointed to by the @var{ptr}
  417. host pointer.
  418. @end deftypefun
  419. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  420. Explicitly ask StarPU to allocate room for a piece of data on the specified
  421. memory node.
  422. @end deftypefun
  423. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  424. Query the status of the handle on the specified memory node.
  425. @end deftypefun
  426. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  427. This function allows to specify that a piece of data can be discarded
  428. without impacting the application.
  429. @end deftypefun
  430. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  431. This sets the codelets to be used for the @var{handle} when it is accessed in
  432. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  433. codelet, and reduction between per-worker buffers will be done with the
  434. @var{redux_cl} codelet.
  435. @end deftypefun
  436. @node Access registered data from the application
  437. @subsection Access registered data from the application
  438. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  439. The application must call this function prior to accessing registered data from
  440. main memory outside tasks. StarPU ensures that the application will get an
  441. up-to-date copy of the data in main memory located where the data was
  442. originally registered, and that all concurrent accesses (e.g. from tasks) will
  443. be consistent with the access mode specified in the @var{mode} argument.
  444. @code{starpu_data_release} must be called once the application does not need to
  445. access the piece of data anymore. Note that implicit data
  446. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  447. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  448. the data, unless they have been disabled explictly by calling
  449. @code{starpu_data_set_default_sequential_consistency_flag} or
  450. @code{starpu_data_set_sequential_consistency_flag}.
  451. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  452. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  453. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  454. @end deftypefun
  455. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  456. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  457. @code{starpu_data_acquire}. When the data specified in the first argument is
  458. available in the appropriate access mode, the callback function is executed.
  459. The application may access the requested data during the execution of this
  460. callback. The callback function must call @code{starpu_data_release} once the
  461. application does not need to access the piece of data anymore.
  462. Note that implicit data dependencies are also enforced by
  463. @code{starpu_data_acquire_cb} in case they are not disabled.
  464. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  465. be called from task callbacks. Upon successful completion, this function
  466. returns 0.
  467. @end deftypefun
  468. @deftypefun int starpu_data_acquire_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode})
  469. This is the same as @code{starpu_data_acquire}, except that the data will be
  470. available on the given memory node instead of main memory.
  471. @end deftypefun
  472. @deftypefun int starpu_data_acquire_on_node_cb (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  473. This is the same as @code{starpu_data_acquire_cb}, except that the data will be
  474. available on the given memory node instead of main memory.
  475. @end deftypefun
  476. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  477. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  478. except that the code to be executed in a callback is directly provided as a
  479. macro parameter, and the data handle is automatically released after it. This
  480. permits to easily execute code which depends on the value of some registered
  481. data. This is non-blocking too and may be called from task callbacks.
  482. @end defmac
  483. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  484. This function releases the piece of data acquired by the application either by
  485. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  486. @end deftypefun
  487. @deftypefun void starpu_data_release_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node})
  488. This is the same as @code{starpu_data_release}, except that the data will be
  489. available on the given memory node instead of main memory.
  490. @end deftypefun
  491. @node Data Interfaces
  492. @section Data Interfaces
  493. @menu
  494. * Registering Data::
  495. * Accessing Data Interfaces::
  496. @end menu
  497. @node Registering Data
  498. @subsection Registering Data
  499. There are several ways to register a memory region so that it can be managed by
  500. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  501. matrices as well as BCSR and CSR sparse matrices.
  502. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  503. Register a void interface. There is no data really associated to that
  504. interface, but it may be used as a synchronization mechanism. It also
  505. permits to express an abstract piece of data that is managed by the
  506. application internally: this makes it possible to forbid the
  507. concurrent execution of different tasks accessing the same "void" data
  508. in read-write concurrently.
  509. @end deftypefun
  510. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  511. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  512. typically a scalar, and initialize @var{handle} to represent this data
  513. item.
  514. @cartouche
  515. @smallexample
  516. float var;
  517. starpu_data_handle_t var_handle;
  518. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  519. @end smallexample
  520. @end cartouche
  521. @end deftypefun
  522. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  523. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  524. @var{ptr} and initialize @var{handle} to represent it.
  525. @cartouche
  526. @smallexample
  527. float vector[NX];
  528. starpu_data_handle_t vector_handle;
  529. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  530. sizeof(vector[0]));
  531. @end smallexample
  532. @end cartouche
  533. @end deftypefun
  534. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  535. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  536. pointed by @var{ptr} and initialize @var{handle} to represent it.
  537. @var{ld} specifies the number of elements between rows.
  538. a value greater than @var{nx} adds padding, which can be useful for
  539. alignment purposes.
  540. @cartouche
  541. @smallexample
  542. float *matrix;
  543. starpu_data_handle_t matrix_handle;
  544. matrix = (float*)malloc(width * height * sizeof(float));
  545. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  546. width, width, height, sizeof(float));
  547. @end smallexample
  548. @end cartouche
  549. @end deftypefun
  550. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  551. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  552. elements pointed by @var{ptr} and initialize @var{handle} to represent
  553. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  554. between rows and between z planes.
  555. @cartouche
  556. @smallexample
  557. float *block;
  558. starpu_data_handle_t block_handle;
  559. block = (float*)malloc(nx*ny*nz*sizeof(float));
  560. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  561. nx, nx*ny, nx, ny, nz, sizeof(float));
  562. @end smallexample
  563. @end cartouche
  564. @end deftypefun
  565. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  566. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  567. Compressed Sparse Row Representation) sparse matrix interface.
  568. Register the sparse matrix made of @var{nnz} non-zero blocks of elements of size
  569. @var{elemsize} stored in @var{nzval} and initializes @var{handle} to represent
  570. it. Blocks have size @var{r} * @var{c}. @var{nrow} is the number of rows (in
  571. terms of blocks), @code{colind[i]} is the block-column index for block @code{i}
  572. in @code{nzval}, @code{rowptr[i]} is the block-index (in nzval) of the first block of row @code{i}.
  573. @var{firstentry} is the index of the first entry of the given arrays (usually 0
  574. or 1).
  575. @end deftypefun
  576. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  577. This variant of @code{starpu_data_register} uses the CSR (Compressed
  578. Sparse Row Representation) sparse matrix interface.
  579. TODO
  580. @end deftypefun
  581. @deftypefun void starpu_coo_data_register(starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{n_values}, uint32_t *@var{columns}, uint32_t *@var{rows}, uintptr_t @var{values}, size_t @var{elemsize});
  582. Register the @var{nx}x@var{ny} 2D matrix given in the COO format, using the
  583. @var{columns}, @var{rows}, @var{values} arrays, which must have @var{n_values}
  584. elements of size @var{elemsize}. Initialize @var{handleptr}.
  585. @end deftypefun
  586. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  587. Return the interface associated with @var{handle} on @var{memory_node}.
  588. @end deftypefun
  589. @node Accessing Data Interfaces
  590. @subsection Accessing Data Interfaces
  591. Each data interface is provided with a set of field access functions.
  592. The ones using a @code{void *} parameter aimed to be used in codelet
  593. implementations (see for example the code in @ref{Vector Scaling Using StarPu's API}).
  594. @deftp {Data Type} {enum starpu_data_interface_id}
  595. The different values are:
  596. @table @asis
  597. @item @code{STARPU_MATRIX_INTERFACE_ID}
  598. @item @code{STARPU_BLOCK_INTERFACE_ID}
  599. @item @code{STARPU_VECTOR_INTERFACE_ID}
  600. @item @code{STARPU_CSR_INTERFACE_ID}
  601. @item @code{STARPU_BCSR_INTERFACE_ID}
  602. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  603. @item @code{STARPU_VOID_INTERFACE_ID}
  604. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  605. @item @code{STARPU_COO_INTERCACE_ID}
  606. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  607. @end table
  608. @end deftp
  609. @menu
  610. * Accessing Handle::
  611. * Accessing Variable Data Interfaces::
  612. * Accessing Vector Data Interfaces::
  613. * Accessing Matrix Data Interfaces::
  614. * Accessing Block Data Interfaces::
  615. * Accessing BCSR Data Interfaces::
  616. * Accessing CSR Data Interfaces::
  617. * Accessing COO Data Interfaces::
  618. @end menu
  619. @node Accessing Handle
  620. @subsubsection Handle
  621. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  622. Return the pointer associated with @var{handle} on node @var{node} or
  623. @code{NULL} if @var{handle}'s interface does not support this
  624. operation or data for this handle is not allocated on that node.
  625. @end deftypefun
  626. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  627. Return the local pointer associated with @var{handle} or @code{NULL}
  628. if @var{handle}'s interface does not have data allocated locally
  629. @end deftypefun
  630. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  631. Return the unique identifier of the interface associated with the given @var{handle}.
  632. @end deftypefun
  633. @deftypefun size_t starpu_handle_get_size (starpu_data_handle_t @var{handle})
  634. Return the size of the data associated with @var{handle}
  635. @end deftypefun
  636. @deftypefun int starpu_handle_pack_data (starpu_data_handle_t @var{handle}, {void **}@var{ptr})
  637. Allocates a buffer large enough at @var{ptr} and copy to the newly
  638. allocated buffer the data associated to @var{handle}. The interface of
  639. the data registered at @var{handle} must define a packing operation
  640. (@pxref{struct starpu_data_interface_ops}).
  641. @end deftypefun
  642. @deftypefun int starpu_handle_unpack_data (starpu_data_handle_t @var{handle}, {void *}@var{ptr})
  643. Copy in @var{handle} the data located at @var{ptr} as described by the
  644. interface of the data. The interface registered at @var{handle} must
  645. define a unpacking operation (@pxref{struct starpu_data_interface_ops}).
  646. @end deftypefun
  647. @node Accessing Variable Data Interfaces
  648. @subsubsection Variable Data Interfaces
  649. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  650. Return the size of the variable designated by @var{handle}.
  651. @end deftypefun
  652. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  653. Return a pointer to the variable designated by @var{handle}.
  654. @end deftypefun
  655. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  656. Return a pointer to the variable designated by @var{interface}.
  657. @end defmac
  658. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  659. Return the size of the variable designated by @var{interface}.
  660. @end defmac
  661. @node Accessing Vector Data Interfaces
  662. @subsubsection Vector Data Interfaces
  663. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  664. Return the number of elements registered into the array designated by @var{handle}.
  665. @end deftypefun
  666. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  667. Return the size of each element of the array designated by @var{handle}.
  668. @end deftypefun
  669. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  670. Return the local pointer associated with @var{handle}.
  671. @end deftypefun
  672. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  673. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  674. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  675. @end defmac
  676. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  677. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  678. documented below has to be used in addition to this.
  679. @end defmac
  680. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  681. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  682. @end defmac
  683. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  684. Return the number of elements registered into the array designated by @var{interface}.
  685. @end defmac
  686. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  687. Return the size of each element of the array designated by @var{interface}.
  688. @end defmac
  689. @node Accessing Matrix Data Interfaces
  690. @subsubsection Matrix Data Interfaces
  691. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  692. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  693. @end deftypefun
  694. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  695. Return the number of elements on the y-axis of the matrix designated by
  696. @var{handle}.
  697. @end deftypefun
  698. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  699. Return the number of elements between each row of the matrix designated by
  700. @var{handle}. Maybe be equal to nx when there is no padding.
  701. @end deftypefun
  702. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  703. Return the local pointer associated with @var{handle}.
  704. @end deftypefun
  705. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  706. Return the size of the elements registered into the matrix designated by
  707. @var{handle}.
  708. @end deftypefun
  709. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  710. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  711. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  712. used instead.
  713. @end defmac
  714. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  715. Return a device handle for the matrix designated by @var{interface}, to be used
  716. on OpenCL. The offset documented below has to be used in addition to this.
  717. @end defmac
  718. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  719. Return the offset in the matrix designated by @var{interface}, to be used with
  720. the device handle.
  721. @end defmac
  722. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  723. Return the number of elements on the x-axis of the matrix designated by
  724. @var{interface}.
  725. @end defmac
  726. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  727. Return the number of elements on the y-axis of the matrix designated by
  728. @var{interface}.
  729. @end defmac
  730. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  731. Return the number of elements between each row of the matrix designated by
  732. @var{interface}. May be equal to nx when there is no padding.
  733. @end defmac
  734. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  735. Return the size of the elements registered into the matrix designated by
  736. @var{interface}.
  737. @end defmac
  738. @node Accessing Block Data Interfaces
  739. @subsubsection Block Data Interfaces
  740. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  741. Return the number of elements on the x-axis of the block designated by @var{handle}.
  742. @end deftypefun
  743. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  744. Return the number of elements on the y-axis of the block designated by @var{handle}.
  745. @end deftypefun
  746. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  747. Return the number of elements on the z-axis of the block designated by @var{handle}.
  748. @end deftypefun
  749. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  750. Return the number of elements between each row of the block designated by
  751. @var{handle}, in the format of the current memory node.
  752. @end deftypefun
  753. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  754. Return the number of elements between each z plane of the block designated by
  755. @var{handle}, in the format of the current memory node.
  756. @end deftypefun
  757. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  758. Return the local pointer associated with @var{handle}.
  759. @end deftypefun
  760. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  761. Return the size of the elements of the block designated by @var{handle}.
  762. @end deftypefun
  763. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  764. Return a pointer to the block designated by @var{interface}.
  765. @end defmac
  766. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  767. Return a device handle for the block designated by @var{interface}, to be used
  768. on OpenCL. The offset document below has to be used in addition to this.
  769. @end defmac
  770. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  771. Return the offset in the block designated by @var{interface}, to be used with
  772. the device handle.
  773. @end defmac
  774. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  775. Return the number of elements on the x-axis of the block designated by @var{handle}.
  776. @end defmac
  777. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  778. Return the number of elements on the y-axis of the block designated by @var{handle}.
  779. @end defmac
  780. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  781. Return the number of elements on the z-axis of the block designated by @var{handle}.
  782. @end defmac
  783. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  784. Return the number of elements between each row of the block designated by
  785. @var{interface}. May be equal to nx when there is no padding.
  786. @end defmac
  787. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  788. Return the number of elements between each z plane of the block designated by
  789. @var{interface}. May be equal to nx*ny when there is no padding.
  790. @end defmac
  791. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  792. Return the size of the elements of the matrix designated by @var{interface}.
  793. @end defmac
  794. @node Accessing BCSR Data Interfaces
  795. @subsubsection BCSR Data Interfaces
  796. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  797. Return the number of non-zero elements in the matrix designated by @var{handle}.
  798. @end deftypefun
  799. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  800. Return the number of rows (in terms of blocks of size r*c) in the matrix
  801. designated by @var{handle}.
  802. @end deftypefun
  803. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  804. Return the index at which all arrays (the column indexes, the row pointers...)
  805. of the matrix desginated by @var{handle} start.
  806. @end deftypefun
  807. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  808. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  809. @end deftypefun
  810. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  811. Return a pointer to the column index, which holds the positions of the non-zero
  812. entries in the matrix designated by @var{handle}.
  813. @end deftypefun
  814. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  815. Return the row pointer array of the matrix designated by @var{handle}.
  816. @end deftypefun
  817. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  818. Return the number of rows in a block.
  819. @end deftypefun
  820. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  821. Return the numberof columns in a block.
  822. @end deftypefun
  823. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  824. Return the size of the elements in the matrix designated by @var{handle}.
  825. @end deftypefun
  826. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  827. Return the number of non-zero values in the matrix designated by @var{interface}.
  828. @end defmac
  829. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  830. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  831. @end defmac
  832. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  833. Return a pointer to the column index of the matrix designated by @var{interface}.
  834. @end defmac
  835. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  836. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  837. @end defmac
  838. @node Accessing CSR Data Interfaces
  839. @subsubsection CSR Data Interfaces
  840. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  841. Return the number of non-zero values in the matrix designated by @var{handle}.
  842. @end deftypefun
  843. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  844. Return the size of the row pointer array of the matrix designated by @var{handle}.
  845. @end deftypefun
  846. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  847. Return the index at which all arrays (the column indexes, the row pointers...)
  848. of the matrix designated by @var{handle} start.
  849. @end deftypefun
  850. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  851. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  852. @end deftypefun
  853. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  854. Return a local pointer to the column index of the matrix designated by @var{handle}.
  855. @end deftypefun
  856. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  857. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  858. @end deftypefun
  859. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  860. Return the size of the elements registered into the matrix designated by @var{handle}.
  861. @end deftypefun
  862. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  863. Return the number of non-zero values in the matrix designated by @var{interface}.
  864. @end defmac
  865. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  866. Return the size of the row pointer array of the matrix designated by @var{interface}.
  867. @end defmac
  868. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  869. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  870. @end defmac
  871. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  872. Return a pointer to the column index of the matrix designated by @var{interface}.
  873. @end defmac
  874. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  875. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  876. @end defmac
  877. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  878. Return the index at which all arrays (the column indexes, the row pointers...)
  879. of the @var{interface} start.
  880. @end defmac
  881. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  882. Return the size of the elements registered into the matrix designated by @var{interface}.
  883. @end defmac
  884. @node Accessing COO Data Interfaces
  885. @subsubsection COO Data Interfaces
  886. @defmac STARPU_COO_GET_COLUMNS({void *}@var{interface})
  887. Return a pointer to the column array of the matrix designated by
  888. @var{interface}.
  889. @end defmac
  890. @defmac STARPU_COO_GET_ROWS(interface)
  891. Return a pointer to the rows array of the matrix designated by @var{interface}.
  892. @end defmac
  893. @defmac STARPU_COO_GET_VALUES(interface)
  894. Return a pointer to the values array of the matrix designated by
  895. @var{interface}.
  896. @end defmac
  897. @defmac STARPU_COO_GET_NX(interface)
  898. Return the number of elements on the x-axis of the matrix designated by
  899. @var{interface}.
  900. @end defmac
  901. @defmac STARPU_COO_GET_NY(interface)
  902. Return the number of elements on the y-axis of the matrix designated by
  903. @var{interface}.
  904. @end defmac
  905. @defmac STARPU_COO_GET_NVALUES(interface)
  906. Return the number of values registered in the matrix designated by
  907. @var{interface}.
  908. @end defmac
  909. @defmac STARPU_COO_GET_ELEMSIZE(interface)
  910. Return the size of the elements registered into the matrix designated by
  911. @var{interface}.
  912. @end defmac
  913. @node Data Partition
  914. @section Data Partition
  915. @menu
  916. * Basic API::
  917. * Predefined filter functions::
  918. @end menu
  919. @node Basic API
  920. @subsection Basic API
  921. @deftp {Data Type} {struct starpu_data_filter}
  922. The filter structure describes a data partitioning operation, to be given to the
  923. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  924. for an example. The different fields are:
  925. @table @asis
  926. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  927. This function fills the @code{child_interface} structure with interface
  928. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  929. @item @code{unsigned nchildren}
  930. This is the number of parts to partition the data into.
  931. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  932. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  933. children depends on the actual data (e.g. the number of blocks in a sparse
  934. matrix).
  935. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  936. In case the resulting children use a different data interface, this function
  937. returns which interface is used by child number @code{id}.
  938. @item @code{unsigned filter_arg}
  939. Allow to define an additional parameter for the filter function.
  940. @item @code{void *filter_arg_ptr}
  941. Allow to define an additional pointer parameter for the filter
  942. function, such as the sizes of the different parts.
  943. @end table
  944. @end deftp
  945. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  946. @anchor{starpu_data_partition}
  947. This requests partitioning one StarPU data @var{initial_handle} into several
  948. subdata according to the filter @var{f}, as shown in the following example:
  949. @cartouche
  950. @smallexample
  951. struct starpu_data_filter f = @{
  952. .filter_func = starpu_block_filter_func,
  953. .nchildren = nslicesx,
  954. .get_nchildren = NULL,
  955. .get_child_ops = NULL
  956. @};
  957. starpu_data_partition(A_handle, &f);
  958. @end smallexample
  959. @end cartouche
  960. @end deftypefun
  961. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, uint32_t @var{gathering_node})
  962. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  963. collected back into one big piece in the @var{gathering_node} (usually 0). Tasks
  964. working on the partitioned data must be already finished when calling @code{starpu_data_unpartition}.
  965. @cartouche
  966. @smallexample
  967. starpu_data_unpartition(A_handle, 0);
  968. @end smallexample
  969. @end cartouche
  970. @end deftypefun
  971. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  972. This function returns the number of children.
  973. @end deftypefun
  974. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  975. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  976. @end deftypefun
  977. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  978. After partitioning a StarPU data by applying a filter,
  979. @code{starpu_data_get_sub_data} can be used to get handles for each of
  980. the data portions. @var{root_data} is the parent data that was
  981. partitioned. @var{depth} is the number of filters to traverse (in
  982. case several filters have been applied, to e.g. partition in row
  983. blocks, and then in column blocks), and the subsequent
  984. parameters are the indexes. The function returns a handle to the
  985. subdata.
  986. @cartouche
  987. @smallexample
  988. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  989. @end smallexample
  990. @end cartouche
  991. @end deftypefun
  992. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  993. This function is similar to @code{starpu_data_get_sub_data} but uses a
  994. va_list for the parameter list.
  995. @end deftypefun
  996. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  997. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  998. recursively. @var{nfilters} pointers to variables of the type
  999. starpu_data_filter should be given.
  1000. @end deftypefun
  1001. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  1002. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1003. recursively. It uses a va_list of pointers to variables of the typer
  1004. starpu_data_filter.
  1005. @end deftypefun
  1006. @node Predefined filter functions
  1007. @subsection Predefined filter functions
  1008. @menu
  1009. * Partitioning Vector Data::
  1010. * Partitioning Matrix Data::
  1011. * Partitioning 3D Matrix Data::
  1012. * Partitioning BCSR Data::
  1013. @end menu
  1014. This section gives a partial list of the predefined partitioning functions.
  1015. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  1016. list can be found in @code{starpu_data_filters.h} .
  1017. @node Partitioning Vector Data
  1018. @subsubsection Partitioning Vector Data
  1019. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1020. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1021. vector represented by @var{father_interface} once partitioned in
  1022. @var{nparts} chunks of equal size.
  1023. @end deftypefun
  1024. @deftypefun void starpu_block_shadow_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1025. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1026. vector represented by @var{father_interface} once partitioned in
  1027. @var{nparts} chunks of equal size with a shadow border @code{filter_arg_ptr}, thus getting a vector of size (n-2*shadow)/nparts+2*shadow
  1028. The @code{filter_arg_ptr} field must be the shadow size casted into @code{void*}.
  1029. IMPORTANT: This can only be used for read-only access, as no coherency is
  1030. enforced for the shadowed parts.
  1031. A usage example is available in examples/filters/shadow.c
  1032. @end deftypefun
  1033. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1034. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1035. vector represented by @var{father_interface} once partitioned into
  1036. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  1037. @code{*@var{f}}.
  1038. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  1039. @code{uint32_t} elements, each of which specifies the number of elements
  1040. in each chunk of the partition.
  1041. @end deftypefun
  1042. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1043. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1044. vector represented by @var{father_interface} once partitioned in two
  1045. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  1046. @code{0} or @code{1}.
  1047. @end deftypefun
  1048. @node Partitioning Matrix Data
  1049. @subsubsection Partitioning Matrix Data
  1050. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1051. This partitions a dense Matrix along the x dimension, thus getting (x/nparts,y)
  1052. matrices. If nparts does not divide x, the last submatrix contains the
  1053. remainder.
  1054. @end deftypefun
  1055. @deftypefun void starpu_block_shadow_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1056. This partitions a dense Matrix along the x dimension, with a shadow border
  1057. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y)
  1058. matrices. If nparts does not divide x-2*shadow, the last submatrix contains the
  1059. remainder.
  1060. IMPORTANT: This can only be used for read-only access, as no coherency is
  1061. enforced for the shadowed parts.
  1062. A usage example is available in examples/filters/shadow2d.c
  1063. @end deftypefun
  1064. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1065. This partitions a dense Matrix along the y dimension, thus getting (x,y/nparts)
  1066. matrices. If nparts does not divide y, the last submatrix contains the
  1067. remainder.
  1068. @end deftypefun
  1069. @deftypefun void starpu_vertical_block_shadow_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1070. This partitions a dense Matrix along the y dimension, with a shadow border
  1071. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow)
  1072. matrices. If nparts does not divide y-2*shadow, the last submatrix contains the
  1073. remainder.
  1074. IMPORTANT: This can only be used for read-only access, as no coherency is
  1075. enforced for the shadowed parts.
  1076. A usage example is available in examples/filters/shadow2d.c
  1077. @end deftypefun
  1078. @node Partitioning 3D Matrix Data
  1079. @subsubsection Partitioning 3D Matrix Data
  1080. A usage example is available in examples/filters/shadow3d.c
  1081. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1082. This partitions a 3D matrix along the X dimension, thus getting (x/nparts,y,z)
  1083. 3D matrices. If nparts does not divide x, the last submatrix contains the
  1084. remainder.
  1085. @end deftypefun
  1086. @deftypefun void starpu_block_shadow_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1087. This partitions a 3D matrix along the X dimension, with a shadow border
  1088. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y,z) 3D
  1089. matrices. If nparts does not divide x, the last submatrix contains the
  1090. remainder.
  1091. IMPORTANT: This can only be used for read-only access, as no coherency is
  1092. enforced for the shadowed parts.
  1093. @end deftypefun
  1094. @deftypefun void starpu_vertical_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1095. This partitions a 3D matrix along the Y dimension, thus getting (x,y/nparts,z)
  1096. 3D matrices. If nparts does not divide y, the last submatrix contains the
  1097. remainder.
  1098. @end deftypefun
  1099. @deftypefun void starpu_vertical_block_shadow_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1100. This partitions a 3D matrix along the Y dimension, with a shadow border
  1101. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow,z) 3D
  1102. matrices. If nparts does not divide y, the last submatrix contains the
  1103. remainder.
  1104. IMPORTANT: This can only be used for read-only access, as no coherency is
  1105. enforced for the shadowed parts.
  1106. @end deftypefun
  1107. @deftypefun void starpu_depth_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1108. This partitions a 3D matrix along the Z dimension, thus getting (x,y,z/nparts)
  1109. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1110. remainder.
  1111. @end deftypefun
  1112. @deftypefun void starpu_depth_block_shadow_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1113. This partitions a 3D matrix along the Z dimension, with a shadow border
  1114. @code{filter_arg_ptr}, thus getting (x,y,(z-2*shadow)/nparts+2*shadow)
  1115. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1116. remainder.
  1117. IMPORTANT: This can only be used for read-only access, as no coherency is
  1118. enforced for the shadowed parts.
  1119. @end deftypefun
  1120. @node Partitioning BCSR Data
  1121. @subsubsection Partitioning BCSR Data
  1122. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1123. This partitions a block-sparse matrix into dense matrices.
  1124. @end deftypefun
  1125. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1126. This partitions a block-sparse matrix into vertical block-sparse matrices.
  1127. @end deftypefun
  1128. @node Codelets and Tasks
  1129. @section Codelets and Tasks
  1130. This section describes the interface to manipulate codelets and tasks.
  1131. @deftp {Data Type} {enum starpu_codelet_type}
  1132. Describes the type of parallel task. The different values are:
  1133. @table @asis
  1134. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  1135. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  1136. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  1137. @code{starpu_combined_worker_get_rank} to distribute the work
  1138. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  1139. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  1140. determine how many threads should be started.
  1141. @end table
  1142. See @ref{Parallel Tasks} for details.
  1143. @end deftp
  1144. @defmac STARPU_CPU
  1145. This macro is used when setting the field @code{where} of a @code{struct
  1146. starpu_codelet} to specify the codelet may be executed on a CPU
  1147. processing unit.
  1148. @end defmac
  1149. @defmac STARPU_CUDA
  1150. This macro is used when setting the field @code{where} of a @code{struct
  1151. starpu_codelet} to specify the codelet may be executed on a CUDA
  1152. processing unit.
  1153. @end defmac
  1154. @defmac STARPU_SPU
  1155. This macro is used when setting the field @code{where} of a @code{struct
  1156. starpu_codelet} to specify the codelet may be executed on a SPU
  1157. processing unit.
  1158. @end defmac
  1159. @defmac STARPU_GORDON
  1160. This macro is used when setting the field @code{where} of a @code{struct
  1161. starpu_codelet} to specify the codelet may be executed on a Cell
  1162. processing unit.
  1163. @end defmac
  1164. @defmac STARPU_OPENCL
  1165. This macro is used when setting the field @code{where} of a @code{struct
  1166. starpu_codelet} to specify the codelet may be executed on a OpenCL
  1167. processing unit.
  1168. @end defmac
  1169. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  1170. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  1171. with this macro indicates the codelet will have several
  1172. implementations. The use of this macro is deprecated. One should
  1173. always only define the field @code{cpu_funcs}.
  1174. @end defmac
  1175. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  1176. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  1177. with this macro indicates the codelet will have several
  1178. implementations. The use of this macro is deprecated. One should
  1179. always only define the field @code{cuda_funcs}.
  1180. @end defmac
  1181. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  1182. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  1183. with this macro indicates the codelet will have several
  1184. implementations. The use of this macro is deprecated. One should
  1185. always only define the field @code{opencl_funcs}.
  1186. @end defmac
  1187. @deftp {Data Type} {struct starpu_codelet}
  1188. The codelet structure describes a kernel that is possibly implemented on various
  1189. targets. For compatibility, make sure to initialize the whole structure to zero,
  1190. either by using explicit memset, or by letting the compiler implicitly do it in
  1191. e.g. static storage case.
  1192. @table @asis
  1193. @item @code{uint32_t where} (optional)
  1194. Indicates which types of processing units are able to execute the
  1195. codelet. The different values
  1196. @code{STARPU_CPU}, @code{STARPU_CUDA}, @code{STARPU_SPU},
  1197. @code{STARPU_GORDON}, @code{STARPU_OPENCL} can be combined to specify
  1198. on which types of processing units the codelet can be executed.
  1199. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  1200. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  1201. indicates that it is only available on Cell SPUs. If the field is
  1202. unset, its value will be automatically set based on the availability
  1203. of the @code{XXX_funcs} fields defined below.
  1204. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  1205. Defines a function which should return 1 if the worker designated by
  1206. @var{workerid} can execute the @var{nimpl}th implementation of the
  1207. given @var{task}, 0 otherwise.
  1208. @item @code{enum starpu_codelet_type type} (optional)
  1209. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  1210. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  1211. implementation is also available. See @ref{Parallel Tasks} for details.
  1212. @item @code{int max_parallelism} (optional)
  1213. If a parallel implementation is available, this denotes the maximum combined
  1214. worker size that StarPU will use to execute parallel tasks for this codelet.
  1215. @item @code{starpu_cpu_func_t cpu_func} (optional)
  1216. This field has been made deprecated. One should use instead the
  1217. @code{cpu_funcs} field.
  1218. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1219. Is an array of function pointers to the CPU implementations of the codelet.
  1220. It must be terminated by a NULL value.
  1221. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1222. argument being the array of data managed by the data management library, and
  1223. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1224. field of the @code{starpu_task} structure.
  1225. If the @code{where} field is set, then the @code{cpu_funcs} field is
  1226. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  1227. field, it must be non-null otherwise.
  1228. @item @code{starpu_cuda_func_t cuda_func} (optional)
  1229. This field has been made deprecated. One should use instead the
  1230. @code{cuda_funcs} field.
  1231. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1232. Is an array of function pointers to the CUDA implementations of the codelet.
  1233. It must be terminated by a NULL value.
  1234. @emph{The functions must be host-functions written in the CUDA runtime
  1235. API}. Their prototype must
  1236. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  1237. If the @code{where} field is set, then the @code{cuda_funcs}
  1238. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  1239. field, it must be non-null otherwise.
  1240. @item @code{starpu_opencl_func_t opencl_func} (optional)
  1241. This field has been made deprecated. One should use instead the
  1242. @code{opencl_funcs} field.
  1243. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1244. Is an array of function pointers to the OpenCL implementations of the codelet.
  1245. It must be terminated by a NULL value.
  1246. The functions prototype must be:
  1247. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  1248. If the @code{where} field is set, then the @code{opencl_funcs} field
  1249. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  1250. field, it must be non-null otherwise.
  1251. @item @code{uint8_t gordon_func} (optional)
  1252. This field has been made deprecated. One should use instead the
  1253. @code{gordon_funcs} field.
  1254. @item @code{uint8_t gordon_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1255. Is an array of index of the Cell SPU implementations of the codelet within the
  1256. Gordon library.
  1257. It must be terminated by a NULL value.
  1258. See Gordon documentation for more details on how to register a kernel and
  1259. retrieve its index.
  1260. @item @code{unsigned nbuffers}
  1261. Specifies the number of arguments taken by the codelet. These arguments are
  1262. managed by the DSM and are accessed from the @code{void *buffers[]}
  1263. array. The constant argument passed with the @code{cl_arg} field of the
  1264. @code{starpu_task} structure is not counted in this number. This value should
  1265. not be above @code{STARPU_NMAXBUFS}.
  1266. @item @code{enum starpu_access_mode modes[STARPU_NMAXBUFS]}
  1267. Is an array of @code{enum starpu_access_mode}. It describes the
  1268. required access modes to the data neeeded by the codelet (e.g.
  1269. @code{STARPU_RW}). The number of entries in this array must be
  1270. specified in the @code{nbuffers} field (defined above), and should not
  1271. exceed @code{STARPU_NMAXBUFS}.
  1272. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1273. option when configuring StarPU.
  1274. @item @code{struct starpu_perfmodel *model} (optional)
  1275. This is a pointer to the task duration performance model associated to this
  1276. codelet. This optional field is ignored when set to @code{NULL} or
  1277. when its @code{symbol} field is not set.
  1278. @item @code{struct starpu_perfmodel *power_model} (optional)
  1279. This is a pointer to the task power consumption performance model associated
  1280. to this codelet. This optional field is ignored when set to
  1281. @code{NULL} or when its @code{symbol} field is not set.
  1282. In the case of parallel codelets, this has to account for all processing units
  1283. involved in the parallel execution.
  1284. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1285. Statistics collected at runtime: this is filled by StarPU and should not be
  1286. accessed directly, but for example by calling the
  1287. @code{starpu_display_codelet_stats} function (See
  1288. @ref{starpu_display_codelet_stats} for details).
  1289. @item @code{const char *name} (optional)
  1290. Define the name of the codelet. This can be useful for debugging purposes.
  1291. @end table
  1292. @end deftp
  1293. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1294. Initialize @var{cl} with default values. Codelets should preferably be
  1295. initialized statically as shown in @ref{Defining a Codelet}. However
  1296. such a initialisation is not always possible, e.g. when using C++.
  1297. @end deftypefun
  1298. @deftp {Data Type} {enum starpu_task_status}
  1299. State of a task, can be either of
  1300. @table @asis
  1301. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1302. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1303. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1304. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1305. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1306. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1307. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1308. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1309. @end table
  1310. @end deftp
  1311. @deftp {Data Type} {struct starpu_buffer_descr}
  1312. This type is used to describe a data handle along with an
  1313. access mode.
  1314. @table @asis
  1315. @item @code{starpu_data_handle_t handle} describes a data,
  1316. @item @code{enum starpu_access_mode mode} describes its access mode
  1317. @end table
  1318. @end deftp
  1319. @deftp {Data Type} {struct starpu_task}
  1320. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1321. processing units managed by StarPU. It instantiates a codelet. It can either be
  1322. allocated dynamically with the @code{starpu_task_create} method, or declared
  1323. statically. In the latter case, the programmer has to zero the
  1324. @code{starpu_task} structure and to fill the different fields properly. The
  1325. indicated default values correspond to the configuration of a task allocated
  1326. with @code{starpu_task_create}.
  1327. @table @asis
  1328. @item @code{struct starpu_codelet *cl}
  1329. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1330. describes where the kernel should be executed, and supplies the appropriate
  1331. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1332. such empty tasks can be useful for synchronization purposes.
  1333. @item @code{struct starpu_buffer_descr buffers[STARPU_NMAXBUFS]}
  1334. This field has been made deprecated. One should use instead the
  1335. @code{handles} field to specify the handles to the data accessed by
  1336. the task. The access modes are now defined in the @code{mode} field of
  1337. the @code{struct starpu_codelet cl} field defined above.
  1338. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1339. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1340. to the different pieces of data accessed by the task. The number
  1341. of entries in this array must be specified in the @code{nbuffers} field of the
  1342. @code{struct starpu_codelet} structure, and should not exceed
  1343. @code{STARPU_NMAXBUFS}.
  1344. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1345. option when configuring StarPU.
  1346. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1347. The actual data pointers to the memory node where execution will happen, managed
  1348. by the DSM.
  1349. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1350. This pointer is passed to the codelet through the second argument
  1351. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1352. In the specific case of the Cell processor, see the @code{cl_arg_size}
  1353. argument.
  1354. @item @code{size_t cl_arg_size} (optional, Cell-specific)
  1355. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  1356. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  1357. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  1358. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  1359. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  1360. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  1361. codelets, where the @code{cl_arg} pointer is given as such.
  1362. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1363. This is a function pointer of prototype @code{void (*f)(void *)} which
  1364. specifies a possible callback. If this pointer is non-null, the callback
  1365. function is executed @emph{on the host} after the execution of the task. Tasks
  1366. which depend on it might already be executing. The callback is passed the
  1367. value contained in the @code{callback_arg} field. No callback is executed if the
  1368. field is set to @code{NULL}.
  1369. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1370. This is the pointer passed to the callback function. This field is ignored if
  1371. the @code{callback_func} is set to @code{NULL}.
  1372. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1373. If set, this flag indicates that the task should be associated with the tag
  1374. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1375. with the task and to express task dependencies easily.
  1376. @item @code{starpu_tag_t tag_id}
  1377. This fields contains the tag associated to the task if the @code{use_tag} field
  1378. was set, it is ignored otherwise.
  1379. @item @code{unsigned synchronous}
  1380. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1381. returns only when the task has been executed (or if no worker is able to
  1382. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1383. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1384. This field indicates a level of priority for the task. This is an integer value
  1385. that must be set between the return values of the
  1386. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1387. and that of the @code{starpu_sched_get_max_priority} for the most important
  1388. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1389. are provided for convenience and respectively returns value of
  1390. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1391. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1392. order to allow static task initialization. Scheduling strategies that take
  1393. priorities into account can use this parameter to take better scheduling
  1394. decisions, but the scheduling policy may also ignore it.
  1395. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1396. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1397. task to the worker specified by the @code{workerid} field.
  1398. @item @code{unsigned workerid} (optional)
  1399. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1400. which is the identifier of the worker that should process this task (as
  1401. returned by @code{starpu_worker_get_id}). This field is ignored if
  1402. @code{execute_on_a_specific_worker} field is set to 0.
  1403. @item @code{starpu_task_bundle_t bundle} (optional)
  1404. The bundle that includes this task. If no bundle is used, this should be NULL.
  1405. @item @code{int detach} (optional) (default: @code{1})
  1406. If this flag is set, it is not possible to synchronize with the task
  1407. by the means of @code{starpu_task_wait} later on. Internal data structures
  1408. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1409. flag is not set.
  1410. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1411. If this flag is set, the task structure will automatically be freed, either
  1412. after the execution of the callback if the task is detached, or during
  1413. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1414. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1415. called explicitly. Setting this flag for a statically allocated task structure
  1416. will result in undefined behaviour. The flag is set to 1 when the task is
  1417. created by calling @code{starpu_task_create()}. Note that
  1418. @code{starpu_task_wait_for_all} will not free any task.
  1419. @item @code{int regenerate} (optional)
  1420. If this flag is set, the task will be re-submitted to StarPU once it has been
  1421. executed. This flag must not be set if the destroy flag is set too.
  1422. @item @code{enum starpu_task_status status} (optional)
  1423. Current state of the task.
  1424. @item @code{struct starpu_task_profiling_info *profiling_info} (optional)
  1425. Profiling information for the task.
  1426. @item @code{double predicted} (output field)
  1427. Predicted duration of the task. This field is only set if the scheduling
  1428. strategy used performance models.
  1429. @item @code{double predicted_transfer} (optional)
  1430. Predicted data transfer duration for the task in microseconds. This field is
  1431. only valid if the scheduling strategy uses performance models.
  1432. @item @code{struct starpu_task *prev}
  1433. A pointer to the previous task. This should only be used by StarPU.
  1434. @item @code{struct starpu_task *next}
  1435. A pointer to the next task. This should only be used by StarPU.
  1436. @item @code{unsigned int mf_skip}
  1437. This is only used for tasks that use multiformat handle. This should only be
  1438. used by StarPU.
  1439. @item @code{void *starpu_private}
  1440. This is private to StarPU, do not modify. If the task is allocated by hand
  1441. (without starpu_task_create), this field should be set to NULL.
  1442. @item @code{int magic}
  1443. This field is set when initializing a task. It prevents a task from being
  1444. submitted if it has not been properly initialized.
  1445. @end table
  1446. @end deftp
  1447. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1448. Initialize @var{task} with default values. This function is implicitly
  1449. called by @code{starpu_task_create}. By default, tasks initialized with
  1450. @code{starpu_task_init} must be deinitialized explicitly with
  1451. @code{starpu_task_clean}. Tasks can also be initialized statically,
  1452. using @code{STARPU_TASK_INITIALIZER} defined below.
  1453. @end deftypefun
  1454. @defmac STARPU_TASK_INITIALIZER
  1455. It is possible to initialize statically allocated tasks with this
  1456. value. This is equivalent to initializing a starpu_task structure with
  1457. the @code{starpu_task_init} function defined above.
  1458. @end defmac
  1459. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1460. Allocate a task structure and initialize it with default values. Tasks
  1461. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1462. task is terminated. This means that the task pointer can not be used any more
  1463. once the task is submitted, since it can be executed at any time (unless
  1464. dependencies make it wait) and thus freed at any time.
  1465. If the destroy flag is explicitly unset, the resources used
  1466. by the task have to be freed by calling
  1467. @code{starpu_task_destroy}.
  1468. @end deftypefun
  1469. @deftypefun void starpu_task_clean ({struct starpu_task} *@var{task})
  1470. Release all the structures automatically allocated to execute @var{task}, but
  1471. not the task structure itself and values set by the user remain unchanged.
  1472. It is thus useful for statically allocated tasks for instance.
  1473. It is also useful when the user wants to execute the same operation several
  1474. times with as least overhead as possible.
  1475. It is called automatically by @code{starpu_task_destroy}.
  1476. It has to be called only after explicitly waiting for the task or after
  1477. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1478. still manipulates the task after calling the callback).
  1479. @end deftypefun
  1480. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1481. Free the resource allocated during @code{starpu_task_create} and
  1482. associated with @var{task}. This function is already called automatically
  1483. after the execution of a task when the @code{destroy} flag of the
  1484. @code{starpu_task} structure is set, which is the default for tasks created by
  1485. @code{starpu_task_create}. Calling this function on a statically allocated task
  1486. results in an undefined behaviour.
  1487. @end deftypefun
  1488. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1489. This function blocks until @var{task} has been executed. It is not possible to
  1490. synchronize with a task more than once. It is not possible to wait for
  1491. synchronous or detached tasks.
  1492. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1493. indicates that the specified task was either synchronous or detached.
  1494. @end deftypefun
  1495. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1496. This function submits @var{task} to StarPU. Calling this function does
  1497. not mean that the task will be executed immediately as there can be data or task
  1498. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1499. scheduling this task with respect to such dependencies.
  1500. This function returns immediately if the @code{synchronous} field of the
  1501. @code{starpu_task} structure was set to 0, and block until the termination of
  1502. the task otherwise. It is also possible to synchronize the application with
  1503. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1504. function for instance.
  1505. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1506. means that there is no worker able to process this task (e.g. there is no GPU
  1507. available and this task is only implemented for CUDA devices).
  1508. starpu_task_submit() can be called from anywhere, including codelet
  1509. functions and callbacks, provided that the @code{synchronous} field of the
  1510. @code{starpu_task} structure is left to 0.
  1511. @end deftypefun
  1512. @deftypefun int starpu_task_wait_for_all (void)
  1513. This function blocks until all the tasks that were submitted are terminated. It
  1514. does not destroy these tasks.
  1515. @end deftypefun
  1516. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1517. This function returns the task currently executed by the worker, or
  1518. NULL if it is called either from a thread that is not a task or simply
  1519. because there is no task being executed at the moment.
  1520. @end deftypefun
  1521. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1522. @anchor{starpu_display_codelet_stats}
  1523. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1524. @end deftypefun
  1525. @deftypefun int starpu_task_wait_for_no_ready (void)
  1526. This function waits until there is no more ready task.
  1527. @end deftypefun
  1528. @c Callbacks: what can we put in callbacks ?
  1529. @node Explicit Dependencies
  1530. @section Explicit Dependencies
  1531. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1532. Declare task dependencies between a @var{task} and an array of tasks of length
  1533. @var{ndeps}. This function must be called prior to the submission of the task,
  1534. but it may called after the submission or the execution of the tasks in the
  1535. array, provided the tasks are still valid (ie. they were not automatically
  1536. destroyed). Calling this function on a task that was already submitted or with
  1537. an entry of @var{task_array} that is not a valid task anymore results in an
  1538. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1539. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1540. same task, in this case, the dependencies are added. It is possible to have
  1541. redundancy in the task dependencies.
  1542. @end deftypefun
  1543. @deftp {Data Type} {starpu_tag_t}
  1544. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1545. dependencies between tasks by the means of those tags. To do so, fill the
  1546. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1547. be arbitrary) and set the @code{use_tag} field to 1.
  1548. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1549. not be started until the tasks which holds the declared dependency tags are
  1550. completed.
  1551. @end deftp
  1552. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1553. Specify the dependencies of the task identified by tag @var{id}. The first
  1554. argument specifies the tag which is configured, the second argument gives the
  1555. number of tag(s) on which @var{id} depends. The following arguments are the
  1556. tags which have to be terminated to unlock the task.
  1557. This function must be called before the associated task is submitted to StarPU
  1558. with @code{starpu_task_submit}.
  1559. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1560. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1561. typically need to be explicitly casted. Using the
  1562. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1563. @cartouche
  1564. @smallexample
  1565. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1566. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1567. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1568. @end smallexample
  1569. @end cartouche
  1570. @end deftypefun
  1571. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1572. This function is similar to @code{starpu_tag_declare_deps}, except
  1573. that its does not take a variable number of arguments but an array of
  1574. tags of size @var{ndeps}.
  1575. @cartouche
  1576. @smallexample
  1577. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1578. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1579. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1580. @end smallexample
  1581. @end cartouche
  1582. @end deftypefun
  1583. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  1584. This function blocks until the task associated to tag @var{id} has been
  1585. executed. This is a blocking call which must therefore not be called within
  1586. tasks or callbacks, but only from the application directly. It is possible to
  1587. synchronize with the same tag multiple times, as long as the
  1588. @code{starpu_tag_remove} function is not called. Note that it is still
  1589. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1590. data structure was freed (e.g. if the @code{destroy} flag of the
  1591. @code{starpu_task} was enabled).
  1592. @end deftypefun
  1593. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1594. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1595. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1596. terminated.
  1597. @end deftypefun
  1598. @deftypefun void starpu_tag_restart (starpu_tag_t @var{id})
  1599. This function can be used to clear the "already notified" status
  1600. of a tag which is not associated with a task. Before that, calling
  1601. @code{starpu_tag_notify_from_apps} again will not notify the successors. After
  1602. that, the next call to @code{starpu_tag_notify_from_apps} will notify the
  1603. successors.
  1604. @end deftypefun
  1605. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1606. This function releases the resources associated to tag @var{id}. It can be
  1607. called once the corresponding task has been executed and when there is
  1608. no other tag that depend on this tag anymore.
  1609. @end deftypefun
  1610. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1611. This function explicitly unlocks tag @var{id}. It may be useful in the
  1612. case of applications which execute part of their computation outside StarPU
  1613. tasks (e.g. third-party libraries). It is also provided as a
  1614. convenient tool for the programmer, for instance to entirely construct the task
  1615. DAG before actually giving StarPU the opportunity to execute the tasks. When
  1616. called several times on the same tag, notification will be done only on first
  1617. call, thus implementing "OR" dependencies, until the tag is restarted using
  1618. @code{starpu_tag_restart}.
  1619. @end deftypefun
  1620. @node Implicit Data Dependencies
  1621. @section Implicit Data Dependencies
  1622. In this section, we describe how StarPU makes it possible to insert implicit
  1623. task dependencies in order to enforce sequential data consistency. When this
  1624. data consistency is enabled on a specific data handle, any data access will
  1625. appear as sequentially consistent from the application. For instance, if the
  1626. application submits two tasks that access the same piece of data in read-only
  1627. mode, and then a third task that access it in write mode, dependencies will be
  1628. added between the two first tasks and the third one. Implicit data dependencies
  1629. are also inserted in the case of data accesses from the application.
  1630. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1631. Set the default sequential consistency flag. If a non-zero value is passed, a
  1632. sequential data consistency will be enforced for all handles registered after
  1633. this function call, otherwise it is disabled. By default, StarPU enables
  1634. sequential data consistency. It is also possible to select the data consistency
  1635. mode of a specific data handle with the
  1636. @code{starpu_data_set_sequential_consistency_flag} function.
  1637. @end deftypefun
  1638. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1639. Return the default sequential consistency flag
  1640. @end deftypefun
  1641. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1642. Sets the data consistency mode associated to a data handle. The consistency
  1643. mode set using this function has the priority over the default mode which can
  1644. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  1645. @end deftypefun
  1646. @node Performance Model API
  1647. @section Performance Model API
  1648. @deftp {Data Type} {enum starpu_perf_archtype}
  1649. Enumerates the various types of architectures.
  1650. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1651. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1652. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1653. @table @asis
  1654. @item @code{STARPU_CPU_DEFAULT}
  1655. @item @code{STARPU_CUDA_DEFAULT}
  1656. @item @code{STARPU_OPENCL_DEFAULT}
  1657. @item @code{STARPU_GORDON_DEFAULT}
  1658. @end table
  1659. @end deftp
  1660. @deftp {Data Type} {enum starpu_perfmodel_type}
  1661. The possible values are:
  1662. @table @asis
  1663. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  1664. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  1665. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  1666. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  1667. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  1668. @end table
  1669. @end deftp
  1670. @deftp {Data Type} {struct starpu_perfmodel}
  1671. @anchor{struct starpu_perfmodel}
  1672. contains all information about a performance model. At least the
  1673. @code{type} and @code{symbol} fields have to be filled when defining a
  1674. performance model for a codelet. For compatibility, make sure to initialize the
  1675. whole structure to zero, either by using explicit memset, or by letting the
  1676. compiler implicitly do it in e.g. static storage case.
  1677. If not provided, other fields have to be zero.
  1678. @table @asis
  1679. @item @code{type}
  1680. is the type of performance model @code{enum starpu_perfmodel_type}:
  1681. @code{STARPU_HISTORY_BASED},
  1682. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1683. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1684. @code{per_arch} has to be filled with functions which return the cost in
  1685. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1686. a function that returns the cost in micro-seconds on a CPU, timing on other
  1687. archs will be determined by multiplying by an arch-specific factor.
  1688. @item @code{const char *symbol}
  1689. is the symbol name for the performance model, which will be used as
  1690. file name to store the model. It must be set otherwise the model will
  1691. be ignored.
  1692. @item @code{double (*cost_model)(struct starpu_buffer_descr *)}
  1693. This field is deprecated. Use instead the @code{cost_function} field.
  1694. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  1695. Used by @code{STARPU_COMMON}: takes a task and
  1696. implementation number, and must return a task duration estimation in micro-seconds.
  1697. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  1698. Used by @code{STARPU_HISTORY_BASED} and
  1699. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1700. implementation number, and returns the size to be used as index for
  1701. history and regression.
  1702. @item @code{struct starpu_perfmodel_per_arch per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  1703. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1704. starpu_per_arch_perfmodel} structures.
  1705. @item @code{unsigned is_loaded}
  1706. Whether the performance model is already loaded from the disk.
  1707. @item @code{unsigned benchmarking}
  1708. Whether the performance model is still being calibrated.
  1709. @item @code{pthread_rwlock_t model_rwlock}
  1710. Lock to protect concurrency between loading from disk (W), updating the values
  1711. (W), and making a performance estimation (R).
  1712. @end table
  1713. @end deftp
  1714. @deftp {Data Type} {struct starpu_perfmodel_regression_model}
  1715. @table @asis
  1716. @item @code{double sumlny} sum of ln(measured)
  1717. @item @code{double sumlnx} sum of ln(size)
  1718. @item @code{double sumlnx2} sum of ln(size)^2
  1719. @item @code{unsigned long minx} minimum size
  1720. @item @code{unsigned long maxx} maximum size
  1721. @item @code{double sumlnxlny} sum of ln(size)*ln(measured)
  1722. @item @code{double alpha} estimated = alpha * size ^ beta
  1723. @item @code{double beta}
  1724. @item @code{unsigned valid} whether the linear regression model is valid (i.e. enough measures)
  1725. @item @code{double a, b, c} estimaed = a size ^b + c
  1726. @item @code{unsigned nl_valid} whether the non-linear regression model is valid (i.e. enough measures)
  1727. @item @code{unsigned nsample} number of sample values for non-linear regression
  1728. @end table
  1729. @end deftp
  1730. @deftp {Data Type} {struct starpu_perfmodel_per_arch}
  1731. contains information about the performance model of a given arch.
  1732. @table @asis
  1733. @item @code{double (*cost_model)(struct starpu_buffer_descr *t)}
  1734. This field is deprecated. Use instead the @code{cost_function} field.
  1735. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perf_archtype arch, unsigned nimpl)}
  1736. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1737. target arch and implementation number (as mere conveniency, since the array
  1738. is already indexed by these), and must return a task duration estimation in
  1739. micro-seconds.
  1740. @item @code{size_t (*size_base)(struct starpu_task *, enum
  1741. starpu_perf_archtype arch, unsigned nimpl)}
  1742. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  1743. case it depends on the architecture-specific implementation.
  1744. @item @code{struct starpu_htbl32_node *history}
  1745. The history of performance measurements.
  1746. @item @code{struct starpu_perfmodel_history_list *list}
  1747. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1748. records all execution history measures.
  1749. @item @code{struct starpu_perfmodel_regression_model regression}
  1750. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1751. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1752. regression.
  1753. @end table
  1754. @end deftp
  1755. @deftypefun int starpu_perfmodel_load_symbol ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1756. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{$HOME/.starpu} (@code{$USERPROFILE/.starpu} in windows environments).
  1757. @end deftypefun
  1758. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  1759. returns the path to the debugging information for the performance model.
  1760. @end deftypefun
  1761. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  1762. returns the architecture name for @var{arch}.
  1763. @end deftypefun
  1764. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1765. returns the architecture type of a given worker.
  1766. @end deftypefun
  1767. @deftypefun int starpu_perfmodel_list ({FILE *}@var{output})
  1768. prints a list of all performance models on @var{output}.
  1769. @end deftypefun
  1770. @deftypefun void starpu_perfmodel_print ({struct starpu_perfmodel *}@var{model}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl}, {char *}@var{parameter}, {uint32_t *}footprint, {FILE *}@var{output})
  1771. todo
  1772. @end deftypefun
  1773. @deftypefun int starpu_perfmodel_print_all ({struct starpu_perfmodel *}@var{model}, {char *}@var{arch}, @var{char *}parameter, {uint32_t *}@var{footprint}, {FILE *}@var{output})
  1774. todo
  1775. @end deftypefun
  1776. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  1777. prints a matrix of bus bandwidths on @var{f}.
  1778. @end deftypefun
  1779. @deftypefun void starpu_bus_print_affinity ({FILE *}@var{f})
  1780. prints the affinity devices on @var{f}.
  1781. @end deftypefun
  1782. @deftypefun void starpu_topology_print ({FILE *}@var{f})
  1783. prints a description of the topology on @var{f}.
  1784. @end deftypefun
  1785. @deftypefun void starpu_perfmodel_update_history ({struct starpu_perfmodel *}@var{model}, {struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{cpuid}, unsigned @var{nimpl}, double @var{measured});
  1786. This feeds the performance model @var{model} with an explicit measurement
  1787. @var{measured}, in addition to measurements done by StarPU itself. This can be
  1788. useful when the application already has an existing set of measurements done
  1789. in good conditions, that StarPU could benefit from instead of doing on-line
  1790. measurements. And example of use can be see in @ref{Performance model example}.
  1791. @end deftypefun
  1792. @node Profiling API
  1793. @section Profiling API
  1794. @deftypefun int starpu_profiling_status_set (int @var{status})
  1795. Thie function sets the profiling status. Profiling is activated by passing
  1796. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  1797. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1798. resets all profiling measurements. When profiling is enabled, the
  1799. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1800. to a valid @code{struct starpu_task_profiling_info} structure containing
  1801. information about the execution of the task.
  1802. Negative return values indicate an error, otherwise the previous status is
  1803. returned.
  1804. @end deftypefun
  1805. @deftypefun int starpu_profiling_status_get (void)
  1806. Return the current profiling status or a negative value in case there was an error.
  1807. @end deftypefun
  1808. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  1809. This function sets the ID used for profiling trace filename
  1810. @end deftypefun
  1811. @deftp {Data Type} {struct starpu_task_profiling_info}
  1812. This structure contains information about the execution of a task. It is
  1813. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1814. structure if profiling was enabled. The different fields are:
  1815. @table @asis
  1816. @item @code{struct timespec submit_time}
  1817. Date of task submission (relative to the initialization of StarPU).
  1818. @item @code{struct timespec push_start_time}
  1819. Time when the task was submitted to the scheduler.
  1820. @item @code{struct timespec push_end_time}
  1821. Time when the scheduler finished with the task submission.
  1822. @item @code{struct timespec pop_start_time}
  1823. Time when the scheduler started to be requested for a task, and eventually gave
  1824. that task.
  1825. @item @code{struct timespec pop_end_time}
  1826. Time when the scheduler finished providing the task for execution.
  1827. @item @code{struct timespec acquire_data_start_time}
  1828. Time when the worker started fetching input data.
  1829. @item @code{struct timespec acquire_data_end_time}
  1830. Time when the worker finished fetching input data.
  1831. @item @code{struct timespec start_time}
  1832. Date of task execution beginning (relative to the initialization of StarPU).
  1833. @item @code{struct timespec end_time}
  1834. Date of task execution termination (relative to the initialization of StarPU).
  1835. @item @code{struct timespec release_data_start_time}
  1836. Time when the worker started releasing data.
  1837. @item @code{struct timespec release_data_end_time}
  1838. Time when the worker finished releasing data.
  1839. @item @code{struct timespec callback_start_time}
  1840. Time when the worker started the application callback for the task.
  1841. @item @code{struct timespec callback_end_time}
  1842. Time when the worker finished the application callback for the task.
  1843. @item @code{workerid}
  1844. Identifier of the worker which has executed the task.
  1845. @item @code{uint64_t used_cycles}
  1846. Number of cycles used by the task, only available in the MoviSim
  1847. @item @code{uint64_t stall_cycles}
  1848. Number of cycles stalled within the task, only available in the MoviSim
  1849. @item @code{double power_consumed}
  1850. Power consumed by the task, only available in the MoviSim
  1851. @end table
  1852. @end deftp
  1853. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1854. This structure contains the profiling information associated to a
  1855. worker. The different fields are:
  1856. @table @asis
  1857. @item @code{struct timespec start_time}
  1858. Starting date for the reported profiling measurements.
  1859. @item @code{struct timespec total_time}
  1860. Duration of the profiling measurement interval.
  1861. @item @code{struct timespec executing_time}
  1862. Time spent by the worker to execute tasks during the profiling measurement interval.
  1863. @item @code{struct timespec sleeping_time}
  1864. Time spent idling by the worker during the profiling measurement interval.
  1865. @item @code{int executed_tasks}
  1866. Number of tasks executed by the worker during the profiling measurement interval.
  1867. @item @code{uint64_t used_cycles}
  1868. Number of cycles used by the worker, only available in the MoviSim
  1869. @item @code{uint64_t stall_cycles}
  1870. Number of cycles stalled within the worker, only available in the MoviSim
  1871. @item @code{double power_consumed}
  1872. Power consumed by the worker, only available in the MoviSim
  1873. @end table
  1874. @end deftp
  1875. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  1876. Get the profiling info associated to the worker identified by @var{workerid},
  1877. and reset the profiling measurements. If the @var{worker_info} argument is
  1878. NULL, only reset the counters associated to worker @var{workerid}.
  1879. Upon successful completion, this function returns 0. Otherwise, a negative
  1880. value is returned.
  1881. @end deftypefun
  1882. @deftp {Data Type} {struct starpu_bus_profiling_info}
  1883. The different fields are:
  1884. @table @asis
  1885. @item @code{struct timespec start_time}
  1886. Time of bus profiling startup.
  1887. @item @code{struct timespec total_time}
  1888. Total time of bus profiling.
  1889. @item @code{int long long transferred_bytes}
  1890. Number of bytes transferred during profiling.
  1891. @item @code{int transfer_count}
  1892. Number of transfers during profiling.
  1893. @end table
  1894. @end deftp
  1895. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  1896. Get the profiling info associated to the worker designated by @var{workerid},
  1897. and reset the profiling measurements. If worker_info is NULL, only reset the
  1898. counters.
  1899. @end deftypefun
  1900. @deftypefun int starpu_bus_get_count (void)
  1901. Return the number of buses in the machine.
  1902. @end deftypefun
  1903. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  1904. Return the identifier of the bus between @var{src} and @var{dst}
  1905. @end deftypefun
  1906. @deftypefun int starpu_bus_get_src (int @var{busid})
  1907. Return the source point of bus @var{busid}
  1908. @end deftypefun
  1909. @deftypefun int starpu_bus_get_dst (int @var{busid})
  1910. Return the destination point of bus @var{busid}
  1911. @end deftypefun
  1912. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  1913. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  1914. @end deftypefun
  1915. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  1916. Converts the given timespec @var{ts} into microseconds.
  1917. @end deftypefun
  1918. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  1919. Displays statistics about the bus on stderr.
  1920. @end deftypefun
  1921. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  1922. Displays statistics about the workers on stderr.
  1923. @end deftypefun
  1924. @node CUDA extensions
  1925. @section CUDA extensions
  1926. @defmac STARPU_USE_CUDA
  1927. This macro is defined when StarPU has been installed with CUDA
  1928. support. It should be used in your code to detect the availability of
  1929. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1930. @end defmac
  1931. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  1932. This function gets the current worker's CUDA stream.
  1933. StarPU provides a stream for every CUDA device controlled by StarPU. This
  1934. function is only provided for convenience so that programmers can easily use
  1935. asynchronous operations within codelets without having to create a stream by
  1936. hand. Note that the application is not forced to use the stream provided by
  1937. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  1938. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  1939. the likelihood of having all transfers overlapped.
  1940. @end deftypefun
  1941. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  1942. This function returns a pointer to device properties for worker @var{workerid}
  1943. (assumed to be a CUDA worker).
  1944. @end deftypefun
  1945. @deftypefun size_t starpu_cuda_get_global_mem_size (int @var{devid})
  1946. Return the size of the global memory of CUDA device @var{devid}.
  1947. @end deftypefun
  1948. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  1949. Report a CUDA error.
  1950. @end deftypefun
  1951. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  1952. Calls starpu_cuda_report_error, passing the current function, file and line
  1953. position.
  1954. @end defmac
  1955. @deftypefun int starpu_cuda_copy_async_sync ({void *}@var{src_ptr}, unsigned @var{src_node}, {void *}@var{dst_ptr}, unsigned @var{dst_node}, size_t @var{ssize}, cudaStream_t @var{stream}, {enum cudaMemcpyKind} @var{kind})
  1956. Copy @var{ssize} bytes from the pointer @var{src_ptr} on
  1957. @var{src_node} to the pointer @var{dst_ptr} on @var{dst_node}.
  1958. The function first tries to copy the data asynchronous (unless
  1959. @var{stream} is @code{NULL}. If the asynchronous copy fails or if
  1960. @var{stream} is @code{NULL}, it copies the data synchronously.
  1961. The function returns @code{-EAGAIN} if the asynchronous copy was
  1962. successfull. It returns 0 if the synchronous copy was successful, or
  1963. fails otherwise.
  1964. @end deftypefun
  1965. @deftypefun void starpu_cuda_set_device (int @var{devid})
  1966. Calls @code{cudaSetDevice(devid)} or @code{cudaGLSetGLDevice(devid)}, according to
  1967. whether @code{devid} is among the @code{cuda_opengl_interoperability} field of
  1968. the @code{starpu_conf} structure.
  1969. @end deftypefun
  1970. @deftypefun void starpu_helper_cublas_init (void)
  1971. This function initializes CUBLAS on every CUDA device.
  1972. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  1973. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  1974. controlled by StarPU. This call blocks until CUBLAS has been properly
  1975. initialized on every device.
  1976. @end deftypefun
  1977. @deftypefun void starpu_helper_cublas_shutdown (void)
  1978. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  1979. @end deftypefun
  1980. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  1981. Report a cublas error.
  1982. @end deftypefun
  1983. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  1984. Calls starpu_cublas_report_error, passing the current function, file and line
  1985. position.
  1986. @end defmac
  1987. @node OpenCL extensions
  1988. @section OpenCL extensions
  1989. @menu
  1990. * Writing OpenCL kernels:: Writing OpenCL kernels
  1991. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  1992. * Loading OpenCL kernels:: Loading OpenCL kernels
  1993. * OpenCL statistics:: Collecting statistics from OpenCL
  1994. * OpenCL utilities:: Utilities for OpenCL
  1995. @end menu
  1996. @defmac STARPU_USE_OPENCL
  1997. This macro is defined when StarPU has been installed with OpenCL
  1998. support. It should be used in your code to detect the availability of
  1999. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2000. @end defmac
  2001. @node Writing OpenCL kernels
  2002. @subsection Writing OpenCL kernels
  2003. @deftypefun size_t starpu_opencl_get_global_mem_size (int @var{devid})
  2004. Return the size of global device memory in bytes.
  2005. @end deftypefun
  2006. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  2007. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  2008. @end deftypefun
  2009. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  2010. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  2011. @end deftypefun
  2012. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  2013. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  2014. @end deftypefun
  2015. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  2016. Return the context of the current worker.
  2017. @end deftypefun
  2018. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  2019. Return the computation kernel command queue of the current worker.
  2020. @end deftypefun
  2021. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  2022. Sets the arguments of a given kernel. The list of arguments must be given as
  2023. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  2024. The last argument must be 0. Returns the number of arguments that were
  2025. successfully set. In case of failure, returns the id of the argument
  2026. that could not be set and @var{err} is set to the error returned by
  2027. OpenCL. Otherwise, returns the number of arguments that were set.
  2028. @cartouche
  2029. @smallexample
  2030. int n;
  2031. cl_int err;
  2032. cl_kernel kernel;
  2033. n = starpu_opencl_set_kernel_args(&err, 2, &kernel,
  2034. sizeof(foo), &foo,
  2035. sizeof(bar), &bar,
  2036. 0);
  2037. if (n != 2)
  2038. fprintf(stderr, "Error : %d\n", err);
  2039. @end smallexample
  2040. @end cartouche
  2041. @end deftypefun
  2042. @node Compiling OpenCL kernels
  2043. @subsection Compiling OpenCL kernels
  2044. Source codes for OpenCL kernels can be stored in a file or in a
  2045. string. StarPU provides functions to build the program executable for
  2046. each available OpenCL device as a @code{cl_program} object. This
  2047. program executable can then be loaded within a specific queue as
  2048. explained in the next section. These are only helpers, Applications
  2049. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2050. use (e.g. different programs on the different OpenCL devices, for
  2051. relocation purpose for instance).
  2052. @deftp {Data Type} {struct starpu_opencl_program}
  2053. Stores the OpenCL programs as compiled for the different OpenCL devices.
  2054. @table @asis
  2055. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  2056. Stores each program for each OpenCL device.
  2057. @end table
  2058. @end deftp
  2059. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2060. @anchor{starpu_opencl_load_opencl_from_file}
  2061. This function compiles an OpenCL source code stored in a file.
  2062. @end deftypefun
  2063. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2064. This function compiles an OpenCL source code stored in a string.
  2065. @end deftypefun
  2066. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  2067. This function unloads an OpenCL compiled code.
  2068. @end deftypefun
  2069. @deftypefun void starpu_opencl_load_program_source ({const char *}@var{source_file_name}, char *@var{located_file_name}, char *@var{located_dir_name}, char *@var{opencl_program_source})
  2070. Store the contents of the file @var{source_file_name} in the buffer
  2071. @var{opencl_program_source}. The file @var{source_file_name} can be
  2072. located in the current directory, or in the directory specified by the
  2073. environment variable @code{STARPU_OPENCL_PROGRAM_DIR}, or in the
  2074. directory @code{share/starpu/opencl} of the installation directory of
  2075. StarPU, or in the source directory of StarPU.
  2076. When the file is found, @code{located_file_name} is the full name of
  2077. the file as it has been located on the system, @code{located_dir_name}
  2078. the directory where it has been located. Otherwise, they are both set
  2079. to the empty string.
  2080. @end deftypefun
  2081. @deftypefun int starpu_opencl_compile_opencl_from_file ({const char *}@var{source_file_name}, {const char *} @var{build_options})
  2082. Compile the OpenCL kernel stored in the file @code{source_file_name}
  2083. with the given options @code{build_options} and stores the result in
  2084. the directory @code{$STARPU_HOME/.starpu/opencl} with the same
  2085. filename as @code{source_file_name} (@code{$USERPROFILE/.starpu/opencl} in
  2086. windows environments). The compilation is done for every
  2087. OpenCL device, and the filename is suffixed with the vendor id and the
  2088. device id of the OpenCL device.
  2089. @end deftypefun
  2090. @deftypefun int starpu_opencl_compile_opencl_from_string ({const char *}@var{opencl_program_source}, {const char *}@var{file_name}, {const char* }@var{build_options})
  2091. Compile the OpenCL kernel in the string @code{opencl_program_source}
  2092. with the given options @code{build_options} and stores the result in
  2093. the directory @code{$STARPU_HOME/.starpu/opencl}
  2094. (@code{$USERPROFILE/.starpu/opencl} in windows environments) with the filename
  2095. @code{file_name}. The compilation is done for every
  2096. OpenCL device, and the filename is suffixed with the vendor id and the
  2097. device id of the OpenCL device.
  2098. @end deftypefun
  2099. @deftypefun int starpu_opencl_load_binary_opencl ({const char *}@var{kernel_id}, {struct starpu_opencl_program *}@var{opencl_programs})
  2100. Compile the binary OpenCL kernel identified with @var{id}. For every
  2101. OpenCL device, the binary OpenCL kernel will be loaded from the file
  2102. @code{$STARPU_HOME/.starpu/opencl/<kernel_id>.<device_type>.vendor_id_<vendor_id>_device_id_<device_id>}.
  2103. @end deftypefun
  2104. @node Loading OpenCL kernels
  2105. @subsection Loading OpenCL kernels
  2106. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  2107. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  2108. queue returned in @var{queue}, using program @var{opencl_programs} and name
  2109. @var{kernel_name}
  2110. @end deftypefun
  2111. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  2112. Release the given @var{kernel}, to be called after kernel execution.
  2113. @end deftypefun
  2114. @node OpenCL statistics
  2115. @subsection OpenCL statistics
  2116. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  2117. This function allows to collect statistics on a kernel execution.
  2118. After termination of the kernels, the OpenCL codelet should call this function
  2119. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  2120. collect statistics about the kernel execution (used cycles, consumed power).
  2121. @end deftypefun
  2122. @node OpenCL utilities
  2123. @subsection OpenCL utilities
  2124. @deftypefun {const char *} starpu_opencl_error_string (cl_int @var{status})
  2125. Return the error message in English corresponding to @var{status}, an
  2126. OpenCL error code.
  2127. @end deftypefun
  2128. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2129. Given a valid error @var{status}, prints the corresponding error message on
  2130. stdout, along with the given function name @var{func}, the given filename
  2131. @var{file}, the given line number @var{line} and the given message @var{msg}.
  2132. @end deftypefun
  2133. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  2134. Call the function @code{starpu_opencl_display_error} with the given
  2135. error @var{status}, the current function name, current file and line
  2136. number, and a empty message.
  2137. @end defmac
  2138. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2139. Call the function @code{starpu_opencl_display_error} and abort.
  2140. @end deftypefun
  2141. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  2142. Call the function @code{starpu_opencl_report_error} with the given
  2143. error @var{status}, with the current function name, current file and
  2144. line number, and a empty message.
  2145. @end defmac
  2146. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  2147. Call the function @code{starpu_opencl_report_error} with the given
  2148. message and the given error @var{status}, with the current function
  2149. name, current file and line number.
  2150. @end defmac
  2151. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  2152. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  2153. valid combination of cl_mem_flags values.
  2154. @end deftypefun
  2155. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2156. Copy @var{size} bytes from the given @var{ptr} on
  2157. @var{src_node} to the given @var{buffer} on @var{dst_node}.
  2158. @var{offset} is the offset, in bytes, in @var{buffer}.
  2159. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2160. synchronised before returning. If non NULL, @var{event} can be used
  2161. after the call to wait for this particular copy to complete.
  2162. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2163. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  2164. was successful, or to 0 if event was NULL.
  2165. @end deftypefun
  2166. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2167. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  2168. @var{src_node} to the given @var{ptr} on @var{dst_node}.
  2169. @var{offset} is the offset, in bytes, in @var{buffer}.
  2170. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2171. synchronised before returning. If non NULL, @var{event} can be used
  2172. after the call to wait for this particular copy to complete.
  2173. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2174. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  2175. was successful, or to 0 if event was NULL.
  2176. @end deftypefun
  2177. @node Cell extensions
  2178. @section Cell extensions
  2179. nothing yet.
  2180. @node Miscellaneous helpers
  2181. @section Miscellaneous helpers
  2182. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  2183. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  2184. The @var{asynchronous} parameter indicates whether the function should
  2185. block or not. In the case of an asynchronous call, it is possible to
  2186. synchronize with the termination of this operation either by the means of
  2187. implicit dependencies (if enabled) or by calling
  2188. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  2189. this callback function is executed after the handle has been copied, and it is
  2190. given the @var{callback_arg} pointer as argument.
  2191. @end deftypefun
  2192. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  2193. This function executes the given function on a subset of workers.
  2194. When calling this method, the offloaded function specified by the first argument is
  2195. executed by every StarPU worker that may execute the function.
  2196. The second argument is passed to the offloaded function.
  2197. The last argument specifies on which types of processing units the function
  2198. should be executed. Similarly to the @var{where} field of the
  2199. @code{struct starpu_codelet} structure, it is possible to specify that the function
  2200. should be executed on every CUDA device and every CPU by passing
  2201. @code{STARPU_CPU|STARPU_CUDA}.
  2202. This function blocks until the function has been executed on every appropriate
  2203. processing units, so that it may not be called from a callback function for
  2204. instance.
  2205. @end deftypefun