timing.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009-2012, 2014-2017 Université de Bordeaux
  4. * Copyright (C) 2010, 2011, 2012 CNRS
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. #include <starpu.h>
  18. #include <common/config.h>
  19. #include <starpu_util.h>
  20. #include <profiling/profiling.h>
  21. #include <common/timing.h>
  22. #include <math.h>
  23. #ifdef STARPU_SIMGRID
  24. #include <core/simgrid.h>
  25. #endif
  26. #if defined(_WIN32) && !defined(__MINGW32__) && !defined(__CYGWIN__)
  27. #include <windows.h>
  28. #endif
  29. #ifdef STARPU_SIMGRID
  30. void _starpu_timing_init(void)
  31. {
  32. }
  33. void _starpu_clock_gettime(struct timespec *ts)
  34. {
  35. double now = MSG_get_clock();
  36. ts->tv_sec = floor(now);
  37. ts->tv_nsec = floor((now - ts->tv_sec) * 1000000000);
  38. }
  39. #elif defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC)
  40. #include <time.h>
  41. #ifndef _POSIX_C_SOURCE
  42. /* for clock_gettime */
  43. #define _POSIX_C_SOURCE 199309L
  44. #endif
  45. #ifdef __linux__
  46. #ifndef CLOCK_MONOTONIC_RAW
  47. #define CLOCK_MONOTONIC_RAW 4
  48. #endif
  49. #endif
  50. static struct timespec _starpu_reference_start_time_ts;
  51. /* Modern CPUs' clocks are usually not synchronized so we use a monotonic clock
  52. * to have consistent timing measurements.
  53. */
  54. static void _starpu_clock_readtime(struct timespec *ts)
  55. {
  56. #if 0 /* def CLOCK_MONOTONIC_RAW */
  57. /* The CLOCK_MONOTONIC_RAW clock is not
  58. * subject to NTP adjustments, but is not available on all systems (in that
  59. * case we use the CLOCK_MONOTONIC clock instead). */
  60. /* In the distributed case, we *do* want NTP adjustments, to get
  61. * somehow-coherent traces, so this is disabled */
  62. static int raw_supported = 0;
  63. switch (raw_supported)
  64. {
  65. case -1:
  66. break;
  67. case 1:
  68. clock_gettime(CLOCK_MONOTONIC_RAW, ts);
  69. return;
  70. case 0:
  71. if (clock_gettime(CLOCK_MONOTONIC_RAW, ts))
  72. {
  73. raw_supported = -1;
  74. break;
  75. }
  76. else
  77. {
  78. raw_supported = 1;
  79. return;
  80. }
  81. }
  82. #endif
  83. clock_gettime(CLOCK_MONOTONIC, ts);
  84. }
  85. void _starpu_timing_init(void)
  86. {
  87. _starpu_clock_gettime(&_starpu_reference_start_time_ts);
  88. }
  89. void _starpu_clock_gettime(struct timespec *ts)
  90. {
  91. struct timespec absolute_ts;
  92. /* Read the current time */
  93. _starpu_clock_readtime(&absolute_ts);
  94. /* Compute the relative time since initialization */
  95. starpu_timespec_sub(&absolute_ts, &_starpu_reference_start_time_ts, ts);
  96. }
  97. #else // !HAVE_CLOCK_GETTIME
  98. #if defined(__i386__) || defined(__pentium__) || defined(__pentiumpro__) || defined(__i586__) || defined(__i686__) || defined(__k6__) || defined(__k7__) || defined(__x86_64__)
  99. union starpu_u_tick
  100. {
  101. uint64_t tick;
  102. struct
  103. {
  104. uint32_t low;
  105. uint32_t high;
  106. }
  107. sub;
  108. };
  109. #define STARPU_GET_TICK(t) __asm__ volatile("rdtsc" : "=a" ((t).sub.low), "=d" ((t).sub.high))
  110. #define STARPU_TICK_RAW_DIFF(t1, t2) ((t2).tick - (t1).tick)
  111. #define STARPU_TICK_DIFF(t1, t2) (STARPU_TICK_RAW_DIFF(t1, t2) - _starpu_residual)
  112. static union starpu_u_tick _starpu_reference_start_tick;
  113. static double _starpu_scale = 0.0;
  114. static unsigned long long _starpu_residual = 0;
  115. static int _starpu_inited = 0;
  116. #if defined(_WIN32) && !defined(__MINGW32__) && !defined(__CYGWIN__)
  117. static int mygettimeofday(struct timeval *tv, void *tz)
  118. {
  119. if (tv)
  120. {
  121. FILETIME ft;
  122. unsigned long long res;
  123. GetSystemTimeAsFileTime(&ft);
  124. /* 100-nanosecond intervals since January 1, 1601 */
  125. res = ft.dwHighDateTime;
  126. res <<= 32;
  127. res |= ft.dwLowDateTime;
  128. res /= 10;
  129. /* Now we have microseconds */
  130. res -= (((1970-1601)*365) + 89) * 24ULL * 3600ULL * 1000000ULL;
  131. /* Now we are based on epoch */
  132. tv->tv_sec = res / 1000000ULL;
  133. tv->tv_usec = res % 1000000ULL;
  134. }
  135. }
  136. #else
  137. #define mygettimeofday(tv,tz) gettimeofday(tv,tz)
  138. #endif
  139. void _starpu_timing_init(void)
  140. {
  141. static union starpu_u_tick t1, t2;
  142. int i;
  143. if (_starpu_inited) return;
  144. _starpu_residual = (unsigned long long)1 << 63;
  145. for(i = 0; i < 20; i++)
  146. {
  147. STARPU_GET_TICK(t1);
  148. STARPU_GET_TICK(t2);
  149. _starpu_residual = STARPU_MIN(_starpu_residual, STARPU_TICK_RAW_DIFF(t1, t2));
  150. }
  151. {
  152. struct timeval tv1,tv2;
  153. STARPU_GET_TICK(t1);
  154. mygettimeofday(&tv1,0);
  155. starpu_sleep(0.5);
  156. STARPU_GET_TICK(t2);
  157. mygettimeofday(&tv2,0);
  158. _starpu_scale = ((tv2.tv_sec*1e6 + tv2.tv_usec) -
  159. (tv1.tv_sec*1e6 + tv1.tv_usec)) /
  160. (double)(STARPU_TICK_DIFF(t1, t2));
  161. }
  162. STARPU_GET_TICK(_starpu_reference_start_tick);
  163. _starpu_inited = 1;
  164. }
  165. void _starpu_clock_gettime(struct timespec *ts)
  166. {
  167. union starpu_u_tick tick_now;
  168. STARPU_GET_TICK(tick_now);
  169. uint64_t elapsed_ticks = STARPU_TICK_DIFF(_starpu_reference_start_tick, tick_now);
  170. /* We convert this number into nano-seconds so that we can fill the
  171. * timespec structure. */
  172. uint64_t elapsed_ns = (uint64_t)(((double)elapsed_ticks)*(_starpu_scale*1000.0));
  173. long tv_nsec = (elapsed_ns % 1000000000);
  174. time_t tv_sec = (elapsed_ns / 1000000000);
  175. ts->tv_sec = tv_sec;
  176. ts->tv_nsec = tv_nsec;
  177. }
  178. #else // !HAVE_CLOCK_GETTIME & no rdtsc
  179. #warning StarPU could not find a timer, clock will always return 0
  180. void _starpu_timing_init(void)
  181. {
  182. }
  183. void _starpu_clock_gettime(struct timespec *ts)
  184. {
  185. timerclear(ts);
  186. }
  187. #endif
  188. #endif // HAVE_CLOCK_GETTIME
  189. /* Returns the time elapsed between start and end in microseconds */
  190. double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end)
  191. {
  192. struct timespec diff;
  193. starpu_timespec_sub(end, start, &diff);
  194. double us = (diff.tv_sec*1e6) + (diff.tv_nsec*1e-3);
  195. return us;
  196. }
  197. double starpu_timing_timespec_to_us(struct timespec *ts)
  198. {
  199. return (1000000.0*ts->tv_sec) + (0.001*ts->tv_nsec);
  200. }
  201. double starpu_timing_now(void)
  202. {
  203. #ifdef STARPU_SIMGRID
  204. return MSG_get_clock()*1000000;
  205. #else
  206. struct timespec now;
  207. _starpu_clock_gettime(&now);
  208. return starpu_timing_timespec_to_us(&now);
  209. #endif
  210. }