starpu.texi 173 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @include version.texi
  7. @setchapternewpage odd
  8. @titlepage
  9. @title StarPU Handbook
  10. @subtitle for StarPU @value{VERSION}
  11. @page
  12. @vskip 0pt plus 1fill
  13. @comment For the @value{version-GCC} Version*
  14. @end titlepage
  15. @c @summarycontents
  16. @contents
  17. @page
  18. @node Top
  19. @top Preface
  20. @cindex Preface
  21. This manual documents the usage of StarPU version @value{VERSION}. It
  22. was last updated on @value{UPDATED}.
  23. @comment
  24. @comment When you add a new menu item, please keep the right hand
  25. @comment aligned to the same column. Do not use tabs. This provides
  26. @comment better formatting.
  27. @comment
  28. @menu
  29. * Introduction:: A basic introduction to using StarPU
  30. * Installing StarPU:: How to configure, build and install StarPU
  31. * Using StarPU:: How to run StarPU application
  32. * Basic Examples:: Basic examples of the use of StarPU
  33. * Performance optimization:: How to optimize performance with StarPU
  34. * Performance feedback:: Performance debugging tools
  35. * StarPU MPI support:: How to combine StarPU with MPI
  36. * Configuring StarPU:: How to configure StarPU
  37. * StarPU API:: The API to use StarPU
  38. * Advanced Topics:: Advanced use of StarPU
  39. * Full source code for the 'Scaling a Vector' example::
  40. * Function Index:: Index of C functions.
  41. @end menu
  42. @c ---------------------------------------------------------------------
  43. @c Introduction to StarPU
  44. @c ---------------------------------------------------------------------
  45. @node Introduction
  46. @chapter Introduction to StarPU
  47. @menu
  48. * Motivation:: Why StarPU ?
  49. * StarPU in a Nutshell:: The Fundamentals of StarPU
  50. @end menu
  51. @node Motivation
  52. @section Motivation
  53. @c complex machines with heterogeneous cores/devices
  54. The use of specialized hardware such as accelerators or coprocessors offers an
  55. interesting approach to overcome the physical limits encountered by processor
  56. architects. As a result, many machines are now equipped with one or several
  57. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  58. efforts have been devoted to offload computation onto such accelerators, very
  59. little attention as been paid to portability concerns on the one hand, and to the
  60. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  61. StarPU is a runtime system that offers support for heterogeneous multicore
  62. architectures, it not only offers a unified view of the computational resources
  63. (i.e. CPUs and accelerators at the same time), but it also takes care of
  64. efficiently mapping and executing tasks onto an heterogeneous machine while
  65. transparently handling low-level issues such as data transfers in a portable
  66. fashion.
  67. @c this leads to a complicated distributed memory design
  68. @c which is not (easily) manageable by hand
  69. @c added value/benefits of StarPU
  70. @c - portability
  71. @c - scheduling, perf. portability
  72. @node StarPU in a Nutshell
  73. @section StarPU in a Nutshell
  74. @menu
  75. * Codelet and Tasks::
  76. * StarPU Data Management Library::
  77. * Research Papers::
  78. @end menu
  79. From a programming point of view, StarPU is not a new language but a library
  80. that executes tasks explicitly submitted by the application. The data that a
  81. task manipulates are automatically transferred onto the accelerator so that the
  82. programmer does not have to take care of complex data movements. StarPU also
  83. takes particular care of scheduling those tasks efficiently and allows
  84. scheduling experts to implement custom scheduling policies in a portable
  85. fashion.
  86. @c explain the notion of codelet and task (i.e. g(A, B)
  87. @node Codelet and Tasks
  88. @subsection Codelet and Tasks
  89. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  90. computational kernel that can possibly be implemented on multiple architectures
  91. such as a CPU, a CUDA device or a Cell's SPU.
  92. @c TODO insert illustration f : f_spu, f_cpu, ...
  93. Another important data structure is the @b{task}. Executing a StarPU task
  94. consists in applying a codelet on a data set, on one of the architectures on
  95. which the codelet is implemented. In addition to the codelet that a task
  96. useuses, it also describes which data are accessed, and how they are
  97. accessed during the computation (read and/or write).
  98. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  99. operation. The task structure can also specify a @b{callback} function that is
  100. called once StarPU has properly executed the task. It also contains optional
  101. fields that the application may use to give hints to the scheduler (such as
  102. priority levels).
  103. A task may be identified by a unique 64-bit number chosen by the application
  104. which we refer as a @b{tag}.
  105. Task dependencies can be enforced either by the means of callback functions, by
  106. expressing dependencies between explicit tasks or by expressing dependencies
  107. between tags (which can thus correspond to tasks that have not been submitted
  108. yet).
  109. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  110. @c DSM
  111. @node StarPU Data Management Library
  112. @subsection StarPU Data Management Library
  113. Because StarPU schedules tasks at runtime, data transfers have to be
  114. done automatically and ``just-in-time'' between processing units,
  115. relieving the application programmer from explicit data transfers.
  116. Moreover, to avoid unnecessary transfers, StarPU keeps data
  117. where it was last needed, even if was modified there, and it
  118. allows multiple copies of the same data to reside at the same time on
  119. several processing units as long as it is not modified.
  120. @node Research Papers
  121. @subsection Research Papers
  122. Research papers about StarPU can be found at
  123. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  124. Notably a good overview in the research report
  125. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  126. @c ---------------------------------------------------------------------
  127. @c Installing StarPU
  128. @c ---------------------------------------------------------------------
  129. @node Installing StarPU
  130. @chapter Installing StarPU
  131. @menu
  132. * Downloading StarPU::
  133. * Configuration of StarPU::
  134. * Building and Installing StarPU::
  135. @end menu
  136. StarPU can be built and installed by the standard means of the GNU
  137. autotools. The following chapter is intended to briefly remind how these tools
  138. can be used to install StarPU.
  139. @node Downloading StarPU
  140. @section Downloading StarPU
  141. @menu
  142. * Getting Sources::
  143. * Optional dependencies::
  144. @end menu
  145. @node Getting Sources
  146. @subsection Getting Sources
  147. The simplest way to get StarPU sources is to download the latest official
  148. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  149. or the latest nightly snapshot from
  150. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  151. how to get the very latest version from the subversion repository itself, it
  152. should be needed only if you need the very latest changes (i.e. less than a
  153. day!)
  154. The source code is managed by a Subversion server hosted by the
  155. InriaGforge. To get the source code, you need:
  156. @itemize
  157. @item
  158. To install the client side of the software Subversion if it is
  159. not already available on your system. The software can be obtained from
  160. @indicateurl{http://subversion.tigris.org} . If you are running
  161. on Windows, you will probably prefer to use TortoiseSVN from
  162. @indicateurl{http://tortoisesvn.tigris.org/} .
  163. @item
  164. You can check out the project's SVN repository through anonymous
  165. access. This will provide you with a read access to the
  166. repository.
  167. If you need to have write access on the StarPU project, you can also choose to
  168. become a member of the project @code{starpu}. For this, you first need to get
  169. an account to the gForge server. You can then send a request to join the project
  170. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  171. @item
  172. More information on how to get a gForge account, to become a member of
  173. a project, or on any other related task can be obtained from the
  174. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  175. thing is to upload your public SSH key on the gForge server (see the
  176. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  177. instructions).
  178. @end itemize
  179. You can now check out the latest version from the Subversion server:
  180. @itemize
  181. @item
  182. using the anonymous access via svn:
  183. @example
  184. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  185. @end example
  186. @item
  187. using the anonymous access via https:
  188. @example
  189. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  190. @end example
  191. The password is @code{anonsvn}.
  192. @item
  193. using your gForge account
  194. @example
  195. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  196. @end example
  197. @end itemize
  198. The following step requires the availability of @code{autoconf} and
  199. @code{automake} to generate the @code{./configure} script. This is
  200. done by calling @code{./autogen.sh}. The required version for
  201. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  202. @example
  203. % ./autogen.sh
  204. @end example
  205. If the autotools are not available on your machine or not recent
  206. enough, you can choose to download the latest nightly tarball, which
  207. is provided with a @code{configure} script.
  208. @example
  209. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  210. @end example
  211. @node Optional dependencies
  212. @subsection Optional dependencies
  213. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  214. but strongly recommended. It allows to increase performance, and to
  215. perform some topology aware scheduling.
  216. @code{hwloc} is available in major distributions and for most OSes and can be
  217. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  218. @node Configuration of StarPU
  219. @section Configuration of StarPU
  220. @menu
  221. * Generating Makefiles and configuration scripts::
  222. * Running the configuration::
  223. @end menu
  224. @node Generating Makefiles and configuration scripts
  225. @subsection Generating Makefiles and configuration scripts
  226. This step is not necessary when using the tarball releases of StarPU. If you
  227. are using the source code from the svn repository, you first need to generate
  228. the configure scripts and the Makefiles.
  229. @example
  230. % ./autogen.sh
  231. @end example
  232. @node Running the configuration
  233. @subsection Running the configuration
  234. @example
  235. % ./configure
  236. @end example
  237. Details about options that are useful to give to @code{./configure} are given in
  238. @ref{Compilation configuration}.
  239. @node Building and Installing StarPU
  240. @section Building and Installing StarPU
  241. @menu
  242. * Building::
  243. * Sanity Checks::
  244. * Installing::
  245. @end menu
  246. @node Building
  247. @subsection Building
  248. @example
  249. % make
  250. @end example
  251. @node Sanity Checks
  252. @subsection Sanity Checks
  253. In order to make sure that StarPU is working properly on the system, it is also
  254. possible to run a test suite.
  255. @example
  256. % make check
  257. @end example
  258. @node Installing
  259. @subsection Installing
  260. In order to install StarPU at the location that was specified during
  261. configuration:
  262. @example
  263. % make install
  264. @end example
  265. @c ---------------------------------------------------------------------
  266. @c Using StarPU
  267. @c ---------------------------------------------------------------------
  268. @node Using StarPU
  269. @chapter Using StarPU
  270. @menu
  271. * Setting flags for compiling and linking applications::
  272. * Running a basic StarPU application::
  273. * Kernel threads started by StarPU::
  274. * Using accelerators::
  275. @end menu
  276. @node Setting flags for compiling and linking applications
  277. @section Setting flags for compiling and linking applications
  278. Compiling and linking an application against StarPU may require to use
  279. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  280. To this end, it is possible to use the @code{pkg-config} tool.
  281. If StarPU was not installed at some standard location, the path of StarPU's
  282. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  283. that @code{pkg-config} can find it. For example if StarPU was installed in
  284. @code{$prefix_dir}:
  285. @example
  286. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  287. @end example
  288. The flags required to compile or link against StarPU are then
  289. accessible with the following commands:
  290. @example
  291. % pkg-config --cflags libstarpu # options for the compiler
  292. % pkg-config --libs libstarpu # options for the linker
  293. @end example
  294. @node Running a basic StarPU application
  295. @section Running a basic StarPU application
  296. Basic examples using StarPU have been built in the directory
  297. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  298. example @code{vector_scal}.
  299. @example
  300. % $prefix_dir/lib/starpu/examples/vector_scal
  301. BEFORE : First element was 1.000000
  302. AFTER First element is 3.140000
  303. %
  304. @end example
  305. When StarPU is used for the first time, the directory
  306. @code{$HOME/.starpu/} is created, performance models will be stored in
  307. that directory.
  308. Please note that buses are benchmarked when StarPU is launched for the
  309. first time. This may take a few minutes, or less if @code{hwloc} is
  310. installed. This step is done only once per user and per machine.
  311. @node Kernel threads started by StarPU
  312. @section Kernel threads started by StarPU
  313. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  314. them per GPU. The application is not supposed to do computations in its own
  315. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  316. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  317. worker).
  318. @node Using accelerators
  319. @section Using accelerators
  320. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  321. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  322. This design choice was necessary as OpenCL and CUDA can not run at the
  323. same time on the same NVIDIA GPU, as there is currently no interoperability
  324. between them.
  325. Details on how to specify devices running OpenCL and the ones running
  326. CUDA are given in @ref{Enabling OpenCL}.
  327. @c ---------------------------------------------------------------------
  328. @c Basic Examples
  329. @c ---------------------------------------------------------------------
  330. @node Basic Examples
  331. @chapter Basic Examples
  332. @menu
  333. * Compiling and linking options::
  334. * Hello World:: Submitting Tasks
  335. * Scaling a Vector:: Manipulating Data
  336. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  337. * Task and Worker Profiling::
  338. * Partitioning Data:: Partitioning Data
  339. * Performance model example::
  340. * Theoretical lower bound on execution time::
  341. * Insert Task Utility::
  342. * More examples:: More examples shipped with StarPU
  343. * Debugging:: When things go wrong.
  344. @end menu
  345. @node Compiling and linking options
  346. @section Compiling and linking options
  347. Let's suppose StarPU has been installed in the directory
  348. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  349. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  350. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  351. libraries at runtime.
  352. @example
  353. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  354. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  355. @end example
  356. The Makefile could for instance contain the following lines to define which
  357. options must be given to the compiler and to the linker:
  358. @cartouche
  359. @example
  360. CFLAGS += $$(pkg-config --cflags libstarpu)
  361. LDFLAGS += $$(pkg-config --libs libstarpu)
  362. @end example
  363. @end cartouche
  364. @node Hello World
  365. @section Hello World
  366. @menu
  367. * Required Headers::
  368. * Defining a Codelet::
  369. * Submitting a Task::
  370. * Execution of Hello World::
  371. @end menu
  372. In this section, we show how to implement a simple program that submits a task to StarPU.
  373. @node Required Headers
  374. @subsection Required Headers
  375. The @code{starpu.h} header should be included in any code using StarPU.
  376. @cartouche
  377. @smallexample
  378. #include <starpu.h>
  379. @end smallexample
  380. @end cartouche
  381. @node Defining a Codelet
  382. @subsection Defining a Codelet
  383. @cartouche
  384. @smallexample
  385. struct params @{
  386. int i;
  387. float f;
  388. @};
  389. void cpu_func(void *buffers[], void *cl_arg)
  390. @{
  391. struct params *params = cl_arg;
  392. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  393. @}
  394. starpu_codelet cl =
  395. @{
  396. .where = STARPU_CPU,
  397. .cpu_func = cpu_func,
  398. .nbuffers = 0
  399. @};
  400. @end smallexample
  401. @end cartouche
  402. A codelet is a structure that represents a computational kernel. Such a codelet
  403. may contain an implementation of the same kernel on different architectures
  404. (e.g. CUDA, Cell's SPU, x86, ...).
  405. The @code{nbuffers} field specifies the number of data buffers that are
  406. manipulated by the codelet: here the codelet does not access or modify any data
  407. that is controlled by our data management library. Note that the argument
  408. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  409. structure) does not count as a buffer since it is not managed by our data
  410. management library, but just contain trivial parameters.
  411. @c TODO need a crossref to the proper description of "where" see bla for more ...
  412. We create a codelet which may only be executed on the CPUs. The @code{where}
  413. field is a bitmask that defines where the codelet may be executed. Here, the
  414. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  415. (@pxref{Codelets and Tasks} for more details on this field).
  416. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  417. which @emph{must} have the following prototype:
  418. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  419. In this example, we can ignore the first argument of this function which gives a
  420. description of the input and output buffers (e.g. the size and the location of
  421. the matrices) since there is none.
  422. The second argument is a pointer to a buffer passed as an
  423. argument to the codelet by the means of the @code{cl_arg} field of the
  424. @code{starpu_task} structure.
  425. @c TODO rewrite so that it is a little clearer ?
  426. Be aware that this may be a pointer to a
  427. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  428. if the codelet modifies this buffer, there is no guarantee that the initial
  429. buffer will be modified as well: this for instance implies that the buffer
  430. cannot be used as a synchronization medium. If synchronization is needed, data
  431. has to be registered to StarPU, see @ref{Scaling a Vector}.
  432. @node Submitting a Task
  433. @subsection Submitting a Task
  434. @cartouche
  435. @smallexample
  436. void callback_func(void *callback_arg)
  437. @{
  438. printf("Callback function (arg %x)\n", callback_arg);
  439. @}
  440. int main(int argc, char **argv)
  441. @{
  442. /* @b{initialize StarPU} */
  443. starpu_init(NULL);
  444. struct starpu_task *task = starpu_task_create();
  445. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  446. struct params params = @{ 1, 2.0f @};
  447. task->cl_arg = &params;
  448. task->cl_arg_size = sizeof(params);
  449. task->callback_func = callback_func;
  450. task->callback_arg = 0x42;
  451. /* @b{starpu_task_submit will be a blocking call} */
  452. task->synchronous = 1;
  453. /* @b{submit the task to StarPU} */
  454. starpu_task_submit(task);
  455. /* @b{terminate StarPU} */
  456. starpu_shutdown();
  457. return 0;
  458. @}
  459. @end smallexample
  460. @end cartouche
  461. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  462. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  463. be submitted after the termination of StarPU by a call to
  464. @code{starpu_shutdown}.
  465. In the example above, a task structure is allocated by a call to
  466. @code{starpu_task_create}. This function only allocates and fills the
  467. corresponding structure with the default settings (@pxref{Codelets and
  468. Tasks, starpu_task_create}), but it does not submit the task to StarPU.
  469. @c not really clear ;)
  470. The @code{cl} field is a pointer to the codelet which the task will
  471. execute: in other words, the codelet structure describes which computational
  472. kernel should be offloaded on the different architectures, and the task
  473. structure is a wrapper containing a codelet and the piece of data on which the
  474. codelet should operate.
  475. The optional @code{cl_arg} field is a pointer to a buffer (of size
  476. @code{cl_arg_size}) with some parameters for the kernel
  477. described by the codelet. For instance, if a codelet implements a computational
  478. kernel that multiplies its input vector by a constant, the constant could be
  479. specified by the means of this buffer, instead of registering it as a StarPU
  480. data. It must however be noted that StarPU avoids making copy whenever possible
  481. and rather passes the pointer as such, so the buffer which is pointed at must
  482. kept allocated until the task terminates, and if several tasks are submitted
  483. with various parameters, each of them must be given a pointer to their own
  484. buffer.
  485. Once a task has been executed, an optional callback function is be called.
  486. While the computational kernel could be offloaded on various architectures, the
  487. callback function is always executed on a CPU. The @code{callback_arg}
  488. pointer is passed as an argument of the callback. The prototype of a callback
  489. function must be:
  490. @code{void (*callback_function)(void *);}
  491. If the @code{synchronous} field is non-zero, task submission will be
  492. synchronous: the @code{starpu_task_submit} function will not return until the
  493. task was executed. Note that the @code{starpu_shutdown} method does not
  494. guarantee that asynchronous tasks have been executed before it returns,
  495. @code{starpu_task_wait_for_all} can be used to that effect, or data can be
  496. unregistered (@code{starpu_data_unregister(vector_handle);}), which will
  497. implicitly wait for all the tasks scheduled to work on it, unless explicitly
  498. disabled thanks to @code{starpu_data_set_default_sequential_consistency_flag} or
  499. @code{starpu_data_set_sequential_consistency_flag}.
  500. @node Execution of Hello World
  501. @subsection Execution of Hello World
  502. @smallexample
  503. % make hello_world
  504. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  505. % ./hello_world
  506. Hello world (params = @{1, 2.000000@} )
  507. Callback function (arg 42)
  508. @end smallexample
  509. @node Scaling a Vector
  510. @section Manipulating Data: Scaling a Vector
  511. The previous example has shown how to submit tasks. In this section,
  512. we show how StarPU tasks can manipulate data. The full source code for
  513. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  514. @menu
  515. * Source code of Vector Scaling::
  516. * Execution of Vector Scaling::
  517. @end menu
  518. @node Source code of Vector Scaling
  519. @subsection Source code of Vector Scaling
  520. Programmers can describe the data layout of their application so that StarPU is
  521. responsible for enforcing data coherency and availability across the machine.
  522. Instead of handling complex (and non-portable) mechanisms to perform data
  523. movements, programmers only declare which piece of data is accessed and/or
  524. modified by a task, and StarPU makes sure that when a computational kernel
  525. starts somewhere (e.g. on a GPU), its data are available locally.
  526. Before submitting those tasks, the programmer first needs to declare the
  527. different pieces of data to StarPU using the @code{starpu_*_data_register}
  528. functions. To ease the development of applications for StarPU, it is possible
  529. to describe multiple types of data layout. A type of data layout is called an
  530. @b{interface}. There are different predefined interfaces available in StarPU:
  531. here we will consider the @b{vector interface}.
  532. The following lines show how to declare an array of @code{NX} elements of type
  533. @code{float} using the vector interface:
  534. @cartouche
  535. @smallexample
  536. float vector[NX];
  537. starpu_data_handle vector_handle;
  538. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  539. sizeof(vector[0]));
  540. @end smallexample
  541. @end cartouche
  542. The first argument, called the @b{data handle}, is an opaque pointer which
  543. designates the array in StarPU. This is also the structure which is used to
  544. describe which data is used by a task. The second argument is the node number
  545. where the data originally resides. Here it is 0 since the @code{vector} array is in
  546. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  547. the number of elements in the vector and the size of each element.
  548. The following shows how to construct a StarPU task that will manipulate the
  549. vector and a constant factor.
  550. @cartouche
  551. @smallexample
  552. float factor = 3.14;
  553. struct starpu_task *task = starpu_task_create();
  554. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  555. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  556. task->buffers[0].mode = STARPU_RW;
  557. task->cl_arg = &factor;
  558. task->cl_arg_size = sizeof(factor);
  559. task->synchronous = 1;
  560. starpu_task_submit(task);
  561. @end smallexample
  562. @end cartouche
  563. Since the factor is a mere constant float value parameter,
  564. it does not need a preliminary registration, and
  565. can just be passed through the @code{cl_arg} pointer like in the previous
  566. example. The vector parameter is described by its handle.
  567. There are two fields in each element of the @code{buffers} array.
  568. @code{handle} is the handle of the data, and @code{mode} specifies how the
  569. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  570. write-only and @code{STARPU_RW} for read and write access).
  571. The definition of the codelet can be written as follows:
  572. @cartouche
  573. @smallexample
  574. void scal_cpu_func(void *buffers[], void *cl_arg)
  575. @{
  576. unsigned i;
  577. float *factor = cl_arg;
  578. /* length of the vector */
  579. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  580. /* CPU copy of the vector pointer */
  581. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  582. for (i = 0; i < n; i++)
  583. val[i] *= *factor;
  584. @}
  585. starpu_codelet cl = @{
  586. .where = STARPU_CPU,
  587. .cpu_func = scal_cpu_func,
  588. .nbuffers = 1
  589. @};
  590. @end smallexample
  591. @end cartouche
  592. The first argument is an array that gives
  593. a description of all the buffers passed in the @code{task->buffers}@ array. The
  594. size of this array is given by the @code{nbuffers} field of the codelet
  595. structure. For the sake of genericity, this array contains pointers to the
  596. different interfaces describing each buffer. In the case of the @b{vector
  597. interface}, the location of the vector (resp. its length) is accessible in the
  598. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  599. read-write fashion, any modification will automatically affect future accesses
  600. to this vector made by other tasks.
  601. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  602. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  603. constant factor from this pointer.
  604. @node Execution of Vector Scaling
  605. @subsection Execution of Vector Scaling
  606. @smallexample
  607. % make vector_scal
  608. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  609. % ./vector_scal
  610. 0.000000 3.000000 6.000000 9.000000 12.000000
  611. @end smallexample
  612. @node Vector Scaling on an Hybrid CPU/GPU Machine
  613. @section Vector Scaling on an Hybrid CPU/GPU Machine
  614. Contrary to the previous examples, the task submitted in this example may not
  615. only be executed by the CPUs, but also by a CUDA device.
  616. @menu
  617. * Definition of the CUDA Kernel::
  618. * Definition of the OpenCL Kernel::
  619. * Definition of the Main Code::
  620. * Execution of Hybrid Vector Scaling::
  621. @end menu
  622. @node Definition of the CUDA Kernel
  623. @subsection Definition of the CUDA Kernel
  624. The CUDA implementation can be written as follows. It needs to be compiled with
  625. a CUDA compiler such as nvcc, the NVIDIA CUDA compiler driver. It must be noted
  626. that the vector pointer returned by STARPU_VECTOR_GET_PTR is here a pointer in GPU
  627. memory, so that it can be passed as such to the @code{vector_mult_cuda} kernel
  628. call.
  629. @cartouche
  630. @smallexample
  631. #include <starpu.h>
  632. static __global__ void vector_mult_cuda(float *val, unsigned n,
  633. float factor)
  634. @{
  635. unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
  636. if (i < n)
  637. val[i] *= factor;
  638. @}
  639. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  640. @{
  641. float *factor = (float *)_args;
  642. /* length of the vector */
  643. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  644. /* CUDA copy of the vector pointer */
  645. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  646. unsigned threads_per_block = 64;
  647. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  648. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  649. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  650. @}
  651. @end smallexample
  652. @end cartouche
  653. @node Definition of the OpenCL Kernel
  654. @subsection Definition of the OpenCL Kernel
  655. The OpenCL implementation can be written as follows. StarPU provides
  656. tools to compile a OpenCL kernel stored in a file.
  657. @cartouche
  658. @smallexample
  659. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  660. @{
  661. const int i = get_global_id(0);
  662. if (i < nx) @{
  663. val[i] *= factor;
  664. @}
  665. @}
  666. @end smallexample
  667. @end cartouche
  668. Similarly to CUDA, the pointer returned by @code{STARPU_VECTOR_GET_PTR} is here
  669. a device pointer, so that it is passed as such to the OpenCL kernel.
  670. @cartouche
  671. @smallexample
  672. #include <starpu.h>
  673. @i{#include <starpu_opencl.h>}
  674. @i{extern struct starpu_opencl_program programs;}
  675. void scal_opencl_func(void *buffers[], void *_args)
  676. @{
  677. float *factor = _args;
  678. @i{ int id, devid, err;}
  679. @i{ cl_kernel kernel;}
  680. @i{ cl_command_queue queue;}
  681. @i{ cl_event event;}
  682. /* length of the vector */
  683. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  684. /* OpenCL copy of the vector pointer */
  685. cl_mem val = (cl_mem) STARPU_VECTOR_GET_PTR(buffers[0]);
  686. @i{ id = starpu_worker_get_id();}
  687. @i{ devid = starpu_worker_get_devid(id);}
  688. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  689. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  690. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  691. @i{ err = clSetKernelArg(kernel, 0, sizeof(val), &val);}
  692. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  693. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  694. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  695. @i{ @{}
  696. @i{ size_t global=1;}
  697. @i{ size_t local=1;}
  698. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  699. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  700. @i{ @}}
  701. @i{ clFinish(queue);}
  702. @i{ starpu_opencl_collect_stats(event);}
  703. @i{ clReleaseEvent(event);}
  704. @i{ starpu_opencl_release_kernel(kernel);}
  705. @}
  706. @end smallexample
  707. @end cartouche
  708. @node Definition of the Main Code
  709. @subsection Definition of the Main Code
  710. The CPU implementation is the same as in the previous section.
  711. Here is the source of the main application. You can notice the value of the
  712. field @code{where} for the codelet. We specify
  713. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  714. can be executed either on a CPU or on a CUDA or an OpenCL device.
  715. @cartouche
  716. @smallexample
  717. #include <starpu.h>
  718. #define NX 2048
  719. extern void scal_cuda_func(void *buffers[], void *_args);
  720. extern void scal_cpu_func(void *buffers[], void *_args);
  721. extern void scal_opencl_func(void *buffers[], void *_args);
  722. /* @b{Definition of the codelet} */
  723. static starpu_codelet cl = @{
  724. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  725. /* @b{on a CUDA device, or on an OpenCL device} */
  726. .cuda_func = scal_cuda_func;
  727. .cpu_func = scal_cpu_func;
  728. .opencl_func = scal_opencl_func;
  729. .nbuffers = 1;
  730. @}
  731. #ifdef STARPU_USE_OPENCL
  732. /* @b{The compiled version of the OpenCL program} */
  733. struct starpu_opencl_program programs;
  734. #endif
  735. int main(int argc, char **argv)
  736. @{
  737. float *vector;
  738. int i, ret;
  739. float factor=3.0;
  740. struct starpu_task *task;
  741. starpu_data_handle vector_handle;
  742. starpu_init(NULL); /* @b{Initialising StarPU} */
  743. #ifdef STARPU_USE_OPENCL
  744. starpu_opencl_load_opencl_from_file(
  745. "examples/basic_examples/vector_scal_opencl_codelet.cl",
  746. &programs, NULL);
  747. #endif
  748. vector = malloc(NX*sizeof(vector[0]));
  749. assert(vector);
  750. for(i=0 ; i<NX ; i++) vector[i] = i;
  751. @end smallexample
  752. @end cartouche
  753. @cartouche
  754. @smallexample
  755. /* @b{Registering data within StarPU} */
  756. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  757. NX, sizeof(vector[0]));
  758. /* @b{Definition of the task} */
  759. task = starpu_task_create();
  760. task->cl = &cl;
  761. task->buffers[0].handle = vector_handle;
  762. task->buffers[0].mode = STARPU_RW;
  763. task->cl_arg = &factor;
  764. task->cl_arg_size = sizeof(factor);
  765. @end smallexample
  766. @end cartouche
  767. @cartouche
  768. @smallexample
  769. /* @b{Submitting the task} */
  770. ret = starpu_task_submit(task);
  771. if (ret == -ENODEV) @{
  772. fprintf(stderr, "No worker may execute this task\n");
  773. return 1;
  774. @}
  775. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  776. /* @b{Waiting for its termination} */
  777. starpu_task_wait_for_all();
  778. /* @b{Update the vector in RAM} */
  779. starpu_data_acquire(vector_handle, STARPU_R);
  780. @end smallexample
  781. @end cartouche
  782. @cartouche
  783. @smallexample
  784. /* @b{Access the data} */
  785. for(i=0 ; i<NX; i++) @{
  786. fprintf(stderr, "%f ", vector[i]);
  787. @}
  788. fprintf(stderr, "\n");
  789. /* @b{Release the RAM view of the data before unregistering it and shutting down StarPU} */
  790. starpu_data_release(vector_handle);
  791. starpu_data_unregister(vector_handle);
  792. starpu_shutdown();
  793. return 0;
  794. @}
  795. @end smallexample
  796. @end cartouche
  797. @node Execution of Hybrid Vector Scaling
  798. @subsection Execution of Hybrid Vector Scaling
  799. The Makefile given at the beginning of the section must be extended to
  800. give the rules to compile the CUDA source code. Note that the source
  801. file of the OpenCL kernel does not need to be compiled now, it will
  802. be compiled at run-time when calling the function
  803. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  804. @cartouche
  805. @smallexample
  806. CFLAGS += $(shell pkg-config --cflags libstarpu)
  807. LDFLAGS += $(shell pkg-config --libs libstarpu)
  808. CC = gcc
  809. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  810. %.o: %.cu
  811. nvcc $(CFLAGS) $< -c $@
  812. clean:
  813. rm -f vector_scal *.o
  814. @end smallexample
  815. @end cartouche
  816. @smallexample
  817. % make
  818. @end smallexample
  819. and to execute it, with the default configuration:
  820. @smallexample
  821. % ./vector_scal
  822. 0.000000 3.000000 6.000000 9.000000 12.000000
  823. @end smallexample
  824. or for example, by disabling CPU devices:
  825. @smallexample
  826. % STARPU_NCPUS=0 ./vector_scal
  827. 0.000000 3.000000 6.000000 9.000000 12.000000
  828. @end smallexample
  829. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  830. see @ref{Using accelerators}):
  831. @smallexample
  832. % STARPU_NCUDA=0 ./vector_scal
  833. 0.000000 3.000000 6.000000 9.000000 12.000000
  834. @end smallexample
  835. @node Task and Worker Profiling
  836. @section Task and Worker Profiling
  837. A full example showing how to use the profiling API is available in
  838. the StarPU sources in the directory @code{examples/profiling/}.
  839. @cartouche
  840. @smallexample
  841. struct starpu_task *task = starpu_task_create();
  842. task->cl = &cl;
  843. task->synchronous = 1;
  844. /* We will destroy the task structure by hand so that we can
  845. * query the profiling info before the task is destroyed. */
  846. task->destroy = 0;
  847. /* Submit and wait for completion (since synchronous was set to 1) */
  848. starpu_task_submit(task);
  849. /* The task is finished, get profiling information */
  850. struct starpu_task_profiling_info *info = task->profiling_info;
  851. /* How much time did it take before the task started ? */
  852. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  853. /* How long was the task execution ? */
  854. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  855. /* We don't need the task structure anymore */
  856. starpu_task_destroy(task);
  857. @end smallexample
  858. @end cartouche
  859. @cartouche
  860. @smallexample
  861. /* Display the occupancy of all workers during the test */
  862. int worker;
  863. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  864. @{
  865. struct starpu_worker_profiling_info worker_info;
  866. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  867. STARPU_ASSERT(!ret);
  868. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  869. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  870. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  871. float executing_ratio = 100.0*executing_time/total_time;
  872. float sleeping_ratio = 100.0*sleeping_time/total_time;
  873. char workername[128];
  874. starpu_worker_get_name(worker, workername, 128);
  875. fprintf(stderr, "Worker %s:\n", workername);
  876. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  877. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  878. executing_ratio);
  879. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  880. sleeping_ratio);
  881. @}
  882. @end smallexample
  883. @end cartouche
  884. @node Partitioning Data
  885. @section Partitioning Data
  886. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  887. @cartouche
  888. @smallexample
  889. int vector[NX];
  890. starpu_data_handle handle;
  891. /* Declare data to StarPU */
  892. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  893. /* Partition the vector in PARTS sub-vectors */
  894. starpu_filter f =
  895. @{
  896. .filter_func = starpu_block_filter_func_vector,
  897. .nchildren = PARTS,
  898. .get_nchildren = NULL,
  899. .get_child_ops = NULL
  900. @};
  901. starpu_data_partition(handle, &f);
  902. @end smallexample
  903. @end cartouche
  904. @cartouche
  905. @smallexample
  906. /* Submit a task on each sub-vector */
  907. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  908. /* Get subdata number i (there is only 1 dimension) */
  909. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  910. struct starpu_task *task = starpu_task_create();
  911. task->buffers[0].handle = sub_handle;
  912. task->buffers[0].mode = STARPU_RW;
  913. task->cl = &cl;
  914. task->synchronous = 1;
  915. task->cl_arg = &factor;
  916. task->cl_arg_size = sizeof(factor);
  917. starpu_task_submit(task);
  918. @}
  919. @end smallexample
  920. @end cartouche
  921. Partitioning can be applied several times, see
  922. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  923. @node Performance model example
  924. @section Performance model example
  925. To achieve good scheduling, StarPU scheduling policies need to be able to
  926. estimate in advance the duration of a task. This is done by giving to codelets a
  927. performance model. There are several kinds of performance models.
  928. @itemize
  929. @item
  930. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  931. see for instance
  932. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  933. @item
  934. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  935. given set of data input/output sizes, the performance will always be about the
  936. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  937. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  938. few different sets of data input/output sizes. StarPU will then keep record of
  939. the average time of previous executions on the various processing units, and use
  940. it as an estimation. History is done per task size, by using a hash of the input
  941. and ouput sizes as an index.
  942. It will also save it in @code{~/.starpu/sampling/codelets}
  943. for further executions, and can be observed by using the
  944. @code{starpu_perfmodel_display} command. The following is a small code example.
  945. @cartouche
  946. @smallexample
  947. static struct starpu_perfmodel_t mult_perf_model = @{
  948. .type = STARPU_HISTORY_BASED,
  949. .symbol = "mult_perf_model"
  950. @};
  951. starpu_codelet cl = @{
  952. .where = STARPU_CPU,
  953. .cpu_func = cpu_mult,
  954. .nbuffers = 3,
  955. /* for the scheduling policy to be able to use performance models */
  956. .model = &mult_perf_model
  957. @};
  958. @end smallexample
  959. @end cartouche
  960. @item
  961. Measured at runtime and refined by regression (STARPU_REGRESSION_*_BASED
  962. model type). This still assumes performance regularity, but can work
  963. with various data input sizes, by applying regression over observed
  964. execution times. STARPU_REGRESSION_BASED uses an a*n^b regression
  965. form, STARPU_NL_REGRESSION_BASED uses an a*n^b+c (more precise than
  966. STARPU_REGRESSION_BASED, but costs a lot more to compute)
  967. @item
  968. Provided explicitly by the application (STARPU_PER_ARCH model type): the
  969. @code{.per_arch[i].cost_model} fields have to be filled with pointers to
  970. functions which return the expected duration of the task in micro-seconds, one
  971. per architecture.
  972. @end itemize
  973. How to use schedulers which can benefit from such performance model is explained
  974. in @ref{Task scheduling policy}.
  975. The same can be done for task power consumption estimation, by setting the
  976. @code{power_model} field the same way as the @code{model} field. Note: for
  977. now, the application has to give to the power consumption performance model
  978. a name which is different from the execution time performance model.
  979. @node Theoretical lower bound on execution time
  980. @section Theoretical lower bound on execution time
  981. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  982. bound for the execution time of a whole set of tasks. See for
  983. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  984. call @code{starpu_bound_start}, and after complete execution, call
  985. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  986. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  987. problem corresponding to the schedule of your tasks. Run it through
  988. @code{lp_solve} or any other linear programming solver, and that will give you a
  989. lower bound for the total execution time of your tasks. If StarPU was compiled
  990. with the glpk library installed, @code{starpu_bound_compute} can be used to
  991. solve it immediately and get the optimized minimum. Its @code{integer}
  992. parameter allows to decide whether integer resolution should be computed
  993. and returned.
  994. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  995. dependencies into account. It must be understood that the linear programming
  996. problem size is quadratic with the number of tasks and thus the time to solve it
  997. will be very long, it could be minutes for just a few dozen tasks. You should
  998. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  999. problem to MPS format and then use a better solver, @code{glpsol} might be
  1000. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  1001. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  1002. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  1003. of @code{lp_solve}. For instance, we often just use
  1004. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  1005. the @code{-gr} option can also be quite useful.
  1006. Setting @code{deps} to 0 will only take into account the actual computations
  1007. on processing units. It however still properly takes into account the varying
  1008. performances of kernels and processing units, which is quite more accurate than
  1009. just comparing StarPU performances with the fastest of the kernels being used.
  1010. The @code{prio} parameter tells StarPU whether to simulate taking into account
  1011. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  1012. tasks before less prioritized tasks, to check to which extend this results
  1013. to a less optimal solution. This increases even more computation time.
  1014. Note that for simplicity, all this however doesn't take into account data
  1015. transfers, which are assumed to be completely overlapped.
  1016. @node Insert Task Utility
  1017. @section Insert Task Utility
  1018. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  1019. the creation and submission of tasks.
  1020. @deftypefun int starpu_insert_task (starpu_codelet *@var{cl}, ...)
  1021. Create and submit a task corresponding to @var{cl} with the following
  1022. arguments. The argument list must be zero-terminated.
  1023. The arguments following the codelets can be of the following types:
  1024. @itemize
  1025. @item
  1026. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  1027. @item
  1028. @code{STARPU_VALUE} followed by a pointer to a constant value and
  1029. the size of the constant;
  1030. @item
  1031. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  1032. @item
  1033. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1034. argument to the callback function;
  1035. @item
  1036. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1037. @end itemize
  1038. Parameters to be passed to the codelet implementation are defined
  1039. through the type @code{STARPU_VALUE}. The function
  1040. @code{starpu_unpack_cl_args} must be called within the codelet
  1041. implementation to retrieve them.
  1042. @end deftypefun
  1043. Here the implementation of the codelet:
  1044. @smallexample
  1045. void func_cpu(void *descr[], void *_args)
  1046. @{
  1047. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1048. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1049. int ifactor;
  1050. float ffactor;
  1051. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1052. *x0 = *x0 * ifactor;
  1053. *x1 = *x1 * ffactor;
  1054. @}
  1055. starpu_codelet mycodelet = @{
  1056. .where = STARPU_CPU,
  1057. .cpu_func = func_cpu,
  1058. .nbuffers = 2
  1059. @};
  1060. @end smallexample
  1061. And the call to the @code{starpu_insert_task} wrapper:
  1062. @smallexample
  1063. starpu_insert_task(&mycodelet,
  1064. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1065. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1066. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1067. 0);
  1068. @end smallexample
  1069. The call to @code{starpu_insert_task} is equivalent to the following
  1070. code:
  1071. @smallexample
  1072. struct starpu_task *task = starpu_task_create();
  1073. task->cl = &mycodelet;
  1074. task->buffers[0].handle = data_handles[0];
  1075. task->buffers[0].mode = STARPU_RW;
  1076. task->buffers[1].handle = data_handles[1];
  1077. task->buffers[1].mode = STARPU_RW;
  1078. char *arg_buffer;
  1079. size_t arg_buffer_size;
  1080. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1081. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1082. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1083. 0);
  1084. task->cl_arg = arg_buffer;
  1085. task->cl_arg_size = arg_buffer_size;
  1086. int ret = starpu_task_submit(task);
  1087. @end smallexample
  1088. @node Debugging
  1089. @section Debugging
  1090. StarPU provides several tools to help debugging aplications. Execution traces
  1091. can be generated and displayed graphically, see @ref{Generating traces}. Some
  1092. gdb helpers are also provided to show the whole StarPU state:
  1093. @smallexample
  1094. (gdb) source tools/gdbinit
  1095. (gdb) help starpu
  1096. @end smallexample
  1097. @node More examples
  1098. @section More examples
  1099. More examples are available in the StarPU sources in the @code{examples/}
  1100. directory. Simple examples include:
  1101. @table @asis
  1102. @item @code{incrementer/}:
  1103. Trivial incrementation test.
  1104. @item @code{basic_examples/}:
  1105. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1106. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1107. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1108. interface, and an example using the variable data interface.
  1109. @item @code{matvecmult/}:
  1110. OpenCL example from NVidia, adapted to StarPU.
  1111. @item @code{axpy/}:
  1112. AXPY CUBLAS operation adapted to StarPU.
  1113. @item @code{fortran/}:
  1114. Example of Fortran bindings.
  1115. @end table
  1116. More advanced examples include:
  1117. @table @asis
  1118. @item @code{filters/}:
  1119. Examples using filters, as shown in @ref{Partitioning Data}.
  1120. @item @code{lu/}:
  1121. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1122. @item @code{cholesky/}:
  1123. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1124. @end table
  1125. @c ---------------------------------------------------------------------
  1126. @c Performance options
  1127. @c ---------------------------------------------------------------------
  1128. @node Performance optimization
  1129. @chapter How to optimize performance with StarPU
  1130. TODO: improve!
  1131. @menu
  1132. * Data management::
  1133. * Task submission::
  1134. * Task priorities::
  1135. * Task scheduling policy::
  1136. * Task distribution vs Data transfer::
  1137. * Data prefetch::
  1138. * Power-based scheduling::
  1139. * Profiling::
  1140. * CUDA-specific optimizations::
  1141. @end menu
  1142. Simply encapsulating application kernels into tasks already permits to
  1143. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1144. few additional changes are needed.
  1145. @node Data management
  1146. @section Data management
  1147. By default, StarPU leaves replicates of data wherever they were used, in case they
  1148. will be re-used by other tasks, thus saving the data transfer time. When some
  1149. task modifies some data, all the other replicates are invalidated, and only the
  1150. processing unit will have a valid replicate of the data. If the application knows
  1151. that this data will not be re-used by further tasks, it should advise StarPU to
  1152. immediately replicate it to a desired list of memory nodes (given through a
  1153. bitmask). This can be understood like the write-through mode of CPU caches.
  1154. @example
  1155. starpu_data_set_wt_mask(img_handle, 1<<0);
  1156. @end example
  1157. will for instance request to always transfer a replicate into the main memory (node
  1158. 0), as bit 0 of the write-through bitmask is being set.
  1159. When the application allocates data, whenever possible it should use the
  1160. @code{starpu_malloc} function, which will ask CUDA or
  1161. OpenCL to make the allocation itself and pin the corresponding allocated
  1162. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1163. transfer to overlap with computations.
  1164. @node Task submission
  1165. @section Task submission
  1166. To let StarPU make online optimizations, tasks should be submitted
  1167. asynchronously as much as possible. Ideally, all the tasks should be
  1168. submitted, and mere calls to @code{starpu_task_wait_for_all} or
  1169. @code{starpu_data_unregister} be done to wait for
  1170. termination. StarPU will then be able to rework the whole schedule, overlap
  1171. computation with communication, manage accelerator local memory usage, etc.
  1172. @node Task priorities
  1173. @section Task priorities
  1174. By default, StarPU will consider the tasks in the order they are submitted by
  1175. the application. If the application programmer knows that some tasks should
  1176. be performed in priority (for instance because their output is needed by many
  1177. other tasks and may thus be a bottleneck if not executed early enough), the
  1178. @code{priority} field of the task structure should be set to transmit the
  1179. priority information to StarPU.
  1180. @node Task scheduling policy
  1181. @section Task scheduling policy
  1182. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1183. because it provides correct load balance even if the application codelets do not
  1184. have performance models. If your application codelets have performance models
  1185. (@pxref{Performance model example} for examples showing how to do it),
  1186. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1187. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1188. the list of available schedulers.
  1189. @c TODO: give some details about each scheduler.
  1190. Most schedulers are based on an estimation of codelet duration on each kind
  1191. of processing unit. For this to be possible, the application programmer needs
  1192. to configure a performance model for the codelets of the application (see
  1193. @ref{Performance model example} for instance). History-based performance models
  1194. use on-line calibration. StarPU will automatically calibrate codelets
  1195. which have never been calibrated yet. To force continuing calibration, use
  1196. @code{export STARPU_CALIBRATE=1} . This may be necessary if your application
  1197. have not-so-stable performance. Details on the current performance model status
  1198. can be obtained from the @code{starpu_perfmodel_display} command: the @code{-l}
  1199. option lists the available performance models, and the @code{-s} option permits
  1200. to choose the performance model to be displayed. The result looks like:
  1201. @example
  1202. € starpu_perfmodel_display -s starpu_dlu_lu_model_22
  1203. performance model for cpu
  1204. # hash size mean dev n
  1205. 5c6c3401 1572864 1.216300e+04 2.277778e+03 1240
  1206. @end example
  1207. Which shows that for the LU 22 kernel with a 1.5MiB matrix, the average
  1208. execution time on CPUs was about 12ms, with a 2ms standard deviation, over
  1209. 1240 samples. It is a good idea to check this before doing actual performance
  1210. measurements.
  1211. If a kernel source code was modified (e.g. performance improvement), the
  1212. calibration information is stale and should be dropped, to re-calibrate from
  1213. start. This can be done by using @code{export STARPU_CALIBRATE=2}.
  1214. Note: due to CUDA limitations, to be able to measure kernel duration,
  1215. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1216. disables data transfer / computation overlapping, and should thus not be used
  1217. for eventual benchmarks. Note 2: history-based performance models get calibrated
  1218. only if a performance-model-based scheduler is chosen.
  1219. @node Task distribution vs Data transfer
  1220. @section Task distribution vs Data transfer
  1221. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1222. thus needs to find a balance between both. The target function that the
  1223. @code{dmda} scheduler of StarPU
  1224. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1225. @code{T_execution} is the estimated execution time of the codelet (usually
  1226. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1227. latter is however estimated based on bus calibration before execution start,
  1228. i.e. with an idle machine. You can force bus re-calibration by running
  1229. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1230. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance.
  1231. This is of course imprecise, but in practice, a rough estimation already gives
  1232. the good results that a precise estimation would give.
  1233. @node Data prefetch
  1234. @section Data prefetch
  1235. The @code{heft}, @code{dmda} and @code{pheft} scheduling policies perform data prefetch (see @ref{STARPU_PREFETCH}):
  1236. as soon as a scheduling decision is taken for a task, requests are issued to
  1237. transfer its required data to the target processing unit, if needeed, so that
  1238. when the processing unit actually starts the task, its data will hopefully be
  1239. already available and it will not have to wait for the transfer to finish.
  1240. The application may want to perform some manual prefetching, for several reasons
  1241. such as excluding initial data transfers from performance measurements, or
  1242. setting up an initial statically-computed data distribution on the machine
  1243. before submitting tasks, which will thus guide StarPU toward an initial task
  1244. distribution (since StarPU will try to avoid further transfers).
  1245. This can be achieved by giving the @code{starpu_data_prefetch_on_node} function
  1246. the handle and the desired target memory node.
  1247. @node Power-based scheduling
  1248. @section Power-based scheduling
  1249. If the application can provide some power performance model (through
  1250. the @code{power_model} field of the codelet structure), StarPU will
  1251. take it into account when distributing tasks. The target function that
  1252. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1253. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1254. is the estimated task consumption in Joules. To tune this parameter, use
  1255. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1256. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1257. alpha and beta to zero permits to only take into account power consumption.
  1258. This is however not sufficient to correctly optimize power: the scheduler would
  1259. simply tend to run all computations on the most energy-conservative processing
  1260. unit. To account for the consumption of the whole machine (including idle
  1261. processing units), the idle power of the machine should be given by setting
  1262. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1263. be obtained from the machine power supplier.
  1264. The power actually consumed by the total execution can be displayed by setting
  1265. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1266. @node Profiling
  1267. @section Profiling
  1268. A quick view of how many tasks each worker has executed can be obtained by setting
  1269. @code{export STARPU_WORKER_STATS=1} This is a convenient way to check that
  1270. execution did happen on accelerators without penalizing performance with
  1271. the profiling overhead.
  1272. More detailed profiling information can be enabled by using @code{export STARPU_PROFILING=1} or by
  1273. calling @code{starpu_profiling_status_set} from the source code.
  1274. Statistics on the execution can then be obtained by using @code{export
  1275. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} .
  1276. More details on performance feedback are provided by the next chapter.
  1277. @node CUDA-specific optimizations
  1278. @section CUDA-specific optimizations
  1279. Due to CUDA limitations, StarPU will have a hard time overlapping its own
  1280. communications and the codelet computations if the application does not use a
  1281. dedicated CUDA stream for its computations. StarPU provides one by the use of
  1282. @code{starpu_cuda_get_local_stream()} which should be used by all CUDA codelet
  1283. operations. For instance:
  1284. @example
  1285. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1286. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1287. @end example
  1288. Unfortunately, a lot of CUDA libraries do not have stream variants of
  1289. kernels. That will lower the potential for overlapping.
  1290. @c ---------------------------------------------------------------------
  1291. @c Performance feedback
  1292. @c ---------------------------------------------------------------------
  1293. @node Performance feedback
  1294. @chapter Performance feedback
  1295. @menu
  1296. * On-line:: On-line performance feedback
  1297. * Off-line:: Off-line performance feedback
  1298. * Codelet performance:: Performance of codelets
  1299. @end menu
  1300. @node On-line
  1301. @section On-line performance feedback
  1302. @menu
  1303. * Enabling monitoring:: Enabling on-line performance monitoring
  1304. * Task feedback:: Per-task feedback
  1305. * Codelet feedback:: Per-codelet feedback
  1306. * Worker feedback:: Per-worker feedback
  1307. * Bus feedback:: Bus-related feedback
  1308. @end menu
  1309. @node Enabling monitoring
  1310. @subsection Enabling on-line performance monitoring
  1311. In order to enable online performance monitoring, the application can call
  1312. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1313. detect whether monitoring is already enabled or not by calling
  1314. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1315. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1316. can also be set to 1 to achieve the same effect.
  1317. Likewise, performance monitoring is stopped by calling
  1318. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1319. does not reset the performance counters so that the application may consult
  1320. them later on.
  1321. More details about the performance monitoring API are available in section
  1322. @ref{Profiling API}.
  1323. @node Task feedback
  1324. @subsection Per-task feedback
  1325. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1326. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1327. structure when a task terminates.
  1328. This structure is automatically destroyed when the task structure is destroyed,
  1329. either automatically or by calling @code{starpu_task_destroy}.
  1330. The @code{starpu_task_profiling_info} structure indicates the date when the
  1331. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1332. terminated (@code{end_time}), relative to the initialization of
  1333. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1334. that has executed the task (@code{workerid}).
  1335. These date are stored as @code{timespec} structures which the user may convert
  1336. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1337. function.
  1338. It it worth noting that the application may directly access this structure from
  1339. the callback executed at the end of the task. The @code{starpu_task} structure
  1340. associated to the callback currently being executed is indeed accessible with
  1341. the @code{starpu_get_current_task()} function.
  1342. @node Codelet feedback
  1343. @subsection Per-codelet feedback
  1344. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1345. an array of counters. The i-th entry of the array is incremented every time a
  1346. task implementing the codelet is executed on the i-th worker.
  1347. This array is not reinitialized when profiling is enabled or disabled.
  1348. @node Worker feedback
  1349. @subsection Per-worker feedback
  1350. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1351. function is a @code{starpu_worker_profiling_info} structure that gives
  1352. statistics about the specified worker. This structure specifies when StarPU
  1353. started collecting profiling information for that worker (@code{start_time}),
  1354. the duration of the profiling measurement interval (@code{total_time}), the
  1355. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1356. because there is no task to execute at all (@code{sleeping_time}), and the
  1357. number of tasks that were executed while profiling was enabled.
  1358. These values give an estimation of the proportion of time spent do real work,
  1359. and the time spent either sleeping because there are not enough executable
  1360. tasks or simply wasted in pure StarPU overhead.
  1361. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1362. information associated to a worker.
  1363. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1364. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1365. generate a graphic showing the evolution of these values during the time, for
  1366. the different workers.
  1367. @node Bus feedback
  1368. @subsection Bus-related feedback
  1369. TODO
  1370. @c how to enable/disable performance monitoring
  1371. @c what kind of information do we get ?
  1372. @node Off-line
  1373. @section Off-line performance feedback
  1374. @menu
  1375. * Generating traces:: Generating traces with FxT
  1376. * Gantt diagram:: Creating a Gantt Diagram
  1377. * DAG:: Creating a DAG with graphviz
  1378. * starpu-top:: Monitoring activity
  1379. @end menu
  1380. @node Generating traces
  1381. @subsection Generating traces with FxT
  1382. StarPU can use the FxT library (see
  1383. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1384. with a limited runtime overhead.
  1385. You can either get the FxT library from CVS (autotools are required):
  1386. @example
  1387. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1388. % ./bootstrap
  1389. @end example
  1390. If autotools are not available on your machine, or if you prefer to do so,
  1391. FxT's code is also available as a tarball:
  1392. @example
  1393. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz
  1394. @end example
  1395. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1396. done following the standard procedure:
  1397. @example
  1398. % ./configure --prefix=$FXTDIR
  1399. % make
  1400. % make install
  1401. @end example
  1402. In order to have StarPU to generate traces, StarPU should be configured with
  1403. the @code{--with-fxt} option:
  1404. @example
  1405. $ ./configure --with-fxt=$FXTDIR
  1406. @end example
  1407. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1408. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1409. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1410. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1411. @code{/tmp/} directory by default, or by the directory specified by
  1412. the @code{STARPU_FXT_PREFIX} environment variable.
  1413. @node Gantt diagram
  1414. @subsection Creating a Gantt Diagram
  1415. When the FxT trace file @code{filename} has been generated, it is possible to
  1416. generate a trace in the Paje format by calling:
  1417. @example
  1418. % starpu_fxt_tool -i filename
  1419. @end example
  1420. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  1421. to 1 before application execution will make StarPU do it automatically at
  1422. application shutdown.
  1423. This will create a @code{paje.trace} file in the current directory that can be
  1424. inspected with the ViTE trace visualizing open-source tool. More information
  1425. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1426. possible to open the @code{paje.trace} file with ViTE by using the following
  1427. command:
  1428. @example
  1429. % vite paje.trace
  1430. @end example
  1431. @node DAG
  1432. @subsection Creating a DAG with graphviz
  1433. When the FxT trace file @code{filename} has been generated, it is possible to
  1434. generate a task graph in the DOT format by calling:
  1435. @example
  1436. $ starpu_fxt_tool -i filename
  1437. @end example
  1438. This will create a @code{dag.dot} file in the current directory. This file is a
  1439. task graph described using the DOT language. It is possible to get a
  1440. graphical output of the graph by using the graphviz library:
  1441. @example
  1442. $ dot -Tpdf dag.dot -o output.pdf
  1443. @end example
  1444. @node starpu-top
  1445. @subsection Monitoring activity
  1446. When the FxT trace file @code{filename} has been generated, it is possible to
  1447. generate a activity trace by calling:
  1448. @example
  1449. $ starpu_fxt_tool -i filename
  1450. @end example
  1451. This will create an @code{activity.data} file in the current
  1452. directory. A profile of the application showing the activity of StarPU
  1453. during the execution of the program can be generated:
  1454. @example
  1455. $ starpu_top.sh activity.data
  1456. @end example
  1457. This will create a file named @code{activity.eps} in the current directory.
  1458. This picture is composed of two parts.
  1459. The first part shows the activity of the different workers. The green sections
  1460. indicate which proportion of the time was spent executed kernels on the
  1461. processing unit. The red sections indicate the proportion of time spent in
  1462. StartPU: an important overhead may indicate that the granularity may be too
  1463. low, and that bigger tasks may be appropriate to use the processing unit more
  1464. efficiently. The black sections indicate that the processing unit was blocked
  1465. because there was no task to process: this may indicate a lack of parallelism
  1466. which may be alleviated by creating more tasks when it is possible.
  1467. The second part of the @code{activity.eps} picture is a graph showing the
  1468. evolution of the number of tasks available in the system during the execution.
  1469. Ready tasks are shown in black, and tasks that are submitted but not
  1470. schedulable yet are shown in grey.
  1471. @node Codelet performance
  1472. @section Performance of codelets
  1473. The performance model of codelets can be examined by using the
  1474. @code{starpu_perfmodel_display} tool:
  1475. @example
  1476. $ starpu_perfmodel_display -l
  1477. file: <malloc_pinned.hannibal>
  1478. file: <starpu_slu_lu_model_21.hannibal>
  1479. file: <starpu_slu_lu_model_11.hannibal>
  1480. file: <starpu_slu_lu_model_22.hannibal>
  1481. file: <starpu_slu_lu_model_12.hannibal>
  1482. @end example
  1483. Here, the codelets of the lu example are available. We can examine the
  1484. performance of the 22 kernel:
  1485. @example
  1486. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1487. performance model for cpu
  1488. # hash size mean dev n
  1489. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1490. performance model for cuda_0
  1491. # hash size mean dev n
  1492. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1493. performance model for cuda_1
  1494. # hash size mean dev n
  1495. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1496. performance model for cuda_2
  1497. # hash size mean dev n
  1498. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1499. @end example
  1500. We can see that for the given size, over a sample of a few hundreds of
  1501. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1502. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1503. CPUs.
  1504. @c ---------------------------------------------------------------------
  1505. @c MPI support
  1506. @c ---------------------------------------------------------------------
  1507. @node StarPU MPI support
  1508. @chapter StarPU MPI support
  1509. The integration of MPI transfers within task parallelism is done in a
  1510. very natural way by the means of asynchronous interactions between the
  1511. application and StarPU. This is implemented in a separate libstarpumpi library
  1512. which basically provides "StarPU" equivalents of @code{MPI_*} functions, where
  1513. @code{void *} buffers are replaced with @code{starpu_data_handle}s, and all
  1514. GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI.
  1515. @menu
  1516. * The API::
  1517. * Simple Example::
  1518. * MPI Insert Task Utility::
  1519. @end menu
  1520. @node The API
  1521. @section The API
  1522. @subsection Initialisation
  1523. @deftypefun int starpu_mpi_initialize (void)
  1524. Initialize the starpumpi library. This must be called between calling
  1525. @code{starpu_init} and other @code{starpu_mpi} functions. This replace calls to
  1526. MPI_Init.
  1527. @end deftypefun
  1528. @deftypefun int starpu_mpi_initialize_extended (int @var{initialize_mpi}, int *@var{rank}, int *@var{world_size})
  1529. Same as @code{starpu_mpi_initialize}, except that it returns the current MPI
  1530. node rank and world size.
  1531. @end deftypefun
  1532. @deftypefun int starpu_mpi_shutdown (void)
  1533. Cleans the starpumpi library. This must be called between calling
  1534. @code{starpu_mpi} functions and @code{starpu_shutdown}.
  1535. @end deftypefun
  1536. @subsection Communication
  1537. @deftypefun int starpu_mpi_send (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1538. @end deftypefun
  1539. @deftypefun int starpu_mpi_recv (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, MPI_Status *@var{status})
  1540. @end deftypefun
  1541. @deftypefun int starpu_mpi_isend (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1542. @end deftypefun
  1543. @deftypefun int starpu_mpi_irecv (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1544. @end deftypefun
  1545. @deftypefun int starpu_mpi_isend_detached (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1546. @end deftypefun
  1547. @deftypefun int starpu_mpi_irecv_detached (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1548. @end deftypefun
  1549. @deftypefun int starpu_mpi_wait (starpu_mpi_req *@var{req}, MPI_Status *@var{status})
  1550. @end deftypefun
  1551. @deftypefun int starpu_mpi_test (starpu_mpi_req *@var{req}, int *@var{flag}, MPI_Status *@var{status})
  1552. @end deftypefun
  1553. @deftypefun int starpu_mpi_barrier (MPI_Comm @var{comm})
  1554. @end deftypefun
  1555. @deftypefun int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1556. When the transfer is completed, the tag is unlocked
  1557. @end deftypefun
  1558. @deftypefun int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1559. @end deftypefun
  1560. @deftypefun int starpu_mpi_isend_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{dest}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1561. Asynchronously send an array of buffers, and unlocks the tag once all
  1562. of them are transmitted.
  1563. @end deftypefun
  1564. @deftypefun int starpu_mpi_irecv_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{source}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1565. @end deftypefun
  1566. @page
  1567. @node Simple Example
  1568. @section Simple Example
  1569. @cartouche
  1570. @smallexample
  1571. void increment_token(void)
  1572. @{
  1573. struct starpu_task *task = starpu_task_create();
  1574. task->cl = &increment_cl;
  1575. task->buffers[0].handle = token_handle;
  1576. task->buffers[0].mode = STARPU_RW;
  1577. starpu_task_submit(task);
  1578. @}
  1579. @end smallexample
  1580. @end cartouche
  1581. @cartouche
  1582. @smallexample
  1583. int main(int argc, char **argv)
  1584. @{
  1585. int rank, size;
  1586. starpu_init(NULL);
  1587. starpu_mpi_initialize_extended(1, &rank, &size);
  1588. starpu_vector_data_register(&token_handle, 0, (uintptr_t)&token, 1, sizeof(unsigned));
  1589. unsigned nloops = NITER;
  1590. unsigned loop;
  1591. unsigned last_loop = nloops - 1;
  1592. unsigned last_rank = size - 1;
  1593. @end smallexample
  1594. @end cartouche
  1595. @cartouche
  1596. @smallexample
  1597. for (loop = 0; loop < nloops; loop++) @{
  1598. int tag = loop*size + rank;
  1599. if (loop == 0 && rank == 0)
  1600. @{
  1601. token = 0;
  1602. fprintf(stdout, "Start with token value %d\n", token);
  1603. @}
  1604. else
  1605. @{
  1606. starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag,
  1607. MPI_COMM_WORLD, NULL, NULL);
  1608. @}
  1609. increment_token();
  1610. if (loop == last_loop && rank == last_rank)
  1611. @{
  1612. starpu_data_acquire(token_handle, STARPU_R);
  1613. fprintf(stdout, "Finished : token value %d\n", token);
  1614. starpu_data_release(token_handle);
  1615. @}
  1616. else
  1617. @{
  1618. starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1,
  1619. MPI_COMM_WORLD, NULL, NULL);
  1620. @}
  1621. @}
  1622. starpu_task_wait_for_all();
  1623. @end smallexample
  1624. @end cartouche
  1625. @cartouche
  1626. @smallexample
  1627. starpu_mpi_shutdown();
  1628. starpu_shutdown();
  1629. if (rank == last_rank)
  1630. @{
  1631. fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);
  1632. STARPU_ASSERT(token == nloops*size);
  1633. @}
  1634. @end smallexample
  1635. @end cartouche
  1636. @page
  1637. @node MPI Insert Task Utility
  1638. @section MPI Insert Task Utility
  1639. @deftypefun void starpu_mpi_insert_task (MPI_Comm @var{comm}, starpu_codelet *@var{cl}, ...)
  1640. Create and submit a task corresponding to @var{cl} with the following
  1641. arguments. The argument list must be zero-terminated.
  1642. The arguments following the codelets are the same types as for the
  1643. function @code{starpu_insert_task} defined in @ref{Insert Task
  1644. Utility}. The extra argument @code{STARPU_EXECUTE} followed by an
  1645. integer allows to specify the node to execute the codelet.
  1646. The algorithm is as follows:
  1647. @enumerate
  1648. @item Find out whether we are to execute the codelet because we own the
  1649. data to be written to. If different tasks own data to be written to,
  1650. the argument @code{STARPU_EXECUTE} should be used to specify the
  1651. executing task @code{ET}.
  1652. @item Send and receive data as requested. Tasks owning data which need
  1653. to be read by the executing task @code{ET} are sending them to @code{ET}.
  1654. @item Execute the codelet. This is done by the task selected in the
  1655. 1st step of the algorithm.
  1656. @item In the case when different tasks own data to be written to, send
  1657. W data back to their owners.
  1658. @end enumerate
  1659. The algorithm also includes a cache mechanism that allows not to send
  1660. data twice to the same task, unless the data has been modified.
  1661. @end deftypefun
  1662. @deftypefun void starpu_mpi_get_data_on_node (MPI_Comm @var{comm}, starpu_data_handle @var{data_handle}, int @var{node})
  1663. @end deftypefun
  1664. @page
  1665. Here an example showing how to use @code{starpu_mpi_insert_task}. One
  1666. first needs to define a distribution function which specifies the
  1667. locality of the data. Note that that distribution information needs to
  1668. be given to StarPU by calling @code{starpu_data_set_rank}.
  1669. @cartouche
  1670. @smallexample
  1671. /* Returns the MPI node number where data is */
  1672. int my_distrib(int x, int y, int nb_nodes) @{
  1673. /* Cyclic distrib */
  1674. return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;
  1675. // /* Linear distrib */
  1676. // return x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * X;
  1677. @}
  1678. @end smallexample
  1679. @end cartouche
  1680. Now the data can be registered within StarPU. Data which are not
  1681. owned but will be needed for computations can be registered through
  1682. the lazy allocation mechanism, i.e. with a @code{home_node} set to -1.
  1683. StarPU will automatically allocate the memory when it is used for the
  1684. first time.
  1685. @cartouche
  1686. @smallexample
  1687. unsigned matrix[X][Y];
  1688. starpu_data_handle data_handles[X][Y];
  1689. for(x = 0; x < X; x++) @{
  1690. for (y = 0; y < Y; y++) @{
  1691. int mpi_rank = my_distrib(x, y, size);
  1692. if (mpi_rank == rank)
  1693. /* Owning data */
  1694. starpu_variable_data_register(&data_handles[x][y], 0,
  1695. (uintptr_t)&(matrix[x][y]), sizeof(unsigned));
  1696. else if (rank == mpi_rank+1 || rank == mpi_rank-1)
  1697. /* I don't own that index, but will need it for my computations */
  1698. starpu_variable_data_register(&data_handles[x][y], -1,
  1699. (uintptr_t)NULL, sizeof(unsigned));
  1700. else
  1701. /* I know it's useless to allocate anything for this */
  1702. data_handles[x][y] = NULL;
  1703. if (data_handles[x][y])
  1704. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  1705. @}
  1706. @}
  1707. @end smallexample
  1708. @end cartouche
  1709. Now @code{starpu_mpi_insert_task()} can be called for the different
  1710. steps of the application.
  1711. @cartouche
  1712. @smallexample
  1713. for(loop=0 ; loop<niter; loop++)
  1714. for (x = 1; x < X-1; x++)
  1715. for (y = 1; y < Y-1; y++)
  1716. starpu_mpi_insert_task(MPI_COMM_WORLD, &stencil5_cl,
  1717. STARPU_RW, data_handles[x][y],
  1718. STARPU_R, data_handles[x-1][y],
  1719. STARPU_R, data_handles[x+1][y],
  1720. STARPU_R, data_handles[x][y-1],
  1721. STARPU_R, data_handles[x][y+1],
  1722. 0);
  1723. starpu_task_wait_for_all();
  1724. @end smallexample
  1725. @end cartouche
  1726. @c ---------------------------------------------------------------------
  1727. @c Configuration options
  1728. @c ---------------------------------------------------------------------
  1729. @node Configuring StarPU
  1730. @chapter Configuring StarPU
  1731. @menu
  1732. * Compilation configuration::
  1733. * Execution configuration through environment variables::
  1734. @end menu
  1735. @node Compilation configuration
  1736. @section Compilation configuration
  1737. The following arguments can be given to the @code{configure} script.
  1738. @menu
  1739. * Common configuration::
  1740. * Configuring workers::
  1741. * Advanced configuration::
  1742. @end menu
  1743. @node Common configuration
  1744. @subsection Common configuration
  1745. @menu
  1746. * --enable-debug::
  1747. * --enable-fast::
  1748. * --enable-verbose::
  1749. * --enable-coverage::
  1750. @end menu
  1751. @node --enable-debug
  1752. @subsubsection @code{--enable-debug}
  1753. @table @asis
  1754. @item @emph{Description}:
  1755. Enable debugging messages.
  1756. @end table
  1757. @node --enable-fast
  1758. @subsubsection @code{--enable-fast}
  1759. @table @asis
  1760. @item @emph{Description}:
  1761. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1762. @end table
  1763. @node --enable-verbose
  1764. @subsubsection @code{--enable-verbose}
  1765. @table @asis
  1766. @item @emph{Description}:
  1767. Augment the verbosity of the debugging messages. This can be disabled
  1768. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1769. any value.
  1770. @smallexample
  1771. % STARPU_SILENT=1 ./vector_scal
  1772. @end smallexample
  1773. @end table
  1774. @node --enable-coverage
  1775. @subsubsection @code{--enable-coverage}
  1776. @table @asis
  1777. @item @emph{Description}:
  1778. Enable flags for the @code{gcov} coverage tool.
  1779. @end table
  1780. @node Configuring workers
  1781. @subsection Configuring workers
  1782. @menu
  1783. * --enable-nmaxcpus::
  1784. * --disable-cpu::
  1785. * --enable-maxcudadev::
  1786. * --disable-cuda::
  1787. * --with-cuda-dir::
  1788. * --with-cuda-include-dir::
  1789. * --with-cuda-lib-dir::
  1790. * --enable-maxopencldev::
  1791. * --disable-opencl::
  1792. * --with-opencl-dir::
  1793. * --with-opencl-include-dir::
  1794. * --with-opencl-lib-dir::
  1795. * --enable-gordon::
  1796. * --with-gordon-dir::
  1797. @end menu
  1798. @node --enable-nmaxcpus
  1799. @subsubsection @code{--enable-nmaxcpus=<number>}
  1800. @table @asis
  1801. @item @emph{Description}:
  1802. Defines the maximum number of CPU cores that StarPU will support, then
  1803. available as the @code{STARPU_NMAXCPUS} macro.
  1804. @end table
  1805. @node --disable-cpu
  1806. @subsubsection @code{--disable-cpu}
  1807. @table @asis
  1808. @item @emph{Description}:
  1809. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1810. @end table
  1811. @node --enable-maxcudadev
  1812. @subsubsection @code{--enable-maxcudadev=<number>}
  1813. @table @asis
  1814. @item @emph{Description}:
  1815. Defines the maximum number of CUDA devices that StarPU will support, then
  1816. available as the @code{STARPU_MAXCUDADEVS} macro.
  1817. @end table
  1818. @node --disable-cuda
  1819. @subsubsection @code{--disable-cuda}
  1820. @table @asis
  1821. @item @emph{Description}:
  1822. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1823. @end table
  1824. @node --with-cuda-dir
  1825. @subsubsection @code{--with-cuda-dir=<path>}
  1826. @table @asis
  1827. @item @emph{Description}:
  1828. Specify the directory where CUDA is installed. This directory should notably contain
  1829. @code{include/cuda.h}.
  1830. @end table
  1831. @node --with-cuda-include-dir
  1832. @subsubsection @code{--with-cuda-include-dir=<path>}
  1833. @table @asis
  1834. @item @emph{Description}:
  1835. Specify the directory where CUDA headers are installed. This directory should
  1836. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1837. value given to @code{--with-cuda-dir}.
  1838. @end table
  1839. @node --with-cuda-lib-dir
  1840. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1841. @table @asis
  1842. @item @emph{Description}:
  1843. Specify the directory where the CUDA library is installed. This directory should
  1844. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1845. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1846. @end table
  1847. @node --enable-maxopencldev
  1848. @subsubsection @code{--enable-maxopencldev=<number>}
  1849. @table @asis
  1850. @item @emph{Description}:
  1851. Defines the maximum number of OpenCL devices that StarPU will support, then
  1852. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1853. @end table
  1854. @node --disable-opencl
  1855. @subsubsection @code{--disable-opencl}
  1856. @table @asis
  1857. @item @emph{Description}:
  1858. Disable the use of OpenCL, even if the SDK is detected.
  1859. @end table
  1860. @node --with-opencl-dir
  1861. @subsubsection @code{--with-opencl-dir=<path>}
  1862. @table @asis
  1863. @item @emph{Description}:
  1864. Specify the location of the OpenCL SDK. This directory should notably contain
  1865. @code{include/CL/cl.h} (or @code{include/OpenCL/cl.h} on Mac OS).
  1866. @end table
  1867. @node --with-opencl-include-dir
  1868. @subsubsection @code{--with-opencl-include-dir=<path>}
  1869. @table @asis
  1870. @item @emph{Description}:
  1871. Specify the location of OpenCL headers. This directory should notably contain
  1872. @code{CL/cl.h} (or @code{OpenCL/cl.h} on Mac OS). This defaults to
  1873. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1874. @end table
  1875. @node --with-opencl-lib-dir
  1876. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1877. @table @asis
  1878. @item @emph{Description}:
  1879. Specify the location of the OpenCL library. This directory should notably
  1880. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1881. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1882. @end table
  1883. @node --enable-gordon
  1884. @subsubsection @code{--enable-gordon}
  1885. @table @asis
  1886. @item @emph{Description}:
  1887. Enable the use of the Gordon runtime for Cell SPUs.
  1888. @c TODO: rather default to enabled when detected
  1889. @end table
  1890. @node --with-gordon-dir
  1891. @subsubsection @code{--with-gordon-dir=<path>}
  1892. @table @asis
  1893. @item @emph{Description}:
  1894. Specify the location of the Gordon SDK.
  1895. @end table
  1896. @node Advanced configuration
  1897. @subsection Advanced configuration
  1898. @menu
  1899. * --enable-perf-debug::
  1900. * --enable-model-debug::
  1901. * --enable-stats::
  1902. * --enable-maxbuffers::
  1903. * --enable-allocation-cache::
  1904. * --enable-opengl-render::
  1905. * --enable-blas-lib::
  1906. * --with-magma::
  1907. * --with-fxt::
  1908. * --with-perf-model-dir::
  1909. * --with-mpicc::
  1910. * --with-goto-dir::
  1911. * --with-atlas-dir::
  1912. * --with-mkl-cflags::
  1913. * --with-mkl-ldflags::
  1914. @end menu
  1915. @node --enable-perf-debug
  1916. @subsubsection @code{--enable-perf-debug}
  1917. @table @asis
  1918. @item @emph{Description}:
  1919. Enable performance debugging.
  1920. @end table
  1921. @node --enable-model-debug
  1922. @subsubsection @code{--enable-model-debug}
  1923. @table @asis
  1924. @item @emph{Description}:
  1925. Enable performance model debugging.
  1926. @end table
  1927. @node --enable-stats
  1928. @subsubsection @code{--enable-stats}
  1929. @table @asis
  1930. @item @emph{Description}:
  1931. Enable statistics.
  1932. @end table
  1933. @node --enable-maxbuffers
  1934. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1935. @table @asis
  1936. @item @emph{Description}:
  1937. Define the maximum number of buffers that tasks will be able to take
  1938. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1939. @end table
  1940. @node --enable-allocation-cache
  1941. @subsubsection @code{--enable-allocation-cache}
  1942. @table @asis
  1943. @item @emph{Description}:
  1944. Enable the use of a data allocation cache to avoid the cost of it with
  1945. CUDA. Still experimental.
  1946. @end table
  1947. @node --enable-opengl-render
  1948. @subsubsection @code{--enable-opengl-render}
  1949. @table @asis
  1950. @item @emph{Description}:
  1951. Enable the use of OpenGL for the rendering of some examples.
  1952. @c TODO: rather default to enabled when detected
  1953. @end table
  1954. @node --enable-blas-lib
  1955. @subsubsection @code{--enable-blas-lib=<name>}
  1956. @table @asis
  1957. @item @emph{Description}:
  1958. Specify the blas library to be used by some of the examples. The
  1959. library has to be 'atlas' or 'goto'.
  1960. @end table
  1961. @node --with-magma
  1962. @subsubsection @code{--with-magma=<path>}
  1963. @table @asis
  1964. @item @emph{Description}:
  1965. Specify where magma is installed. This directory should notably contain
  1966. @code{include/magmablas.h}.
  1967. @end table
  1968. @node --with-fxt
  1969. @subsubsection @code{--with-fxt=<path>}
  1970. @table @asis
  1971. @item @emph{Description}:
  1972. Specify the location of FxT (for generating traces and rendering them
  1973. using ViTE). This directory should notably contain
  1974. @code{include/fxt/fxt.h}.
  1975. @c TODO add ref to other section
  1976. @end table
  1977. @node --with-perf-model-dir
  1978. @subsubsection @code{--with-perf-model-dir=<dir>}
  1979. @table @asis
  1980. @item @emph{Description}:
  1981. Specify where performance models should be stored (instead of defaulting to the
  1982. current user's home).
  1983. @end table
  1984. @node --with-mpicc
  1985. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1986. @table @asis
  1987. @item @emph{Description}:
  1988. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1989. @end table
  1990. @node --with-goto-dir
  1991. @subsubsection @code{--with-goto-dir=<dir>}
  1992. @table @asis
  1993. @item @emph{Description}:
  1994. Specify the location of GotoBLAS.
  1995. @end table
  1996. @node --with-atlas-dir
  1997. @subsubsection @code{--with-atlas-dir=<dir>}
  1998. @table @asis
  1999. @item @emph{Description}:
  2000. Specify the location of ATLAS. This directory should notably contain
  2001. @code{include/cblas.h}.
  2002. @end table
  2003. @node --with-mkl-cflags
  2004. @subsubsection @code{--with-mkl-cflags=<cflags>}
  2005. @table @asis
  2006. @item @emph{Description}:
  2007. Specify the compilation flags for the MKL Library.
  2008. @end table
  2009. @node --with-mkl-ldflags
  2010. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  2011. @table @asis
  2012. @item @emph{Description}:
  2013. Specify the linking flags for the MKL Library. Note that the
  2014. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  2015. website provides a script to determine the linking flags.
  2016. @end table
  2017. @c ---------------------------------------------------------------------
  2018. @c Environment variables
  2019. @c ---------------------------------------------------------------------
  2020. @node Execution configuration through environment variables
  2021. @section Execution configuration through environment variables
  2022. @menu
  2023. * Workers:: Configuring workers
  2024. * Scheduling:: Configuring the Scheduling engine
  2025. * Misc:: Miscellaneous and debug
  2026. @end menu
  2027. Note: the values given in @code{starpu_conf} structure passed when
  2028. calling @code{starpu_init} will override the values of the environment
  2029. variables.
  2030. @node Workers
  2031. @subsection Configuring workers
  2032. @menu
  2033. * STARPU_NCPUS:: Number of CPU workers
  2034. * STARPU_NCUDA:: Number of CUDA workers
  2035. * STARPU_NOPENCL:: Number of OpenCL workers
  2036. * STARPU_NGORDON:: Number of SPU workers (Cell)
  2037. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  2038. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  2039. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  2040. @end menu
  2041. @node STARPU_NCPUS
  2042. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  2043. @table @asis
  2044. @item @emph{Description}:
  2045. Specify the number of CPU workers (thus not including workers dedicated to control acceleratores). Note that by default, StarPU will not allocate
  2046. more CPU workers than there are physical CPUs, and that some CPUs are used to control
  2047. the accelerators.
  2048. @end table
  2049. @node STARPU_NCUDA
  2050. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  2051. @table @asis
  2052. @item @emph{Description}:
  2053. Specify the number of CUDA devices that StarPU can use. If
  2054. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  2055. possible to select which CUDA devices should be used by the means of the
  2056. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  2057. create as many CUDA workers as there are CUDA devices.
  2058. @end table
  2059. @node STARPU_NOPENCL
  2060. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  2061. @table @asis
  2062. @item @emph{Description}:
  2063. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  2064. @end table
  2065. @node STARPU_NGORDON
  2066. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  2067. @table @asis
  2068. @item @emph{Description}:
  2069. Specify the number of SPUs that StarPU can use.
  2070. @end table
  2071. @node STARPU_WORKERS_CPUID
  2072. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  2073. @table @asis
  2074. @item @emph{Description}:
  2075. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  2076. specifies on which logical CPU the different workers should be
  2077. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  2078. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  2079. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  2080. determined by the OS, or provided by the @code{hwloc} library in case it is
  2081. available.
  2082. Note that the first workers correspond to the CUDA workers, then come the
  2083. OpenCL and the SPU, and finally the CPU workers. For example if
  2084. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  2085. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  2086. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  2087. the logical CPUs #1 and #3 will be used by the CPU workers.
  2088. If the number of workers is larger than the array given in
  2089. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  2090. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  2091. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  2092. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  2093. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2094. @end table
  2095. @node STARPU_WORKERS_CUDAID
  2096. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  2097. @table @asis
  2098. @item @emph{Description}:
  2099. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  2100. possible to select which CUDA devices should be used by StarPU. On a machine
  2101. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  2102. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  2103. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  2104. the one reported by CUDA).
  2105. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  2106. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2107. @end table
  2108. @node STARPU_WORKERS_OPENCLID
  2109. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  2110. @table @asis
  2111. @item @emph{Description}:
  2112. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  2113. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  2114. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2115. @end table
  2116. @node Scheduling
  2117. @subsection Configuring the Scheduling engine
  2118. @menu
  2119. * STARPU_SCHED:: Scheduling policy
  2120. * STARPU_CALIBRATE:: Calibrate performance models
  2121. * STARPU_PREFETCH:: Use data prefetch
  2122. * STARPU_SCHED_ALPHA:: Computation factor
  2123. * STARPU_SCHED_BETA:: Communication factor
  2124. @end menu
  2125. @node STARPU_SCHED
  2126. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  2127. @table @asis
  2128. @item @emph{Description}:
  2129. This chooses between the different scheduling policies proposed by StarPU: work
  2130. random, stealing, greedy, with performance models, etc.
  2131. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  2132. @end table
  2133. @node STARPU_CALIBRATE
  2134. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  2135. @table @asis
  2136. @item @emph{Description}:
  2137. If this variable is set to 1, the performance models are calibrated during
  2138. the execution. If it is set to 2, the previous values are dropped to restart
  2139. calibration from scratch. Setting this variable to 0 disable calibration, this
  2140. is the default behaviour.
  2141. Note: this currently only applies to @code{dm}, @code{dmda} and @code{heft} scheduling policies.
  2142. @end table
  2143. @node STARPU_PREFETCH
  2144. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  2145. @table @asis
  2146. @item @emph{Description}:
  2147. This variable indicates whether data prefetching should be enabled (0 means
  2148. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  2149. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  2150. advance, so that data is already present on the GPU when the task starts. As a
  2151. result, computation and data transfers are overlapped.
  2152. Note that prefetching is enabled by default in StarPU.
  2153. @end table
  2154. @node STARPU_SCHED_ALPHA
  2155. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  2156. @table @asis
  2157. @item @emph{Description}:
  2158. To estimate the cost of a task StarPU takes into account the estimated
  2159. computation time (obtained thanks to performance models). The alpha factor is
  2160. the coefficient to be applied to it before adding it to the communication part.
  2161. @end table
  2162. @node STARPU_SCHED_BETA
  2163. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  2164. @table @asis
  2165. @item @emph{Description}:
  2166. To estimate the cost of a task StarPU takes into account the estimated
  2167. data transfer time (obtained thanks to performance models). The beta factor is
  2168. the coefficient to be applied to it before adding it to the computation part.
  2169. @end table
  2170. @node Misc
  2171. @subsection Miscellaneous and debug
  2172. @menu
  2173. * STARPU_SILENT:: Disable verbose mode
  2174. * STARPU_LOGFILENAME:: Select debug file name
  2175. * STARPU_FXT_PREFIX:: FxT trace location
  2176. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  2177. * STARPU_GENERATE_TRACE:: Generate a Paje trace when StarPU is shut down
  2178. @end menu
  2179. @node STARPU_SILENT
  2180. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  2181. @table @asis
  2182. @item @emph{Description}:
  2183. This variable allows to disable verbose mode at runtime when StarPU
  2184. has been configured with the option @code{--enable-verbose}.
  2185. @end table
  2186. @node STARPU_LOGFILENAME
  2187. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  2188. @table @asis
  2189. @item @emph{Description}:
  2190. This variable specifies in which file the debugging output should be saved to.
  2191. @end table
  2192. @node STARPU_FXT_PREFIX
  2193. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  2194. @table @asis
  2195. @item @emph{Description}
  2196. This variable specifies in which directory to save the trace generated if FxT is enabled.
  2197. @end table
  2198. @node STARPU_LIMIT_GPU_MEM
  2199. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  2200. @table @asis
  2201. @item @emph{Description}
  2202. This variable specifies the maximum number of megabytes that should be
  2203. available to the application on each GPUs. In case this value is smaller than
  2204. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  2205. on the device. This variable is intended to be used for experimental purposes
  2206. as it emulates devices that have a limited amount of memory.
  2207. @end table
  2208. @node STARPU_GENERATE_TRACE
  2209. @subsubsection @code{STARPU_GENERATE_TRACE} -- Generate a Paje trace when StarPU is shut down
  2210. @table @asis
  2211. @item @emph{Description}
  2212. When set to 1, this variable indicates that StarPU should automatically
  2213. generate a Paje trace when starpu_shutdown is called.
  2214. @end table
  2215. @c ---------------------------------------------------------------------
  2216. @c StarPU API
  2217. @c ---------------------------------------------------------------------
  2218. @node StarPU API
  2219. @chapter StarPU API
  2220. @menu
  2221. * Initialization and Termination:: Initialization and Termination methods
  2222. * Workers' Properties:: Methods to enumerate workers' properties
  2223. * Data Library:: Methods to manipulate data
  2224. * Data Interfaces::
  2225. * Data Partition::
  2226. * Codelets and Tasks:: Methods to construct tasks
  2227. * Explicit Dependencies:: Explicit Dependencies
  2228. * Implicit Data Dependencies:: Implicit Data Dependencies
  2229. * Performance Model API::
  2230. * Profiling API:: Profiling API
  2231. * CUDA extensions:: CUDA extensions
  2232. * OpenCL extensions:: OpenCL extensions
  2233. * Cell extensions:: Cell extensions
  2234. * Miscellaneous helpers::
  2235. @end menu
  2236. @node Initialization and Termination
  2237. @section Initialization and Termination
  2238. @menu
  2239. * starpu_init:: Initialize StarPU
  2240. * struct starpu_conf:: StarPU runtime configuration
  2241. * starpu_conf_init:: Initialize starpu_conf structure
  2242. * starpu_shutdown:: Terminate StarPU
  2243. @end menu
  2244. @node starpu_init
  2245. @subsection @code{starpu_init} -- Initialize StarPU
  2246. @table @asis
  2247. @item @emph{Description}:
  2248. This is StarPU initialization method, which must be called prior to any other
  2249. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  2250. policy, number of cores, ...) by passing a non-null argument. Default
  2251. configuration is used if the passed argument is @code{NULL}.
  2252. @item @emph{Return value}:
  2253. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  2254. indicates that no worker was available (so that StarPU was not initialized).
  2255. @item @emph{Prototype}:
  2256. @code{int starpu_init(struct starpu_conf *conf);}
  2257. @end table
  2258. @node struct starpu_conf
  2259. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  2260. @table @asis
  2261. @item @emph{Description}:
  2262. This structure is passed to the @code{starpu_init} function in order
  2263. to configure StarPU.
  2264. When the default value is used, StarPU automatically selects the number
  2265. of processing units and takes the default scheduling policy. This parameter
  2266. overwrites the equivalent environment variables.
  2267. @item @emph{Fields}:
  2268. @table @asis
  2269. @item @code{sched_policy_name} (default = NULL):
  2270. This is the name of the scheduling policy. This can also be specified with the
  2271. @code{STARPU_SCHED} environment variable.
  2272. @item @code{sched_policy} (default = NULL):
  2273. This is the definition of the scheduling policy. This field is ignored
  2274. if @code{sched_policy_name} is set.
  2275. @item @code{ncpus} (default = -1):
  2276. This is the number of CPU cores that StarPU can use. This can also be
  2277. specified with the @code{STARPU_NCPUS} environment variable.
  2278. @item @code{ncuda} (default = -1):
  2279. This is the number of CUDA devices that StarPU can use. This can also be
  2280. specified with the @code{STARPU_NCUDA} environment variable.
  2281. @item @code{nopencl} (default = -1):
  2282. This is the number of OpenCL devices that StarPU can use. This can also be
  2283. specified with the @code{STARPU_NOPENCL} environment variable.
  2284. @item @code{nspus} (default = -1):
  2285. This is the number of Cell SPUs that StarPU can use. This can also be
  2286. specified with the @code{STARPU_NGORDON} environment variable.
  2287. @item @code{use_explicit_workers_bindid} (default = 0)
  2288. If this flag is set, the @code{workers_bindid} array indicates where the
  2289. different workers are bound, otherwise StarPU automatically selects where to
  2290. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  2291. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  2292. ignored if the @code{use_explicit_workers_bindid} flag is set.
  2293. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  2294. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  2295. where to bind the different workers. The i-th entry of the
  2296. @code{workers_bindid} indicates the logical identifier of the processor which
  2297. should execute the i-th worker. Note that the logical ordering of the CPUs is
  2298. either determined by the OS, or provided by the @code{hwloc} library in case it
  2299. is available.
  2300. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2301. ignored.
  2302. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2303. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2304. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2305. CUDA devices in a round-robin fashion.
  2306. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2307. ignored.
  2308. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2309. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2310. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2311. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2312. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2313. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2314. OpenCL devices in a round-robin fashion.
  2315. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2316. @item @code{calibrate} (default = 0):
  2317. If this flag is set, StarPU will calibrate the performance models when
  2318. executing tasks. If this value is equal to -1, the default value is used. The
  2319. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2320. variable when it is set.
  2321. @end table
  2322. @end table
  2323. @node starpu_conf_init
  2324. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2325. @table @asis
  2326. This function initializes the @code{starpu_conf} structure passed as argument
  2327. with the default values. In case some configuration parameters are already
  2328. specified through environment variables, @code{starpu_conf_init} initializes
  2329. the fields of the structure according to the environment variables. For
  2330. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2331. @code{.ncuda} field of the structure passed as argument.
  2332. @item @emph{Return value}:
  2333. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2334. indicates that the argument was NULL.
  2335. @item @emph{Prototype}:
  2336. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2337. @end table
  2338. @node starpu_shutdown
  2339. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2340. @deftypefun void starpu_shutdown (void)
  2341. This is StarPU termination method. It must be called at the end of the
  2342. application: statistics and other post-mortem debugging information are not
  2343. guaranteed to be available until this method has been called.
  2344. @end deftypefun
  2345. @node Workers' Properties
  2346. @section Workers' Properties
  2347. @menu
  2348. * starpu_worker_get_count:: Get the number of processing units
  2349. * starpu_worker_get_count_by_type:: Get the number of processing units of a given type
  2350. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2351. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2352. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2353. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2354. * starpu_worker_get_id:: Get the identifier of the current worker
  2355. * starpu_worker_get_ids_by_type:: Get the list of identifiers of workers with a given type
  2356. * starpu_worker_get_devid:: Get the device identifier of a worker
  2357. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2358. * starpu_worker_get_name:: Get the name of a worker
  2359. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2360. @end menu
  2361. @node starpu_worker_get_count
  2362. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2363. @deftypefun unsigned starpu_worker_get_count (void)
  2364. This function returns the number of workers (i.e. processing units executing
  2365. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2366. @end deftypefun
  2367. @node starpu_worker_get_count_by_type
  2368. @subsection @code{starpu_worker_get_count_by_type} -- Get the number of processing units of a given type
  2369. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  2370. Returns the number of workers of the type indicated by the argument. A positive
  2371. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  2372. the type is not valid otherwise.
  2373. @end deftypefun
  2374. @node starpu_cpu_worker_get_count
  2375. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2376. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  2377. This function returns the number of CPUs controlled by StarPU. The returned
  2378. value should be at most @code{STARPU_NMAXCPUS}.
  2379. @end deftypefun
  2380. @node starpu_cuda_worker_get_count
  2381. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2382. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  2383. This function returns the number of CUDA devices controlled by StarPU. The returned
  2384. value should be at most @code{STARPU_MAXCUDADEVS}.
  2385. @end deftypefun
  2386. @node starpu_opencl_worker_get_count
  2387. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2388. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  2389. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2390. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2391. @end deftypefun
  2392. @node starpu_spu_worker_get_count
  2393. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2394. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  2395. This function returns the number of Cell SPUs controlled by StarPU.
  2396. @end deftypefun
  2397. @node starpu_worker_get_id
  2398. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2399. @deftypefun int starpu_worker_get_id (void)
  2400. This function returns the identifier of the worker associated to the calling
  2401. thread. The returned value is either -1 if the current context is not a StarPU
  2402. worker (i.e. when called from the application outside a task or a callback), or
  2403. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2404. @end deftypefun
  2405. @node starpu_worker_get_ids_by_type
  2406. @subsection @code{starpu_worker_get_ids_by_type} -- Get the list of identifiers of workers with a given type
  2407. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  2408. Fill the workerids array with the identifiers of the workers that have the type
  2409. indicated in the first argument. The maxsize argument indicates the size of the
  2410. workids array. The returned value gives the number of identifiers that were put
  2411. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  2412. workers with the appropriate type: in that case, the array is filled with the
  2413. maxsize first elements. To avoid such overflows, the value of maxsize can be
  2414. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  2415. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  2416. @end deftypefun
  2417. @node starpu_worker_get_devid
  2418. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2419. @deftypefun int starpu_worker_get_devid (int @var{id})
  2420. This functions returns the device id of the worker associated to an identifier
  2421. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2422. CUDA worker, this device identifier is the logical device identifier exposed by
  2423. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2424. identifier of a CPU worker is the logical identifier of the core on which the
  2425. worker was bound; this identifier is either provided by the OS or by the
  2426. @code{hwloc} library in case it is available.
  2427. @end deftypefun
  2428. @node starpu_worker_get_type
  2429. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2430. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  2431. This function returns the type of worker associated to an identifier (as
  2432. returned by the @code{starpu_worker_get_id} function). The returned value
  2433. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2434. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2435. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2436. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2437. identifier is unspecified.
  2438. @end deftypefun
  2439. @node starpu_worker_get_name
  2440. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2441. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  2442. StarPU associates a unique human readable string to each processing unit. This
  2443. function copies at most the @var{maxlen} first bytes of the unique string
  2444. associated to a worker identified by its identifier @var{id} into the
  2445. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  2446. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  2447. function on an invalid identifier results in an unspecified behaviour.
  2448. @end deftypefun
  2449. @node starpu_worker_get_memory_node
  2450. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2451. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  2452. This function returns the identifier of the memory node associated to the
  2453. worker identified by @var{workerid}.
  2454. @end deftypefun
  2455. @node Data Library
  2456. @section Data Library
  2457. This section describes the data management facilities provided by StarPU.
  2458. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2459. design their own data interfaces if required.
  2460. @menu
  2461. * starpu_malloc:: Allocate data and pin it
  2462. * starpu_access_mode:: Data access mode
  2463. * unsigned memory_node:: Memory node
  2464. * starpu_data_handle:: StarPU opaque data handle
  2465. * void *interface:: StarPU data interface
  2466. * starpu_data_register:: Register a piece of data to StarPU
  2467. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2468. * starpu_data_invalidate:: Invalidate all data replicates
  2469. * starpu_data_acquire:: Access registered data from the application
  2470. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2471. * starpu_data_release:: Release registered data from the application
  2472. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2473. * starpu_data_prefetch_on_node:: Prefetch data to a given node
  2474. @end menu
  2475. @node starpu_malloc
  2476. @subsection @code{starpu_malloc} -- Allocate data and pin it
  2477. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  2478. This function allocates data of the given size. It will also try to pin it in
  2479. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2480. thus permit data transfer and computation overlapping. The allocated buffer must
  2481. be freed thanks to the @code{starpu_free} function.
  2482. @end deftypefun
  2483. @node starpu_access_mode
  2484. @subsection @code{starpu_access_mode} -- Data access mode
  2485. This datatype describes a data access mode. The different available modes are:
  2486. @table @asis
  2487. @table @asis
  2488. @item @code{STARPU_R} read-only mode.
  2489. @item @code{STARPU_W} write-only mode.
  2490. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2491. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2492. @item @code{STARPU_REDUX} reduction mode. TODO: document, as well as @code{starpu_data_set_reduction_methods}
  2493. @end table
  2494. @end table
  2495. @node unsigned memory_node
  2496. @subsection @code{unsigned memory_node} -- Memory node
  2497. @table @asis
  2498. @item @emph{Description}:
  2499. Every worker is associated to a memory node which is a logical abstraction of
  2500. the address space from which the processing unit gets its data. For instance,
  2501. the memory node associated to the different CPU workers represents main memory
  2502. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2503. Every memory node is identified by a logical index which is accessible from the
  2504. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2505. to StarPU, the specified memory node indicates where the piece of data
  2506. initially resides (we also call this memory node the home node of a piece of
  2507. data).
  2508. @end table
  2509. @node starpu_data_handle
  2510. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2511. @table @asis
  2512. @item @emph{Description}:
  2513. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2514. data. Once a piece of data has been registered to StarPU, it is associated to a
  2515. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2516. over the entire machine, so that we can maintain data consistency and locate
  2517. data replicates for instance.
  2518. @end table
  2519. @node void *interface
  2520. @subsection @code{void *interface} -- StarPU data interface
  2521. @table @asis
  2522. @item @emph{Description}:
  2523. Data management is done at a high-level in StarPU: rather than accessing a mere
  2524. list of contiguous buffers, the tasks may manipulate data that are described by
  2525. a high-level construct which we call data interface.
  2526. An example of data interface is the "vector" interface which describes a
  2527. contiguous data array on a spefic memory node. This interface is a simple
  2528. structure containing the number of elements in the array, the size of the
  2529. elements, and the address of the array in the appropriate address space (this
  2530. address may be invalid if there is no valid copy of the array in the memory
  2531. node). More informations on the data interfaces provided by StarPU are
  2532. given in @ref{Data Interfaces}.
  2533. When a piece of data managed by StarPU is used by a task, the task
  2534. implementation is given a pointer to an interface describing a valid copy of
  2535. the data that is accessible from the current processing unit.
  2536. @end table
  2537. @node starpu_data_register
  2538. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2539. @deftypefun void starpu_data_register (starpu_data_handle *@var{handleptr}, uint32_t @var{home_node}, void *@var{interface}, {struct starpu_data_interface_ops_t} *@var{ops})
  2540. Register a piece of data into the handle located at the @var{handleptr}
  2541. address. The @var{interface} buffer contains the initial description of the
  2542. data in the home node. The @var{ops} argument is a pointer to a structure
  2543. describing the different methods used to manipulate this type of interface. See
  2544. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2545. If @code{home_node} is -1, StarPU will automatically
  2546. allocate the memory when it is used for the
  2547. first time in write-only mode. Once such data handle has been automatically
  2548. allocated, it is possible to access it using any access mode.
  2549. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2550. matrix) which can be registered by the means of helper functions (e.g.
  2551. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2552. @end deftypefun
  2553. @node starpu_data_unregister
  2554. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2555. @deftypefun void starpu_data_unregister (starpu_data_handle @var{handle})
  2556. This function unregisters a data handle from StarPU. If the data was
  2557. automatically allocated by StarPU because the home node was -1, all
  2558. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2559. is put back into the home node in the buffer that was initially registered.
  2560. Using a data handle that has been unregistered from StarPU results in an
  2561. undefined behaviour.
  2562. @end deftypefun
  2563. @node starpu_data_invalidate
  2564. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2565. @deftypefun void starpu_data_invalidate (starpu_data_handle @var{handle})
  2566. Destroy all replicates of the data handle. After data invalidation, the first
  2567. access to the handle must be performed in write-only mode. Accessing an
  2568. invalidated data in read-mode results in undefined behaviour.
  2569. @end deftypefun
  2570. @c TODO create a specific sections about user interaction with the DSM ?
  2571. @node starpu_data_acquire
  2572. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2573. @deftypefun int starpu_data_acquire (starpu_data_handle @var{handle}, starpu_access_mode @var{mode})
  2574. The application must call this function prior to accessing registered data from
  2575. main memory outside tasks. StarPU ensures that the application will get an
  2576. up-to-date copy of the data in main memory located where the data was
  2577. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2578. be consistent with the access mode specified in the @var{mode} argument.
  2579. @code{starpu_data_release} must be called once the application does not need to
  2580. access the piece of data anymore. Note that implicit data
  2581. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  2582. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  2583. the data, unless that they have not been disabled explictly by calling
  2584. @code{starpu_data_set_default_sequential_consistency_flag} or
  2585. @code{starpu_data_set_sequential_consistency_flag}.
  2586. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2587. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2588. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2589. @end deftypefun
  2590. @node starpu_data_acquire_cb
  2591. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2592. @deftypefun int starpu_data_acquire_cb (starpu_data_handle @var{handle}, starpu_access_mode @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  2593. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2594. @code{starpu_data_release}. When the data specified in the first argument is
  2595. available in the appropriate access mode, the callback function is executed.
  2596. The application may access the requested data during the execution of this
  2597. callback. The callback function must call @code{starpu_data_release} once the
  2598. application does not need to access the piece of data anymore.
  2599. Note that implicit data dependencies are also enforced by
  2600. @code{starpu_data_acquire_cb} in case they are enabled.
  2601. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2602. be called from task callbacks. Upon successful completion, this function
  2603. returns 0.
  2604. @end deftypefun
  2605. @node starpu_data_release
  2606. @subsection @code{starpu_data_release} -- Release registered data from the application
  2607. @deftypefun void starpu_data_release (starpu_data_handle @var{handle})
  2608. This function releases the piece of data acquired by the application either by
  2609. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2610. @end deftypefun
  2611. @node starpu_data_set_wt_mask
  2612. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2613. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle @var{handle}, uint32_t @var{wt_mask})
  2614. This function sets the write-through mask of a given data, i.e. a bitmask of
  2615. nodes where the data should be always replicated after modification.
  2616. @end deftypefun
  2617. @node starpu_data_prefetch_on_node
  2618. @subsection @code{starpu_data_prefetch_on_node} -- Prefetch data to a given node
  2619. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle @var{handle}, unsigned @var{node}, unsigned @var{async})
  2620. Issue a prefetch request for a given data to a given node, i.e.
  2621. requests that the data be replicated to the given node, so that it is available
  2622. there for tasks. If the @var{async} parameter is 0, the call will block until
  2623. the transfer is achieved, else the call will return as soon as the request is
  2624. scheduled (which may however have to wait for a task completion).
  2625. @end deftypefun
  2626. @node Data Interfaces
  2627. @section Data Interfaces
  2628. @menu
  2629. * Variable Interface::
  2630. * Vector Interface::
  2631. * Matrix Interface::
  2632. * 3D Matrix Interface::
  2633. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2634. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2635. @end menu
  2636. @node Variable Interface
  2637. @subsection Variable Interface
  2638. @table @asis
  2639. @item @emph{Description}:
  2640. This variant of @code{starpu_data_register} uses the variable interface,
  2641. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2642. and @code{elemsize} is the size of the variable.
  2643. @item @emph{Prototype}:
  2644. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2645. uint32_t home_node,
  2646. uintptr_t ptr, size_t elemsize);}
  2647. @item @emph{Example}:
  2648. @cartouche
  2649. @smallexample
  2650. float var;
  2651. starpu_data_handle var_handle;
  2652. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2653. @end smallexample
  2654. @end cartouche
  2655. @end table
  2656. @node Vector Interface
  2657. @subsection Vector Interface
  2658. @table @asis
  2659. @item @emph{Description}:
  2660. This variant of @code{starpu_data_register} uses the vector interface,
  2661. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2662. element in the home node. @code{nx} is the number of elements in the vector.
  2663. @code{elemsize} is the size of each element.
  2664. @item @emph{Prototype}:
  2665. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2666. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2667. @item @emph{Example}:
  2668. @cartouche
  2669. @smallexample
  2670. float vector[NX];
  2671. starpu_data_handle vector_handle;
  2672. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2673. sizeof(vector[0]));
  2674. @end smallexample
  2675. @end cartouche
  2676. @end table
  2677. @node Matrix Interface
  2678. @subsection Matrix Interface
  2679. @table @asis
  2680. @item @emph{Description}:
  2681. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2682. matrices of elements. @code{ptr} is the address of the first element in the home
  2683. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2684. of elements in a row (this can be different from @code{ld} if there are extra
  2685. elements for alignment for instance). @code{ny} is the number of rows.
  2686. @code{elemsize} is the size of each element.
  2687. @item @emph{Prototype}:
  2688. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2689. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2690. uint32_t ny, size_t elemsize);}
  2691. @item @emph{Example}:
  2692. @cartouche
  2693. @smallexample
  2694. float *matrix;
  2695. starpu_data_handle matrix_handle;
  2696. matrix = (float*)malloc(width * height * sizeof(float));
  2697. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2698. width, width, height, sizeof(float));
  2699. @end smallexample
  2700. @end cartouche
  2701. @end table
  2702. @node 3D Matrix Interface
  2703. @subsection 3D Matrix Interface
  2704. @table @asis
  2705. @item @emph{Description}:
  2706. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2707. @code{ptr} is the address of the array of first element in the home node.
  2708. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2709. of rows between z planes. @code{nx} is the number of elements in a row (this
  2710. can be different from @code{ldy} if there are extra elements for alignment
  2711. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2712. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2713. each element.
  2714. @item @emph{Prototype}:
  2715. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2716. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2717. uint32_t ny, uint32_t nz, size_t elemsize);}
  2718. @item @emph{Example}:
  2719. @cartouche
  2720. @smallexample
  2721. float *block;
  2722. starpu_data_handle block_handle;
  2723. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2724. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2725. nx, nx*ny, nx, ny, nz, sizeof(float));
  2726. @end smallexample
  2727. @end cartouche
  2728. @end table
  2729. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2730. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2731. @deftypefun void starpu_bcsr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  2732. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2733. TODO
  2734. @end deftypefun
  2735. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2736. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2737. @deftypefun void starpu_csr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  2738. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2739. TODO
  2740. @end deftypefun
  2741. @node Data Partition
  2742. @section Data Partition
  2743. @menu
  2744. * struct starpu_data_filter:: StarPU filter structure
  2745. * starpu_data_partition:: Partition Data
  2746. * starpu_data_unpartition:: Unpartition Data
  2747. * starpu_data_get_nb_children::
  2748. * starpu_data_get_sub_data::
  2749. * Predefined filter functions::
  2750. @end menu
  2751. @node struct starpu_data_filter
  2752. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2753. @table @asis
  2754. @item @emph{Description}:
  2755. The filter structure describes a data partitioning operation, to be given to the
  2756. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2757. @item @emph{Fields}:
  2758. @table @asis
  2759. @item @code{filter_func}:
  2760. This function fills the @code{child_interface} structure with interface
  2761. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2762. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2763. @item @code{nchildren}:
  2764. This is the number of parts to partition the data into.
  2765. @item @code{get_nchildren}:
  2766. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2767. children depends on the actual data (e.g. the number of blocks in a sparse
  2768. matrix).
  2769. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2770. @item @code{get_child_ops}:
  2771. In case the resulting children use a different data interface, this function
  2772. returns which interface is used by child number @code{id}.
  2773. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2774. @item @code{filter_arg}:
  2775. Some filters take an addition parameter, but this is usually unused.
  2776. @item @code{filter_arg_ptr}:
  2777. Some filters take an additional array parameter like the sizes of the parts, but
  2778. this is usually unused.
  2779. @end table
  2780. @end table
  2781. @node starpu_data_partition
  2782. @subsection starpu_data_partition -- Partition Data
  2783. @table @asis
  2784. @item @emph{Description}:
  2785. This requests partitioning one StarPU data @code{initial_handle} into several
  2786. subdata according to the filter @code{f}
  2787. @item @emph{Prototype}:
  2788. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2789. @item @emph{Example}:
  2790. @cartouche
  2791. @smallexample
  2792. struct starpu_data_filter f = @{
  2793. .filter_func = starpu_vertical_block_filter_func,
  2794. .nchildren = nslicesx,
  2795. .get_nchildren = NULL,
  2796. .get_child_ops = NULL
  2797. @};
  2798. starpu_data_partition(A_handle, &f);
  2799. @end smallexample
  2800. @end cartouche
  2801. @end table
  2802. @node starpu_data_unpartition
  2803. @subsection starpu_data_unpartition -- Unpartition data
  2804. @table @asis
  2805. @item @emph{Description}:
  2806. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2807. collected back into one big piece in the @code{gathering_node} (usually 0).
  2808. @item @emph{Prototype}:
  2809. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2810. @item @emph{Example}:
  2811. @cartouche
  2812. @smallexample
  2813. starpu_data_unpartition(A_handle, 0);
  2814. @end smallexample
  2815. @end cartouche
  2816. @end table
  2817. @node starpu_data_get_nb_children
  2818. @subsection starpu_data_get_nb_children
  2819. @table @asis
  2820. @item @emph{Description}:
  2821. This function returns the number of children.
  2822. @item @emph{Return value}:
  2823. The number of children.
  2824. @item @emph{Prototype}:
  2825. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2826. @end table
  2827. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2828. @node starpu_data_get_sub_data
  2829. @subsection starpu_data_get_sub_data
  2830. @table @asis
  2831. @item @emph{Description}:
  2832. After partitioning a StarPU data by applying a filter,
  2833. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2834. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2835. is the number of filters to traverse (in case several filters have been applied,
  2836. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2837. parameters are the indexes.
  2838. @item @emph{Return value}:
  2839. A handle to the subdata.
  2840. @item @emph{Prototype}:
  2841. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2842. @item @emph{Example}:
  2843. @cartouche
  2844. @smallexample
  2845. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2846. @end smallexample
  2847. @end cartouche
  2848. @end table
  2849. @node Predefined filter functions
  2850. @subsection Predefined filter functions
  2851. @menu
  2852. * Partitioning BCSR Data::
  2853. * Partitioning BLAS interface::
  2854. * Partitioning Vector Data::
  2855. * Partitioning Block Data::
  2856. @end menu
  2857. This section gives a partial list of the predefined partitioning functions.
  2858. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2859. list can be found in @code{starpu_data_filters.h} .
  2860. @node Partitioning BCSR Data
  2861. @subsubsection Partitioning BCSR Data
  2862. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2863. TODO
  2864. @end deftypefun
  2865. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2866. TODO
  2867. @end deftypefun
  2868. @node Partitioning BLAS interface
  2869. @subsubsection Partitioning BLAS interface
  2870. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2871. This partitions a dense Matrix into horizontal blocks.
  2872. @end deftypefun
  2873. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2874. This partitions a dense Matrix into vertical blocks.
  2875. @end deftypefun
  2876. @node Partitioning Vector Data
  2877. @subsubsection Partitioning Vector Data
  2878. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2879. This partitions a vector into blocks of the same size.
  2880. @end deftypefun
  2881. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2882. This partitions a vector into blocks of sizes given in @var{filter_arg_ptr}.
  2883. @end deftypefun
  2884. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2885. This partitions a vector into two blocks, the first block size being given in @var{filter_arg}.
  2886. @end deftypefun
  2887. @node Partitioning Block Data
  2888. @subsubsection Partitioning Block Data
  2889. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  2890. This partitions a 3D matrix along the X axis.
  2891. @end deftypefun
  2892. @node Codelets and Tasks
  2893. @section Codelets and Tasks
  2894. This section describes the interface to manipulate codelets and tasks.
  2895. @deftp {Data Type} {struct starpu_codelet}
  2896. The codelet structure describes a kernel that is possibly implemented on various
  2897. targets. For compatibility, make sure to initialize the whole structure to zero.
  2898. @table @asis
  2899. @item @code{where}
  2900. Indicates which types of processing units are able to execute the codelet.
  2901. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2902. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2903. indicates that it is only available on Cell SPUs.
  2904. @item @code{cpu_func} (optional)
  2905. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2906. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2907. argument being the array of data managed by the data management library, and
  2908. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2909. field of the @code{starpu_task} structure.
  2910. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2911. the @code{where} field, it must be non-null otherwise.
  2912. @item @code{cuda_func} (optional)
  2913. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2914. must be a host-function written in the CUDA runtime API}. Its prototype must
  2915. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2916. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2917. field, it must be non-null otherwise.
  2918. @item @code{opencl_func} (optional)
  2919. Is a function pointer to the OpenCL implementation of the codelet. Its
  2920. prototype must be:
  2921. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2922. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2923. @code{where} field, it must be non-null otherwise.
  2924. @item @code{gordon_func} (optional)
  2925. This is the index of the Cell SPU implementation within the Gordon library.
  2926. See Gordon documentation for more details on how to register a kernel and
  2927. retrieve its index.
  2928. @item @code{nbuffers}
  2929. Specifies the number of arguments taken by the codelet. These arguments are
  2930. managed by the DSM and are accessed from the @code{void *buffers[]}
  2931. array. The constant argument passed with the @code{cl_arg} field of the
  2932. @code{starpu_task} structure is not counted in this number. This value should
  2933. not be above @code{STARPU_NMAXBUFS}.
  2934. @item @code{model} (optional)
  2935. This is a pointer to the task duration performance model associated to this
  2936. codelet. This optional field is ignored when set to @code{NULL}.
  2937. TODO
  2938. @item @code{power_model} (optional)
  2939. This is a pointer to the task power consumption performance model associated
  2940. to this codelet. This optional field is ignored when set to @code{NULL}.
  2941. In the case of parallel codelets, this has to account for all processing units
  2942. involved in the parallel execution.
  2943. TODO
  2944. @end table
  2945. @end deftp
  2946. @deftp {Data Type} {struct starpu_task}
  2947. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2948. processing units managed by StarPU. It instantiates a codelet. It can either be
  2949. allocated dynamically with the @code{starpu_task_create} method, or declared
  2950. statically. In the latter case, the programmer has to zero the
  2951. @code{starpu_task} structure and to fill the different fields properly. The
  2952. indicated default values correspond to the configuration of a task allocated
  2953. with @code{starpu_task_create}.
  2954. @table @asis
  2955. @item @code{cl}
  2956. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2957. describes where the kernel should be executed, and supplies the appropriate
  2958. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2959. such empty tasks can be useful for synchronization purposes.
  2960. @item @code{buffers}
  2961. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2962. different pieces of data accessed by the task, and how they should be accessed.
  2963. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2964. @code{handle} field specifies the handle of the piece of data, and the
  2965. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2966. of entries in this array must be specified in the @code{nbuffers} field of the
  2967. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2968. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2969. option when configuring StarPU.
  2970. @item @code{cl_arg} (optional; default: @code{NULL})
  2971. This pointer is passed to the codelet through the second argument
  2972. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2973. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2974. argument.
  2975. @item @code{cl_arg_size} (optional, Cell-specific)
  2976. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2977. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2978. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2979. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2980. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2981. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2982. codelets, where the @code{cl_arg} pointer is given as such.
  2983. @item @code{callback_func} (optional) (default: @code{NULL})
  2984. This is a function pointer of prototype @code{void (*f)(void *)} which
  2985. specifies a possible callback. If this pointer is non-null, the callback
  2986. function is executed @emph{on the host} after the execution of the task. The
  2987. callback is passed the value contained in the @code{callback_arg} field. No
  2988. callback is executed if the field is set to @code{NULL}.
  2989. @item @code{callback_arg} (optional) (default: @code{NULL})
  2990. This is the pointer passed to the callback function. This field is ignored if
  2991. the @code{callback_func} is set to @code{NULL}.
  2992. @item @code{use_tag} (optional) (default: @code{0})
  2993. If set, this flag indicates that the task should be associated with the tag
  2994. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2995. with the task and to express task dependencies easily.
  2996. @item @code{tag_id}
  2997. This fields contains the tag associated to the task if the @code{use_tag} field
  2998. was set, it is ignored otherwise.
  2999. @item @code{synchronous}
  3000. If this flag is set, the @code{starpu_task_submit} function is blocking and
  3001. returns only when the task has been executed (or if no worker is able to
  3002. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  3003. @item @code{priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  3004. This field indicates a level of priority for the task. This is an integer value
  3005. that must be set between the return values of the
  3006. @code{starpu_sched_get_min_priority} function for the least important tasks,
  3007. and that of the @code{starpu_sched_get_max_priority} for the most important
  3008. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  3009. are provided for convenience and respectively returns value of
  3010. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  3011. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  3012. order to allow static task initialization. Scheduling strategies that take
  3013. priorities into account can use this parameter to take better scheduling
  3014. decisions, but the scheduling policy may also ignore it.
  3015. @item @code{execute_on_a_specific_worker} (default: @code{0})
  3016. If this flag is set, StarPU will bypass the scheduler and directly affect this
  3017. task to the worker specified by the @code{workerid} field.
  3018. @item @code{workerid} (optional)
  3019. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  3020. which is the identifier of the worker that should process this task (as
  3021. returned by @code{starpu_worker_get_id}). This field is ignored if
  3022. @code{execute_on_a_specific_worker} field is set to 0.
  3023. @item @code{detach} (optional) (default: @code{1})
  3024. If this flag is set, it is not possible to synchronize with the task
  3025. by the means of @code{starpu_task_wait} later on. Internal data structures
  3026. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  3027. flag is not set.
  3028. @item @code{destroy} (optional) (default: @code{1})
  3029. If this flag is set, the task structure will automatically be freed, either
  3030. after the execution of the callback if the task is detached, or during
  3031. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  3032. allocated data structures will not be freed until @code{starpu_task_destroy} is
  3033. called explicitly. Setting this flag for a statically allocated task structure
  3034. will result in undefined behaviour.
  3035. @item @code{predicted} (output field)
  3036. Predicted duration of the task. This field is only set if the scheduling
  3037. strategy used performance models.
  3038. @end table
  3039. @end deftp
  3040. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  3041. Initialize @var{task} with default values. This function is implicitly
  3042. called by @code{starpu_task_create}. By default, tasks initialized with
  3043. @code{starpu_task_init} must be deinitialized explicitly with
  3044. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  3045. constant @code{STARPU_TASK_INITIALIZER}.
  3046. @end deftypefun
  3047. @deftypefun {struct starpu_task *} starpu_task_create (void)
  3048. Allocate a task structure and initialize it with default values. Tasks
  3049. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  3050. task is terminated. If the destroy flag is explicitly unset, the resources used
  3051. by the task are freed by calling
  3052. @code{starpu_task_destroy}.
  3053. @end deftypefun
  3054. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  3055. Release all the structures automatically allocated to execute @var{task}. This is
  3056. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  3057. freed. This should be used for statically allocated tasks for instance.
  3058. @end deftypefun
  3059. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  3060. Free the resource allocated during @code{starpu_task_create} and
  3061. associated with @var{task}. This function can be called automatically
  3062. after the execution of a task by setting the @code{destroy} flag of the
  3063. @code{starpu_task} structure (default behaviour). Calling this function
  3064. on a statically allocated task results in an undefined behaviour.
  3065. @end deftypefun
  3066. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  3067. This function blocks until @var{task} has been executed. It is not possible to
  3068. synchronize with a task more than once. It is not possible to wait for
  3069. synchronous or detached tasks.
  3070. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  3071. indicates that the specified task was either synchronous or detached.
  3072. @end deftypefun
  3073. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  3074. This function submits @var{task} to StarPU. Calling this function does
  3075. not mean that the task will be executed immediately as there can be data or task
  3076. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  3077. scheduling this task with respect to such dependencies.
  3078. This function returns immediately if the @code{synchronous} field of the
  3079. @code{starpu_task} structure was set to 0, and block until the termination of
  3080. the task otherwise. It is also possible to synchronize the application with
  3081. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  3082. function for instance.
  3083. In case of success, this function returns 0, a return value of @code{-ENODEV}
  3084. means that there is no worker able to process this task (e.g. there is no GPU
  3085. available and this task is only implemented for CUDA devices).
  3086. @end deftypefun
  3087. @deftypefun int starpu_task_wait_for_all (void)
  3088. This function blocks until all the tasks that were submitted are terminated.
  3089. @end deftypefun
  3090. @deftypefun {struct starpu_task *} starpu_get_current_task (void)
  3091. This function returns the task currently executed by the worker, or
  3092. NULL if it is called either from a thread that is not a task or simply
  3093. because there is no task being executed at the moment.
  3094. @end deftypefun
  3095. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet_t} *@var{cl})
  3096. Output on @code{stderr} some statistics on the codelet @var{cl}.
  3097. @end deftypefun
  3098. @c Callbacks : what can we put in callbacks ?
  3099. @node Explicit Dependencies
  3100. @section Explicit Dependencies
  3101. @menu
  3102. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  3103. * starpu_tag_t:: Task logical identifier
  3104. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  3105. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  3106. * starpu_tag_wait:: Block until a Tag is terminated
  3107. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  3108. * starpu_tag_remove:: Destroy a Tag
  3109. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  3110. @end menu
  3111. @node starpu_task_declare_deps_array
  3112. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  3113. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  3114. Declare task dependencies between a @var{task} and an array of tasks of length
  3115. @var{ndeps}. This function must be called prior to the submission of the task,
  3116. but it may called after the submission or the execution of the tasks in the
  3117. array provided the tasks are still valid (ie. they were not automatically
  3118. destroyed). Calling this function on a task that was already submitted or with
  3119. an entry of @var{task_array} that is not a valid task anymore results in an
  3120. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  3121. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  3122. same task, in this case, the dependencies are added. It is possible to have
  3123. redundancy in the task dependencies.
  3124. @end deftypefun
  3125. @node starpu_tag_t
  3126. @subsection @code{starpu_tag_t} -- Task logical identifier
  3127. @table @asis
  3128. @item @emph{Description}:
  3129. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  3130. dependencies between tasks by the means of those tags. To do so, fill the
  3131. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  3132. be arbitrary) and set the @code{use_tag} field to 1.
  3133. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  3134. not be started until the tasks which holds the declared dependency tags are
  3135. completed.
  3136. @end table
  3137. @node starpu_tag_declare_deps
  3138. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  3139. @table @asis
  3140. @item @emph{Description}:
  3141. Specify the dependencies of the task identified by tag @code{id}. The first
  3142. argument specifies the tag which is configured, the second argument gives the
  3143. number of tag(s) on which @code{id} depends. The following arguments are the
  3144. tags which have to be terminated to unlock the task.
  3145. This function must be called before the associated task is submitted to StarPU
  3146. with @code{starpu_task_submit}.
  3147. @item @emph{Remark}
  3148. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  3149. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  3150. typically need to be explicitly casted. Using the
  3151. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  3152. @item @emph{Prototype}:
  3153. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  3154. @item @emph{Example}:
  3155. @cartouche
  3156. @example
  3157. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3158. starpu_tag_declare_deps((starpu_tag_t)0x1,
  3159. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  3160. @end example
  3161. @end cartouche
  3162. @end table
  3163. @node starpu_tag_declare_deps_array
  3164. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3165. @table @asis
  3166. @item @emph{Description}:
  3167. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3168. does not take a variable number of arguments but an array of tags of size
  3169. @code{ndeps}.
  3170. @item @emph{Prototype}:
  3171. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3172. @item @emph{Example}:
  3173. @cartouche
  3174. @example
  3175. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3176. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3177. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3178. @end example
  3179. @end cartouche
  3180. @end table
  3181. @node starpu_tag_wait
  3182. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3183. @deftypefun void starpu_tag_wait (starpu_tag_t @var{id})
  3184. This function blocks until the task associated to tag @var{id} has been
  3185. executed. This is a blocking call which must therefore not be called within
  3186. tasks or callbacks, but only from the application directly. It is possible to
  3187. synchronize with the same tag multiple times, as long as the
  3188. @code{starpu_tag_remove} function is not called. Note that it is still
  3189. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3190. data structure was freed (e.g. if the @code{destroy} flag of the
  3191. @code{starpu_task} was enabled).
  3192. @end deftypefun
  3193. @node starpu_tag_wait_array
  3194. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3195. @deftypefun void starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  3196. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3197. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  3198. terminated.
  3199. @end deftypefun
  3200. @node starpu_tag_remove
  3201. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3202. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  3203. This function releases the resources associated to tag @var{id}. It can be
  3204. called once the corresponding task has been executed and when there is
  3205. no other tag that depend on this tag anymore.
  3206. @end deftypefun
  3207. @node starpu_tag_notify_from_apps
  3208. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3209. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  3210. This function explicitly unlocks tag @var{id}. It may be useful in the
  3211. case of applications which execute part of their computation outside StarPU
  3212. tasks (e.g. third-party libraries). It is also provided as a
  3213. convenient tool for the programmer, for instance to entirely construct the task
  3214. DAG before actually giving StarPU the opportunity to execute the tasks.
  3215. @end deftypefun
  3216. @node Implicit Data Dependencies
  3217. @section Implicit Data Dependencies
  3218. @menu
  3219. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3220. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3221. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3222. @end menu
  3223. In this section, we describe how StarPU makes it possible to insert implicit
  3224. task dependencies in order to enforce sequential data consistency. When this
  3225. data consistency is enabled on a specific data handle, any data access will
  3226. appear as sequentially consistent from the application. For instance, if the
  3227. application submits two tasks that access the same piece of data in read-only
  3228. mode, and then a third task that access it in write mode, dependencies will be
  3229. added between the two first tasks and the third one. Implicit data dependencies
  3230. are also inserted in the case of data accesses from the application.
  3231. @node starpu_data_set_default_sequential_consistency_flag
  3232. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3233. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  3234. Set the default sequential consistency flag. If a non-zero value is passed, a
  3235. sequential data consistency will be enforced for all handles registered after
  3236. this function call, otherwise it is disabled. By default, StarPU enables
  3237. sequential data consistency. It is also possible to select the data consistency
  3238. mode of a specific data handle with the
  3239. @code{starpu_data_set_sequential_consistency_flag} function.
  3240. @end deftypefun
  3241. @node starpu_data_get_default_sequential_consistency_flag
  3242. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3243. @deftypefun unsigned starpu_data_set_default_sequential_consistency_flag (void)
  3244. This function returns the current default sequential consistency flag.
  3245. @end deftypefun
  3246. @node starpu_data_set_sequential_consistency_flag
  3247. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3248. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle @var{handle}, unsigned @var{flag})
  3249. Select the data consistency mode associated to a data handle. The consistency
  3250. mode set using this function has the priority over the default mode which can
  3251. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3252. @end deftypefun
  3253. @node Performance Model API
  3254. @section Performance Model API
  3255. @menu
  3256. * starpu_load_history_debug::
  3257. * starpu_perfmodel_debugfilepath::
  3258. * starpu_perfmodel_get_arch_name::
  3259. * starpu_force_bus_sampling::
  3260. @end menu
  3261. @node starpu_load_history_debug
  3262. @subsection @code{starpu_load_history_debug}
  3263. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel_t} *@var{model})
  3264. TODO
  3265. @end deftypefun
  3266. @node starpu_perfmodel_debugfilepath
  3267. @subsection @code{starpu_perfmodel_debugfilepath}
  3268. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel_t} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen})
  3269. TODO
  3270. @end deftypefun
  3271. @node starpu_perfmodel_get_arch_name
  3272. @subsection @code{starpu_perfmodel_get_arch_name}
  3273. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen})
  3274. TODO
  3275. @end deftypefun
  3276. @node starpu_force_bus_sampling
  3277. @subsection @code{starpu_force_bus_sampling}
  3278. @deftypefun void starpu_force_bus_sampling (void)
  3279. This forces sampling the bus performance model again.
  3280. @end deftypefun
  3281. @node Profiling API
  3282. @section Profiling API
  3283. @menu
  3284. * starpu_profiling_status_set:: starpu_profiling_status_set
  3285. * starpu_profiling_status_get:: starpu_profiling_status_get
  3286. * struct starpu_task_profiling_info:: task profiling information
  3287. * struct starpu_worker_profiling_info:: worker profiling information
  3288. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3289. * struct starpu_bus_profiling_info:: bus profiling information
  3290. * starpu_bus_get_count::
  3291. * starpu_bus_get_id::
  3292. * starpu_bus_get_src::
  3293. * starpu_bus_get_dst::
  3294. * starpu_timing_timespec_delay_us::
  3295. * starpu_timing_timespec_to_us::
  3296. * starpu_bus_profiling_helper_display_summary::
  3297. * starpu_worker_profiling_helper_display_summary::
  3298. @end menu
  3299. @node starpu_profiling_status_set
  3300. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3301. @table @asis
  3302. @item @emph{Description}:
  3303. Thie function sets the profiling status. Profiling is activated by passing
  3304. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3305. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3306. resets all profiling measurements. When profiling is enabled, the
  3307. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3308. to a valid @code{struct starpu_task_profiling_info} structure containing
  3309. information about the execution of the task.
  3310. @item @emph{Return value}:
  3311. Negative return values indicate an error, otherwise the previous status is
  3312. returned.
  3313. @item @emph{Prototype}:
  3314. @code{int starpu_profiling_status_set(int status);}
  3315. @end table
  3316. @node starpu_profiling_status_get
  3317. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3318. @deftypefun int starpu_profiling_status_get (void)
  3319. Return the current profiling status or a negative value in case there was an error.
  3320. @end deftypefun
  3321. @node struct starpu_task_profiling_info
  3322. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3323. @table @asis
  3324. @item @emph{Description}:
  3325. This structure contains information about the execution of a task. It is
  3326. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3327. structure if profiling was enabled.
  3328. @item @emph{Fields}:
  3329. @table @asis
  3330. @item @code{submit_time}:
  3331. Date of task submission (relative to the initialization of StarPU).
  3332. @item @code{start_time}:
  3333. Date of task execution beginning (relative to the initialization of StarPU).
  3334. @item @code{end_time}:
  3335. Date of task execution termination (relative to the initialization of StarPU).
  3336. @item @code{workerid}:
  3337. Identifier of the worker which has executed the task.
  3338. @end table
  3339. @end table
  3340. @node struct starpu_worker_profiling_info
  3341. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3342. @table @asis
  3343. @item @emph{Description}:
  3344. This structure contains the profiling information associated to a worker.
  3345. @item @emph{Fields}:
  3346. @table @asis
  3347. @item @code{start_time}:
  3348. Starting date for the reported profiling measurements.
  3349. @item @code{total_time}:
  3350. Duration of the profiling measurement interval.
  3351. @item @code{executing_time}:
  3352. Time spent by the worker to execute tasks during the profiling measurement interval.
  3353. @item @code{sleeping_time}:
  3354. Time spent idling by the worker during the profiling measurement interval.
  3355. @item @code{executed_tasks}:
  3356. Number of tasks executed by the worker during the profiling measurement interval.
  3357. @end table
  3358. @end table
  3359. @node starpu_worker_get_profiling_info
  3360. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3361. @table @asis
  3362. @item @emph{Description}:
  3363. Get the profiling info associated to the worker identified by @code{workerid},
  3364. and reset the profiling measurements. If the @code{worker_info} argument is
  3365. NULL, only reset the counters associated to worker @code{workerid}.
  3366. @item @emph{Return value}:
  3367. Upon successful completion, this function returns 0. Otherwise, a negative
  3368. value is returned.
  3369. @item @emph{Prototype}:
  3370. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3371. @end table
  3372. @node struct starpu_bus_profiling_info
  3373. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3374. @table @asis
  3375. @item @emph{Description}:
  3376. TODO
  3377. @item @emph{Fields}:
  3378. @table @asis
  3379. @item @code{start_time}:
  3380. TODO
  3381. @item @code{total_time}:
  3382. TODO
  3383. @item @code{transferred_bytes}:
  3384. TODO
  3385. @item @code{transfer_count}:
  3386. TODO
  3387. @end table
  3388. @end table
  3389. @node starpu_bus_get_count
  3390. @subsection @code{starpu_bus_get_count}
  3391. @deftypefun int starpu_bus_get_count (void)
  3392. TODO
  3393. @end deftypefun
  3394. @node starpu_bus_get_id
  3395. @subsection @code{starpu_bus_get_id}
  3396. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  3397. TODO
  3398. @end deftypefun
  3399. @node starpu_bus_get_src
  3400. @subsection @code{starpu_bus_get_src}
  3401. @deftypefun int starpu_bus_get_src (int @var{busid})
  3402. TODO
  3403. @end deftypefun
  3404. @node starpu_bus_get_dst
  3405. @subsection @code{starpu_bus_get_dst}
  3406. @deftypefun int starpu_bus_get_dst (int @var{busid})
  3407. TODO
  3408. @end deftypefun
  3409. @node starpu_timing_timespec_delay_us
  3410. @subsection @code{starpu_timing_timespec_delay_us}
  3411. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  3412. TODO
  3413. @end deftypefun
  3414. @node starpu_timing_timespec_to_us
  3415. @subsection @code{starpu_timing_timespec_to_us}
  3416. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  3417. TODO
  3418. @end deftypefun
  3419. @node starpu_bus_profiling_helper_display_summary
  3420. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3421. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  3422. TODO
  3423. @end deftypefun
  3424. @node starpu_worker_profiling_helper_display_summary
  3425. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3426. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  3427. TODO
  3428. @end deftypefun
  3429. @node CUDA extensions
  3430. @section CUDA extensions
  3431. @c void starpu_malloc(float **A, size_t dim);
  3432. @menu
  3433. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3434. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3435. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3436. @end menu
  3437. @node starpu_cuda_get_local_stream
  3438. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3439. @deftypefun {cudaStream_t *} starpu_cuda_get_local_stream (void)
  3440. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3441. function is only provided for convenience so that programmers can easily use
  3442. asynchronous operations within codelets without having to create a stream by
  3443. hand. Note that the application is not forced to use the stream provided by
  3444. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3445. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3446. the likelihood of having all transfers overlapped.
  3447. @end deftypefun
  3448. @node starpu_helper_cublas_init
  3449. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3450. @deftypefun void starpu_helper_cublas_init (void)
  3451. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3452. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3453. controlled by StarPU. This call blocks until CUBLAS has been properly
  3454. initialized on every device.
  3455. @end deftypefun
  3456. @node starpu_helper_cublas_shutdown
  3457. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3458. @deftypefun void starpu_helper_cublas_shutdown (void)
  3459. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3460. @end deftypefun
  3461. @node OpenCL extensions
  3462. @section OpenCL extensions
  3463. @menu
  3464. * Enabling OpenCL:: Enabling OpenCL
  3465. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3466. * Loading OpenCL kernels:: Loading OpenCL kernels
  3467. * OpenCL statistics:: Collecting statistics from OpenCL
  3468. @end menu
  3469. @node Enabling OpenCL
  3470. @subsection Enabling OpenCL
  3471. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3472. enabled by default. To enable OpenCL, you need either to disable CUDA
  3473. when configuring StarPU:
  3474. @example
  3475. % ./configure --disable-cuda
  3476. @end example
  3477. or when running applications:
  3478. @example
  3479. % STARPU_NCUDA=0 ./application
  3480. @end example
  3481. OpenCL will automatically be started on any device not yet used by
  3482. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3483. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3484. so:
  3485. @example
  3486. % STARPU_NCUDA=2 ./application
  3487. @end example
  3488. @node Compiling OpenCL kernels
  3489. @subsection Compiling OpenCL kernels
  3490. Source codes for OpenCL kernels can be stored in a file or in a
  3491. string. StarPU provides functions to build the program executable for
  3492. each available OpenCL device as a @code{cl_program} object. This
  3493. program executable can then be loaded within a specific queue as
  3494. explained in the next section. These are only helpers, Applications
  3495. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3496. use (e.g. different programs on the different OpenCL devices, for
  3497. relocation purpose for instance).
  3498. @menu
  3499. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3500. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3501. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3502. @end menu
  3503. @node starpu_opencl_load_opencl_from_file
  3504. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3505. @deftypefun int starpu_opencl_load_opencl_from_file (char *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  3506. TODO
  3507. @end deftypefun
  3508. @node starpu_opencl_load_opencl_from_string
  3509. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3510. @deftypefun int starpu_opencl_load_opencl_from_string (char *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  3511. TODO
  3512. @end deftypefun
  3513. @node starpu_opencl_unload_opencl
  3514. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3515. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  3516. TODO
  3517. @end deftypefun
  3518. @node Loading OpenCL kernels
  3519. @subsection Loading OpenCL kernels
  3520. @menu
  3521. * starpu_opencl_load_kernel:: Loading a kernel
  3522. * starpu_opencl_relase_kernel:: Releasing a kernel
  3523. @end menu
  3524. @node starpu_opencl_load_kernel
  3525. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3526. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, char *@var{kernel_name}, int @var{devid})
  3527. TODO
  3528. @end deftypefun
  3529. @node starpu_opencl_relase_kernel
  3530. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3531. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  3532. TODO
  3533. @end deftypefun
  3534. @node OpenCL statistics
  3535. @subsection OpenCL statistics
  3536. @menu
  3537. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3538. @end menu
  3539. @node starpu_opencl_collect_stats
  3540. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3541. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  3542. After termination of the kernels, the OpenCL codelet should call this function
  3543. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3544. collect statistics about the kernel execution (used cycles, consumed power).
  3545. @end deftypefun
  3546. @node Cell extensions
  3547. @section Cell extensions
  3548. nothing yet.
  3549. @node Miscellaneous helpers
  3550. @section Miscellaneous helpers
  3551. @menu
  3552. * starpu_data_cpy:: Copy a data handle into another data handle
  3553. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3554. @end menu
  3555. @node starpu_data_cpy
  3556. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3557. @deftypefun int starpu_data_cpy (starpu_data_handle @var{dst_handle}, starpu_data_handle @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  3558. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  3559. The @var{asynchronous} parameter indicates whether the function should
  3560. block or not. In the case of an asynchronous call, it is possible to
  3561. synchronize with the termination of this operation either by the means of
  3562. implicit dependencies (if enabled) or by calling
  3563. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  3564. this callback function is executed after the handle has been copied, and it is
  3565. given the @var{callback_arg} pointer as argument.
  3566. @end deftypefun
  3567. @node starpu_execute_on_each_worker
  3568. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3569. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  3570. When calling this method, the offloaded function specified by the first argument is
  3571. executed by every StarPU worker that may execute the function.
  3572. The second argument is passed to the offloaded function.
  3573. The last argument specifies on which types of processing units the function
  3574. should be executed. Similarly to the @var{where} field of the
  3575. @code{starpu_codelet} structure, it is possible to specify that the function
  3576. should be executed on every CUDA device and every CPU by passing
  3577. @code{STARPU_CPU|STARPU_CUDA}.
  3578. This function blocks until the function has been executed on every appropriate
  3579. processing units, so that it may not be called from a callback function for
  3580. instance.
  3581. @end deftypefun
  3582. @c ---------------------------------------------------------------------
  3583. @c Advanced Topics
  3584. @c ---------------------------------------------------------------------
  3585. @node Advanced Topics
  3586. @chapter Advanced Topics
  3587. @menu
  3588. * Defining a new data interface::
  3589. * Defining a new scheduling policy::
  3590. @end menu
  3591. @node Defining a new data interface
  3592. @section Defining a new data interface
  3593. @menu
  3594. * struct starpu_data_interface_ops_t:: Per-interface methods
  3595. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3596. * An example of data interface:: An example of data interface
  3597. @end menu
  3598. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3599. @node struct starpu_data_interface_ops_t
  3600. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3601. @table @asis
  3602. @item @emph{Description}:
  3603. TODO describe all the different fields
  3604. @end table
  3605. @node struct starpu_data_copy_methods
  3606. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3607. @table @asis
  3608. @item @emph{Description}:
  3609. TODO describe all the different fields
  3610. @end table
  3611. @node An example of data interface
  3612. @subsection An example of data interface
  3613. @table @asis
  3614. TODO
  3615. @end table
  3616. @node Defining a new scheduling policy
  3617. @section Defining a new scheduling policy
  3618. TODO
  3619. A full example showing how to define a new scheduling policy is available in
  3620. the StarPU sources in the directory @code{examples/scheduler/}.
  3621. @menu
  3622. * struct starpu_sched_policy_s::
  3623. * starpu_worker_set_sched_condition::
  3624. * starpu_sched_set_min_priority:: Set the minimum priority level
  3625. * starpu_sched_set_max_priority:: Set the maximum priority level
  3626. * starpu_push_local_task:: Assign a task to a worker
  3627. * Source code::
  3628. @end menu
  3629. @node struct starpu_sched_policy_s
  3630. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3631. @table @asis
  3632. @item @emph{Description}:
  3633. This structure contains all the methods that implement a scheduling policy. An
  3634. application may specify which scheduling strategy in the @code{sched_policy}
  3635. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3636. function.
  3637. @item @emph{Fields}:
  3638. @table @asis
  3639. @item @code{init_sched}:
  3640. Initialize the scheduling policy.
  3641. @item @code{deinit_sched}:
  3642. Cleanup the scheduling policy.
  3643. @item @code{push_task}:
  3644. Insert a task into the scheduler.
  3645. @item @code{push_prio_task}:
  3646. Insert a priority task into the scheduler.
  3647. @item @code{push_prio_notify}:
  3648. Notify the scheduler that a task was pushed on the worker. This method is
  3649. called when a task that was explicitely assigned to a worker is scheduled. This
  3650. method therefore permits to keep the state of of the scheduler coherent even
  3651. when StarPU bypasses the scheduling strategy.
  3652. @item @code{pop_task}:
  3653. Get a task from the scheduler. The mutex associated to the worker is already
  3654. taken when this method is called. If this method is defined as @code{NULL}, the
  3655. worker will only execute tasks from its local queue. In this case, the
  3656. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3657. assign tasks to the different workers.
  3658. @item @code{pop_every_task}:
  3659. Remove all available tasks from the scheduler (tasks are chained by the means
  3660. of the prev and next fields of the starpu_task structure). The mutex associated
  3661. to the worker is already taken when this method is called.
  3662. @item @code{post_exec_hook} (optionnal):
  3663. This method is called every time a task has been executed.
  3664. @item @code{policy_name}:
  3665. Name of the policy (optionnal).
  3666. @item @code{policy_description}:
  3667. Description of the policy (optionnal).
  3668. @end table
  3669. @end table
  3670. @node starpu_worker_set_sched_condition
  3671. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3672. @deftypefun void starpu_worker_set_sched_condition (int @var{workerid}, pthread_cond_t *@var{sched_cond}, pthread_mutex_t *@var{sched_mutex})
  3673. When there is no available task for a worker, StarPU blocks this worker on a
  3674. condition variable. This function specifies which condition variable (and the
  3675. associated mutex) should be used to block (and to wake up) a worker. Note that
  3676. multiple workers may use the same condition variable. For instance, in the case
  3677. of a scheduling strategy with a single task queue, the same condition variable
  3678. would be used to block and wake up all workers.
  3679. The initialization method of a scheduling strategy (@code{init_sched}) must
  3680. call this function once per worker.
  3681. @end deftypefun
  3682. @node starpu_sched_set_min_priority
  3683. @subsection @code{starpu_sched_set_min_priority}
  3684. @deftypefun void starpu_sched_set_min_priority (int @var{min_prio})
  3685. Defines the minimum priority level supported by the scheduling policy. The
  3686. default minimum priority level is the same as the default priority level which
  3687. is 0 by convention. The application may access that value by calling the
  3688. @code{starpu_sched_get_min_priority} function. This function should only be
  3689. called from the initialization method of the scheduling policy, and should not
  3690. be used directly from the application.
  3691. @end deftypefun
  3692. @node starpu_sched_set_max_priority
  3693. @subsection @code{starpu_sched_set_max_priority}
  3694. @deftypefun void starpu_sched_set_min_priority (int @var{max_prio})
  3695. Defines the maximum priority level supported by the scheduling policy. The
  3696. default maximum priority level is 1. The application may access that value by
  3697. calling the @code{starpu_sched_get_max_priority} function. This function should
  3698. only be called from the initialization method of the scheduling policy, and
  3699. should not be used directly from the application.
  3700. @end deftypefun
  3701. @node starpu_push_local_task
  3702. @subsection @code{starpu_push_local_task}
  3703. @deftypefun int starpu_push_local_task (int @var{workerid}, {struct starpu_task} *@var{task}, int @var{back})
  3704. The scheduling policy may put tasks directly into a worker's local queue so
  3705. that it is not always necessary to create its own queue when the local queue
  3706. is sufficient. If "back" not null, the task is put at the back of the queue
  3707. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  3708. a FIFO ordering.
  3709. @end deftypefun
  3710. @node Source code
  3711. @subsection Source code
  3712. @cartouche
  3713. @smallexample
  3714. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3715. .init_sched = init_dummy_sched,
  3716. .deinit_sched = deinit_dummy_sched,
  3717. .push_task = push_task_dummy,
  3718. .push_prio_task = NULL,
  3719. .pop_task = pop_task_dummy,
  3720. .post_exec_hook = NULL,
  3721. .pop_every_task = NULL,
  3722. .policy_name = "dummy",
  3723. .policy_description = "dummy scheduling strategy"
  3724. @};
  3725. @end smallexample
  3726. @end cartouche
  3727. @c ---------------------------------------------------------------------
  3728. @c Appendices
  3729. @c ---------------------------------------------------------------------
  3730. @c ---------------------------------------------------------------------
  3731. @c Full source code for the 'Scaling a Vector' example
  3732. @c ---------------------------------------------------------------------
  3733. @node Full source code for the 'Scaling a Vector' example
  3734. @appendix Full source code for the 'Scaling a Vector' example
  3735. @menu
  3736. * Main application::
  3737. * CPU Kernel::
  3738. * CUDA Kernel::
  3739. * OpenCL Kernel::
  3740. @end menu
  3741. @node Main application
  3742. @section Main application
  3743. @smallexample
  3744. @include vector_scal_c.texi
  3745. @end smallexample
  3746. @node CPU Kernel
  3747. @section CPU Kernel
  3748. @smallexample
  3749. @include vector_scal_cpu.texi
  3750. @end smallexample
  3751. @node CUDA Kernel
  3752. @section CUDA Kernel
  3753. @smallexample
  3754. @include vector_scal_cuda.texi
  3755. @end smallexample
  3756. @node OpenCL Kernel
  3757. @section OpenCL Kernel
  3758. @menu
  3759. * Invoking the kernel::
  3760. * Source of the kernel::
  3761. @end menu
  3762. @node Invoking the kernel
  3763. @subsection Invoking the kernel
  3764. @smallexample
  3765. @include vector_scal_opencl.texi
  3766. @end smallexample
  3767. @node Source of the kernel
  3768. @subsection Source of the kernel
  3769. @smallexample
  3770. @include vector_scal_opencl_codelet.texi
  3771. @end smallexample
  3772. @c
  3773. @c Indices.
  3774. @c
  3775. @node Function Index
  3776. @unnumbered Function Index
  3777. @printindex fn
  3778. @bye