123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 |
- ##################
- # Performance Model Version
- 44
- ####################
- # COMBs
- # number of combinations
- 9
- ####################
- # COMB_0
- # number of types devices
- 1
- ####################
- # DEV_0
- # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
- 0
- ####################
- # DEV_0
- # device id
- 0
- ####################
- # DEV_0
- # number of cores
- 1
- ##########
- # number of implementations
- 1
- #####
- # Model for cpu0_impl0 (Comb0)
- # number of entries
- 3
- # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
- 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
- # a b c
- nan nan nan
- # hash size flops mean (us) dev (us) sum sum2 n
- 4af260f6 14678040 0.000000e+00 3.246622e+01 6.891153e+00 3.928413e+03 1.332868e+05 121
- fb4b8624 4427800 0.000000e+00 1.139753e+01 2.243693e+00 2.644226e+03 3.130556e+04 232
- f2ff9ae5 34480152 0.000000e+00 5.591168e+01 1.328211e+01 1.241239e+04 7.331618e+05 222
- ####################
- # COMB_1
- # number of types devices
- 1
- ####################
- # DEV_0
- # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
- 1
- ####################
- # DEV_0
- # device id
- 4
- ####################
- # DEV_0
- # number of cores
- 1
- ##########
- # number of implementations
- 1
- #####
- # Model for cuda4_impl0 (Comb1)
- # number of entries
- 3
- # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
- 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
- # a b c
- nan nan nan
- # hash size flops mean (us) dev (us) sum sum2 n
- 4af260f6 14678040 0.000000e+00 2.604823e+01 3.286196e+00 1.130493e+04 2.991603e+05 434
- fb4b8624 4427800 0.000000e+00 2.652276e+01 4.354433e+00 7.850738e+03 2.138358e+05 296
- f2ff9ae5 34480152 0.000000e+00 2.714414e+01 3.836601e+00 1.555359e+04 4.306232e+05 573
- ####################
- # COMB_2
- # number of types devices
- 1
- ####################
- # DEV_0
- # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
- 1
- ####################
- # DEV_0
- # device id
- 1
- ####################
- # DEV_0
- # number of cores
- 1
- ##########
- # number of implementations
- 1
- #####
- # Model for cuda1_impl0 (Comb2)
- # number of entries
- 3
- # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
- 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
- # a b c
- nan nan nan
- # hash size flops mean (us) dev (us) sum sum2 n
- 4af260f6 14678040 0.000000e+00 2.599288e+01 3.808778e+00 1.115095e+04 2.960687e+05 429
- fb4b8624 4427800 0.000000e+00 2.539365e+01 2.861737e+00 6.678529e+03 1.717461e+05 263
- f2ff9ae5 34480152 0.000000e+00 2.629746e+01 2.517281e+00 1.159718e+04 3.077710e+05 441
- ####################
- # COMB_3
- # number of types devices
- 1
- ####################
- # DEV_0
- # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
- 1
- ####################
- # DEV_0
- # device id
- 2
- ####################
- # DEV_0
- # number of cores
- 1
- ##########
- # number of implementations
- 1
- #####
- # Model for cuda2_impl0 (Comb3)
- # number of entries
- 3
- # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
- 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
- # a b c
- nan nan nan
- # hash size flops mean (us) dev (us) sum sum2 n
- 4af260f6 14678040 0.000000e+00 2.561750e+01 2.633232e+00 1.155349e+04 2.990988e+05 451
- fb4b8624 4427800 0.000000e+00 2.673210e+01 4.378492e+00 1.031859e+04 2.832378e+05 386
- f2ff9ae5 34480152 0.000000e+00 2.631930e+01 2.903449e+00 1.339652e+04 3.568781e+05 509
- ####################
- # COMB_4
- # number of types devices
- 1
- ####################
- # DEV_0
- # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
- 1
- ####################
- # DEV_0
- # device id
- 6
- ####################
- # DEV_0
- # number of cores
- 1
- ##########
- # number of implementations
- 1
- #####
- # Model for cuda6_impl0 (Comb4)
- # number of entries
- 3
- # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
- 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
- # a b c
- nan nan nan
- # hash size flops mean (us) dev (us) sum sum2 n
- 4af260f6 14678040 0.000000e+00 2.607685e+01 3.121182e+00 7.979517e+03 2.110617e+05 306
- fb4b8624 4427800 0.000000e+00 2.621449e+01 3.800716e+00 7.654632e+03 2.048804e+05 292
- f2ff9ae5 34480152 0.000000e+00 2.661811e+01 2.706929e+00 1.810031e+04 4.867788e+05 680
- ####################
- # COMB_5
- # number of types devices
- 1
- ####################
- # DEV_0
- # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
- 1
- ####################
- # DEV_0
- # device id
- 0
- ####################
- # DEV_0
- # number of cores
- 1
- ##########
- # number of implementations
- 1
- #####
- # Model for cuda0_impl0 (Comb5)
- # number of entries
- 3
- # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
- 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
- # a b c
- nan nan nan
- # hash size flops mean (us) dev (us) sum sum2 n
- 4af260f6 14678040 0.000000e+00 2.759081e+01 5.463486e+00 5.435390e+03 1.558472e+05 197
- fb4b8624 4427800 0.000000e+00 2.575898e+01 3.723342e+00 7.779212e+03 2.045713e+05 302
- f2ff9ae5 34480152 0.000000e+00 2.684177e+01 3.098778e+00 1.181038e+04 3.212366e+05 440
- ####################
- # COMB_6
- # number of types devices
- 1
- ####################
- # DEV_0
- # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
- 1
- ####################
- # DEV_0
- # device id
- 3
- ####################
- # DEV_0
- # number of cores
- 1
- ##########
- # number of implementations
- 1
- #####
- # Model for cuda3_impl0 (Comb6)
- # number of entries
- 3
- # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
- 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
- # a b c
- nan nan nan
- # hash size flops mean (us) dev (us) sum sum2 n
- 4af260f6 14678040 0.000000e+00 2.613306e+01 2.901462e+00 1.100202e+04 2.910606e+05 421
- fb4b8624 4427800 0.000000e+00 2.615768e+01 3.461177e+00 7.010257e+03 1.865826e+05 268
- f2ff9ae5 34480152 0.000000e+00 2.749333e+01 3.923485e+00 1.492888e+04 4.188033e+05 543
- ####################
- # COMB_7
- # number of types devices
- 1
- ####################
- # DEV_0
- # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
- 1
- ####################
- # DEV_0
- # device id
- 5
- ####################
- # DEV_0
- # number of cores
- 1
- ##########
- # number of implementations
- 1
- #####
- # Model for cuda5_impl0 (Comb7)
- # number of entries
- 3
- # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
- 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
- # a b c
- nan nan nan
- # hash size flops mean (us) dev (us) sum sum2 n
- 4af260f6 14678040 0.000000e+00 2.628755e+01 3.829892e+00 1.025215e+04 2.752243e+05 390
- fb4b8624 4427800 0.000000e+00 2.540957e+01 3.333356e+00 8.258109e+03 2.134461e+05 325
- f2ff9ae5 34480152 0.000000e+00 2.728087e+01 3.903560e+00 1.404965e+04 3.911340e+05 515
- ####################
- # COMB_8
- # number of types devices
- 1
- ####################
- # DEV_0
- # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3, SCC - 4)
- 1
- ####################
- # DEV_0
- # device id
- 7
- ####################
- # DEV_0
- # number of cores
- 1
- ##########
- # number of implementations
- 1
- #####
- # Model for cuda7_impl0 (Comb8)
- # number of entries
- 3
- # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
- 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
- # a b c
- nan nan nan
- # hash size flops mean (us) dev (us) sum sum2 n
- 4af260f6 14678040 0.000000e+00 2.705248e+01 4.049710e+00 1.163257e+04 3.217418e+05 430
- fb4b8624 4427800 0.000000e+00 2.626990e+01 3.774104e+00 6.908983e+03 1.852444e+05 263
- f2ff9ae5 34480152 0.000000e+00 2.670502e+01 3.597311e+00 1.303205e+04 3.543362e+05 488
|