123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 |
- /* dlascl.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int dlascl_(char *type__, integer *kl, integer *ku,
- doublereal *cfrom, doublereal *cto, integer *m, integer *n,
- doublereal *a, integer *lda, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- /* Local variables */
- integer i__, j, k1, k2, k3, k4;
- doublereal mul, cto1;
- logical done;
- doublereal ctoc;
- extern logical lsame_(char *, char *);
- integer itype;
- doublereal cfrom1;
- extern doublereal dlamch_(char *);
- doublereal cfromc;
- extern logical disnan_(doublereal *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- doublereal bignum, smlnum;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLASCL multiplies the M by N real matrix A by the real scalar */
- /* CTO/CFROM. This is done without over/underflow as long as the final */
- /* result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that */
- /* A may be full, upper triangular, lower triangular, upper Hessenberg, */
- /* or banded. */
- /* Arguments */
- /* ========= */
- /* TYPE (input) CHARACTER*1 */
- /* TYPE indices the storage type of the input matrix. */
- /* = 'G': A is a full matrix. */
- /* = 'L': A is a lower triangular matrix. */
- /* = 'U': A is an upper triangular matrix. */
- /* = 'H': A is an upper Hessenberg matrix. */
- /* = 'B': A is a symmetric band matrix with lower bandwidth KL */
- /* and upper bandwidth KU and with the only the lower */
- /* half stored. */
- /* = 'Q': A is a symmetric band matrix with lower bandwidth KL */
- /* and upper bandwidth KU and with the only the upper */
- /* half stored. */
- /* = 'Z': A is a band matrix with lower bandwidth KL and upper */
- /* bandwidth KU. */
- /* KL (input) INTEGER */
- /* The lower bandwidth of A. Referenced only if TYPE = 'B', */
- /* 'Q' or 'Z'. */
- /* KU (input) INTEGER */
- /* The upper bandwidth of A. Referenced only if TYPE = 'B', */
- /* 'Q' or 'Z'. */
- /* CFROM (input) DOUBLE PRECISION */
- /* CTO (input) DOUBLE PRECISION */
- /* The matrix A is multiplied by CTO/CFROM. A(I,J) is computed */
- /* without over/underflow if the final result CTO*A(I,J)/CFROM */
- /* can be represented without over/underflow. CFROM must be */
- /* nonzero. */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix A. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* The matrix to be multiplied by CTO/CFROM. See TYPE for the */
- /* storage type. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,M). */
- /* INFO (output) INTEGER */
- /* 0 - successful exit */
- /* <0 - if INFO = -i, the i-th argument had an illegal value. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input arguments */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- /* Function Body */
- *info = 0;
- if (lsame_(type__, "G")) {
- itype = 0;
- } else if (lsame_(type__, "L")) {
- itype = 1;
- } else if (lsame_(type__, "U")) {
- itype = 2;
- } else if (lsame_(type__, "H")) {
- itype = 3;
- } else if (lsame_(type__, "B")) {
- itype = 4;
- } else if (lsame_(type__, "Q")) {
- itype = 5;
- } else if (lsame_(type__, "Z")) {
- itype = 6;
- } else {
- itype = -1;
- }
- if (itype == -1) {
- *info = -1;
- } else if (*cfrom == 0. || disnan_(cfrom)) {
- *info = -4;
- } else if (disnan_(cto)) {
- *info = -5;
- } else if (*m < 0) {
- *info = -6;
- } else if (*n < 0 || itype == 4 && *n != *m || itype == 5 && *n != *m) {
- *info = -7;
- } else if (itype <= 3 && *lda < max(1,*m)) {
- *info = -9;
- } else if (itype >= 4) {
- /* Computing MAX */
- i__1 = *m - 1;
- if (*kl < 0 || *kl > max(i__1,0)) {
- *info = -2;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = *n - 1;
- if (*ku < 0 || *ku > max(i__1,0) || (itype == 4 || itype == 5) &&
- *kl != *ku) {
- *info = -3;
- } else if (itype == 4 && *lda < *kl + 1 || itype == 5 && *lda < *
- ku + 1 || itype == 6 && *lda < (*kl << 1) + *ku + 1) {
- *info = -9;
- }
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLASCL", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0 || *m == 0) {
- return 0;
- }
- /* Get machine parameters */
- smlnum = dlamch_("S");
- bignum = 1. / smlnum;
- cfromc = *cfrom;
- ctoc = *cto;
- L10:
- cfrom1 = cfromc * smlnum;
- if (cfrom1 == cfromc) {
- /* CFROMC is an inf. Multiply by a correctly signed zero for */
- /* finite CTOC, or a NaN if CTOC is infinite. */
- mul = ctoc / cfromc;
- done = TRUE_;
- cto1 = ctoc;
- } else {
- cto1 = ctoc / bignum;
- if (cto1 == ctoc) {
- /* CTOC is either 0 or an inf. In both cases, CTOC itself */
- /* serves as the correct multiplication factor. */
- mul = ctoc;
- done = TRUE_;
- cfromc = 1.;
- } else if (abs(cfrom1) > abs(ctoc) && ctoc != 0.) {
- mul = smlnum;
- done = FALSE_;
- cfromc = cfrom1;
- } else if (abs(cto1) > abs(cfromc)) {
- mul = bignum;
- done = FALSE_;
- ctoc = cto1;
- } else {
- mul = ctoc / cfromc;
- done = TRUE_;
- }
- }
- if (itype == 0) {
- /* Full matrix */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] *= mul;
- /* L20: */
- }
- /* L30: */
- }
- } else if (itype == 1) {
- /* Lower triangular matrix */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = j; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] *= mul;
- /* L40: */
- }
- /* L50: */
- }
- } else if (itype == 2) {
- /* Upper triangular matrix */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = min(j,*m);
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] *= mul;
- /* L60: */
- }
- /* L70: */
- }
- } else if (itype == 3) {
- /* Upper Hessenberg matrix */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MIN */
- i__3 = j + 1;
- i__2 = min(i__3,*m);
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] *= mul;
- /* L80: */
- }
- /* L90: */
- }
- } else if (itype == 4) {
- /* Lower half of a symmetric band matrix */
- k3 = *kl + 1;
- k4 = *n + 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MIN */
- i__3 = k3, i__4 = k4 - j;
- i__2 = min(i__3,i__4);
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] *= mul;
- /* L100: */
- }
- /* L110: */
- }
- } else if (itype == 5) {
- /* Upper half of a symmetric band matrix */
- k1 = *ku + 2;
- k3 = *ku + 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MAX */
- i__2 = k1 - j;
- i__3 = k3;
- for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
- a[i__ + j * a_dim1] *= mul;
- /* L120: */
- }
- /* L130: */
- }
- } else if (itype == 6) {
- /* Band matrix */
- k1 = *kl + *ku + 2;
- k2 = *kl + 1;
- k3 = (*kl << 1) + *ku + 1;
- k4 = *kl + *ku + 1 + *m;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MAX */
- i__3 = k1 - j;
- /* Computing MIN */
- i__4 = k3, i__5 = k4 - j;
- i__2 = min(i__4,i__5);
- for (i__ = max(i__3,k2); i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] *= mul;
- /* L140: */
- }
- /* L150: */
- }
- }
- if (! done) {
- goto L10;
- }
- return 0;
- /* End of DLASCL */
- } /* dlascl_ */
|