123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326 |
- /* dlarft.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static doublereal c_b8 = 0.;
- /* Subroutine */ int dlarft_(char *direct, char *storev, integer *n, integer *
- k, doublereal *v, integer *ldv, doublereal *tau, doublereal *t,
- integer *ldt)
- {
- /* System generated locals */
- integer t_dim1, t_offset, v_dim1, v_offset, i__1, i__2, i__3;
- doublereal d__1;
- /* Local variables */
- integer i__, j, prevlastv;
- doublereal vii;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
- integer lastv;
- extern /* Subroutine */ int dtrmv_(char *, char *, char *, integer *,
- doublereal *, integer *, doublereal *, integer *);
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLARFT forms the triangular factor T of a real block reflector H */
- /* of order n, which is defined as a product of k elementary reflectors. */
- /* If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; */
- /* If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. */
- /* If STOREV = 'C', the vector which defines the elementary reflector */
- /* H(i) is stored in the i-th column of the array V, and */
- /* H = I - V * T * V' */
- /* If STOREV = 'R', the vector which defines the elementary reflector */
- /* H(i) is stored in the i-th row of the array V, and */
- /* H = I - V' * T * V */
- /* Arguments */
- /* ========= */
- /* DIRECT (input) CHARACTER*1 */
- /* Specifies the order in which the elementary reflectors are */
- /* multiplied to form the block reflector: */
- /* = 'F': H = H(1) H(2) . . . H(k) (Forward) */
- /* = 'B': H = H(k) . . . H(2) H(1) (Backward) */
- /* STOREV (input) CHARACTER*1 */
- /* Specifies how the vectors which define the elementary */
- /* reflectors are stored (see also Further Details): */
- /* = 'C': columnwise */
- /* = 'R': rowwise */
- /* N (input) INTEGER */
- /* The order of the block reflector H. N >= 0. */
- /* K (input) INTEGER */
- /* The order of the triangular factor T (= the number of */
- /* elementary reflectors). K >= 1. */
- /* V (input/output) DOUBLE PRECISION array, dimension */
- /* (LDV,K) if STOREV = 'C' */
- /* (LDV,N) if STOREV = 'R' */
- /* The matrix V. See further details. */
- /* LDV (input) INTEGER */
- /* The leading dimension of the array V. */
- /* If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. */
- /* TAU (input) DOUBLE PRECISION array, dimension (K) */
- /* TAU(i) must contain the scalar factor of the elementary */
- /* reflector H(i). */
- /* T (output) DOUBLE PRECISION array, dimension (LDT,K) */
- /* The k by k triangular factor T of the block reflector. */
- /* If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is */
- /* lower triangular. The rest of the array is not used. */
- /* LDT (input) INTEGER */
- /* The leading dimension of the array T. LDT >= K. */
- /* Further Details */
- /* =============== */
- /* The shape of the matrix V and the storage of the vectors which define */
- /* the H(i) is best illustrated by the following example with n = 5 and */
- /* k = 3. The elements equal to 1 are not stored; the corresponding */
- /* array elements are modified but restored on exit. The rest of the */
- /* array is not used. */
- /* DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': */
- /* V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) */
- /* ( v1 1 ) ( 1 v2 v2 v2 ) */
- /* ( v1 v2 1 ) ( 1 v3 v3 ) */
- /* ( v1 v2 v3 ) */
- /* ( v1 v2 v3 ) */
- /* DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': */
- /* V = ( v1 v2 v3 ) V = ( v1 v1 1 ) */
- /* ( v1 v2 v3 ) ( v2 v2 v2 1 ) */
- /* ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) */
- /* ( 1 v3 ) */
- /* ( 1 ) */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Quick return if possible */
- /* Parameter adjustments */
- v_dim1 = *ldv;
- v_offset = 1 + v_dim1;
- v -= v_offset;
- --tau;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1;
- t -= t_offset;
- /* Function Body */
- if (*n == 0) {
- return 0;
- }
- if (lsame_(direct, "F")) {
- prevlastv = *n;
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- prevlastv = max(i__,prevlastv);
- if (tau[i__] == 0.) {
- /* H(i) = I */
- i__2 = i__;
- for (j = 1; j <= i__2; ++j) {
- t[j + i__ * t_dim1] = 0.;
- /* L10: */
- }
- } else {
- /* general case */
- vii = v[i__ + i__ * v_dim1];
- v[i__ + i__ * v_dim1] = 1.;
- if (lsame_(storev, "C")) {
- /* Skip any trailing zeros. */
- i__2 = i__ + 1;
- for (lastv = *n; lastv >= i__2; --lastv) {
- if (v[lastv + i__ * v_dim1] != 0.) {
- break;
- }
- }
- j = min(lastv,prevlastv);
- /* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)' * V(i:j,i) */
- i__2 = j - i__ + 1;
- i__3 = i__ - 1;
- d__1 = -tau[i__];
- dgemv_("Transpose", &i__2, &i__3, &d__1, &v[i__ + v_dim1],
- ldv, &v[i__ + i__ * v_dim1], &c__1, &c_b8, &t[
- i__ * t_dim1 + 1], &c__1);
- } else {
- /* Skip any trailing zeros. */
- i__2 = i__ + 1;
- for (lastv = *n; lastv >= i__2; --lastv) {
- if (v[i__ + lastv * v_dim1] != 0.) {
- break;
- }
- }
- j = min(lastv,prevlastv);
- /* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)' */
- i__2 = i__ - 1;
- i__3 = j - i__ + 1;
- d__1 = -tau[i__];
- dgemv_("No transpose", &i__2, &i__3, &d__1, &v[i__ *
- v_dim1 + 1], ldv, &v[i__ + i__ * v_dim1], ldv, &
- c_b8, &t[i__ * t_dim1 + 1], &c__1);
- }
- v[i__ + i__ * v_dim1] = vii;
- /* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) */
- i__2 = i__ - 1;
- dtrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[
- t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1);
- t[i__ + i__ * t_dim1] = tau[i__];
- if (i__ > 1) {
- prevlastv = max(prevlastv,lastv);
- } else {
- prevlastv = lastv;
- }
- }
- /* L20: */
- }
- } else {
- prevlastv = 1;
- for (i__ = *k; i__ >= 1; --i__) {
- if (tau[i__] == 0.) {
- /* H(i) = I */
- i__1 = *k;
- for (j = i__; j <= i__1; ++j) {
- t[j + i__ * t_dim1] = 0.;
- /* L30: */
- }
- } else {
- /* general case */
- if (i__ < *k) {
- if (lsame_(storev, "C")) {
- vii = v[*n - *k + i__ + i__ * v_dim1];
- v[*n - *k + i__ + i__ * v_dim1] = 1.;
- /* Skip any leading zeros. */
- i__1 = i__ - 1;
- for (lastv = 1; lastv <= i__1; ++lastv) {
- if (v[lastv + i__ * v_dim1] != 0.) {
- break;
- }
- }
- j = max(lastv,prevlastv);
- /* T(i+1:k,i) := */
- /* - tau(i) * V(j:n-k+i,i+1:k)' * V(j:n-k+i,i) */
- i__1 = *n - *k + i__ - j + 1;
- i__2 = *k - i__;
- d__1 = -tau[i__];
- dgemv_("Transpose", &i__1, &i__2, &d__1, &v[j + (i__
- + 1) * v_dim1], ldv, &v[j + i__ * v_dim1], &
- c__1, &c_b8, &t[i__ + 1 + i__ * t_dim1], &
- c__1);
- v[*n - *k + i__ + i__ * v_dim1] = vii;
- } else {
- vii = v[i__ + (*n - *k + i__) * v_dim1];
- v[i__ + (*n - *k + i__) * v_dim1] = 1.;
- /* Skip any leading zeros. */
- i__1 = i__ - 1;
- for (lastv = 1; lastv <= i__1; ++lastv) {
- if (v[i__ + lastv * v_dim1] != 0.) {
- break;
- }
- }
- j = max(lastv,prevlastv);
- /* T(i+1:k,i) := */
- /* - tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)' */
- i__1 = *k - i__;
- i__2 = *n - *k + i__ - j + 1;
- d__1 = -tau[i__];
- dgemv_("No transpose", &i__1, &i__2, &d__1, &v[i__ +
- 1 + j * v_dim1], ldv, &v[i__ + j * v_dim1],
- ldv, &c_b8, &t[i__ + 1 + i__ * t_dim1], &c__1);
- v[i__ + (*n - *k + i__) * v_dim1] = vii;
- }
- /* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) */
- i__1 = *k - i__;
- dtrmv_("Lower", "No transpose", "Non-unit", &i__1, &t[i__
- + 1 + (i__ + 1) * t_dim1], ldt, &t[i__ + 1 + i__ *
- t_dim1], &c__1)
- ;
- if (i__ > 1) {
- prevlastv = min(prevlastv,lastv);
- } else {
- prevlastv = lastv;
- }
- }
- t[i__ + i__ * t_dim1] = tau[i__];
- }
- /* L40: */
- }
- }
- return 0;
- /* End of DLARFT */
- } /* dlarft_ */
|