starpu.texi 157 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU Handbook
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @c @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance optimization:: How to optimize performance with StarPU
  31. * Performance feedback:: Performance debugging tools
  32. * StarPU MPI support:: How to combine StarPU with MPI
  33. * Configuring StarPU:: How to configure StarPU
  34. * StarPU API:: The API to use StarPU
  35. * Advanced Topics:: Advanced use of StarPU
  36. * Full source code for the 'Scaling a Vector' example::
  37. @end menu
  38. @c ---------------------------------------------------------------------
  39. @c Introduction to StarPU
  40. @c ---------------------------------------------------------------------
  41. @node Introduction
  42. @chapter Introduction to StarPU
  43. @menu
  44. * Motivation:: Why StarPU ?
  45. * StarPU in a Nutshell:: The Fundamentals of StarPU
  46. @end menu
  47. @node Motivation
  48. @section Motivation
  49. @c complex machines with heterogeneous cores/devices
  50. The use of specialized hardware such as accelerators or coprocessors offers an
  51. interesting approach to overcome the physical limits encountered by processor
  52. architects. As a result, many machines are now equipped with one or several
  53. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  54. efforts have been devoted to offload computation onto such accelerators, very
  55. little attention as been paid to portability concerns on the one hand, and to the
  56. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  57. StarPU is a runtime system that offers support for heterogeneous multicore
  58. architectures, it not only offers a unified view of the computational resources
  59. (i.e. CPUs and accelerators at the same time), but it also takes care of
  60. efficiently mapping and executing tasks onto an heterogeneous machine while
  61. transparently handling low-level issues such as data transfers in a portable
  62. fashion.
  63. @c this leads to a complicated distributed memory design
  64. @c which is not (easily) manageable by hand
  65. @c added value/benefits of StarPU
  66. @c - portability
  67. @c - scheduling, perf. portability
  68. @node StarPU in a Nutshell
  69. @section StarPU in a Nutshell
  70. @menu
  71. * Codelet and Tasks::
  72. * StarPU Data Management Library::
  73. * Research Papers::
  74. @end menu
  75. From a programming point of view, StarPU is not a new language but a library
  76. that executes tasks explicitly submitted by the application. The data that a
  77. task manipulates are automatically transferred onto the accelerator so that the
  78. programmer does not have to take care of complex data movements. StarPU also
  79. takes particular care of scheduling those tasks efficiently and allows
  80. scheduling experts to implement custom scheduling policies in a portable
  81. fashion.
  82. @c explain the notion of codelet and task (i.e. g(A, B)
  83. @node Codelet and Tasks
  84. @subsection Codelet and Tasks
  85. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  86. computational kernel that can possibly be implemented on multiple architectures
  87. such as a CPU, a CUDA device or a Cell's SPU.
  88. @c TODO insert illustration f : f_spu, f_cpu, ...
  89. Another important data structure is the @b{task}. Executing a StarPU task
  90. consists in applying a codelet on a data set, on one of the architectures on
  91. which the codelet is implemented. In addition to the codelet that a task
  92. useuses, it also describes which data are accessed, and how they are
  93. accessed during the computation (read and/or write).
  94. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  95. operation. The task structure can also specify a @b{callback} function that is
  96. called once StarPU has properly executed the task. It also contains optional
  97. fields that the application may use to give hints to the scheduler (such as
  98. priority levels).
  99. A task may be identified by a unique 64-bit number chosen by the application
  100. which we refer as a @b{tag}.
  101. Task dependencies can be enforced either by the means of callback functions, by
  102. expressing dependencies between explicit tasks or by expressing dependencies
  103. between tags (which can thus correspond to tasks that have not been submitted
  104. yet).
  105. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  106. @c DSM
  107. @node StarPU Data Management Library
  108. @subsection StarPU Data Management Library
  109. Because StarPU schedules tasks at runtime, data transfers have to be
  110. done automatically and ``just-in-time'' between processing units,
  111. relieving the application programmer from explicit data transfers.
  112. Moreover, to avoid unnecessary transfers, StarPU keeps data
  113. where it was last needed, even if was modified there, and it
  114. allows multiple copies of the same data to reside at the same time on
  115. several processing units as long as it is not modified.
  116. @node Research Papers
  117. @subsection Research Papers
  118. Research papers about StarPU can be found at
  119. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  120. Notably a good overview in the research report
  121. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  122. @c ---------------------------------------------------------------------
  123. @c Installing StarPU
  124. @c ---------------------------------------------------------------------
  125. @node Installing StarPU
  126. @chapter Installing StarPU
  127. @menu
  128. * Downloading StarPU::
  129. * Configuration of StarPU::
  130. * Building and Installing StarPU::
  131. @end menu
  132. StarPU can be built and installed by the standard means of the GNU
  133. autotools. The following chapter is intended to briefly remind how these tools
  134. can be used to install StarPU.
  135. @node Downloading StarPU
  136. @section Downloading StarPU
  137. @menu
  138. * Getting Sources::
  139. * Optional dependencies::
  140. @end menu
  141. @node Getting Sources
  142. @subsection Getting Sources
  143. The simplest way to get StarPU sources is to download the latest official
  144. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  145. or the latest nightly snapshot from
  146. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  147. how to get the very latest version from the subversion repository itself, it
  148. should be needed only if you need the very latest changes (i.e. less than a
  149. day!)
  150. The source code is managed by a Subversion server hosted by the
  151. InriaGforge. To get the source code, you need:
  152. @itemize
  153. @item
  154. To install the client side of the software Subversion if it is
  155. not already available on your system. The software can be obtained from
  156. @indicateurl{http://subversion.tigris.org} . If you are running
  157. on Windows, you will probably prefer to use TortoiseSVN from
  158. @indicateurl{http://tortoisesvn.tigris.org/} .
  159. @item
  160. You can check out the project's SVN repository through anonymous
  161. access. This will provide you with a read access to the
  162. repository.
  163. If you need to have write access on the StarPU project, you can also choose to
  164. become a member of the project @code{starpu}. For this, you first need to get
  165. an account to the gForge server. You can then send a request to join the project
  166. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  167. @item
  168. More information on how to get a gForge account, to become a member of
  169. a project, or on any other related task can be obtained from the
  170. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  171. thing is to upload your public SSH key on the gForge server (see the
  172. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  173. instructions).
  174. @end itemize
  175. You can now check out the latest version from the Subversion server:
  176. @itemize
  177. @item
  178. using the anonymous access via svn:
  179. @example
  180. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  181. @end example
  182. @item
  183. using the anonymous access via https:
  184. @example
  185. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  186. @end example
  187. The password is @code{anonsvn}.
  188. @item
  189. using your gForge account
  190. @example
  191. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  192. @end example
  193. @end itemize
  194. The following step requires the availability of @code{autoconf} and
  195. @code{automake} to generate the @code{./configure} script. This is
  196. done by calling @code{./autogen.sh}. The required version for
  197. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  198. @example
  199. % ./autogen.sh
  200. @end example
  201. If the autotools are not available on your machine or not recent
  202. enough, you can choose to download the latest nightly tarball, which
  203. is provided with a @code{configure} script.
  204. @example
  205. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  206. @end example
  207. @node Optional dependencies
  208. @subsection Optional dependencies
  209. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  210. but strongly recommended. It allows to increase performance, and to
  211. perform some topology aware scheduling.
  212. @code{hwloc} is available in major distributions and for most OSes and can be
  213. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  214. @node Configuration of StarPU
  215. @section Configuration of StarPU
  216. @menu
  217. * Generating Makefiles and configuration scripts::
  218. * Running the configuration::
  219. @end menu
  220. @node Generating Makefiles and configuration scripts
  221. @subsection Generating Makefiles and configuration scripts
  222. This step is not necessary when using the tarball releases of StarPU. If you
  223. are using the source code from the svn repository, you first need to generate
  224. the configure scripts and the Makefiles.
  225. @example
  226. % ./autogen.sh
  227. @end example
  228. @node Running the configuration
  229. @subsection Running the configuration
  230. @example
  231. % ./configure
  232. @end example
  233. Details about options that are useful to give to @code{./configure} are given in
  234. @ref{Compilation configuration}.
  235. @node Building and Installing StarPU
  236. @section Building and Installing StarPU
  237. @menu
  238. * Building::
  239. * Sanity Checks::
  240. * Installing::
  241. @end menu
  242. @node Building
  243. @subsection Building
  244. @example
  245. % make
  246. @end example
  247. @node Sanity Checks
  248. @subsection Sanity Checks
  249. In order to make sure that StarPU is working properly on the system, it is also
  250. possible to run a test suite.
  251. @example
  252. % make check
  253. @end example
  254. @node Installing
  255. @subsection Installing
  256. In order to install StarPU at the location that was specified during
  257. configuration:
  258. @example
  259. % make install
  260. @end example
  261. @c ---------------------------------------------------------------------
  262. @c Using StarPU
  263. @c ---------------------------------------------------------------------
  264. @node Using StarPU
  265. @chapter Using StarPU
  266. @menu
  267. * Setting flags for compiling and linking applications::
  268. * Running a basic StarPU application::
  269. * Kernel threads started by StarPU::
  270. * Using accelerators::
  271. @end menu
  272. @node Setting flags for compiling and linking applications
  273. @section Setting flags for compiling and linking applications
  274. Compiling and linking an application against StarPU may require to use
  275. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  276. To this end, it is possible to use the @code{pkg-config} tool.
  277. If StarPU was not installed at some standard location, the path of StarPU's
  278. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  279. that @code{pkg-config} can find it. For example if StarPU was installed in
  280. @code{$prefix_dir}:
  281. @example
  282. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  283. @end example
  284. The flags required to compile or link against StarPU are then
  285. accessible with the following commands:
  286. @example
  287. % pkg-config --cflags libstarpu # options for the compiler
  288. % pkg-config --libs libstarpu # options for the linker
  289. @end example
  290. @node Running a basic StarPU application
  291. @section Running a basic StarPU application
  292. Basic examples using StarPU have been built in the directory
  293. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  294. example @code{vector_scal}.
  295. @example
  296. % $prefix_dir/lib/starpu/examples/vector_scal
  297. BEFORE : First element was 1.000000
  298. AFTER First element is 3.140000
  299. %
  300. @end example
  301. When StarPU is used for the first time, the directory
  302. @code{$HOME/.starpu/} is created, performance models will be stored in
  303. that directory.
  304. Please note that buses are benchmarked when StarPU is launched for the
  305. first time. This may take a few minutes, or less if @code{hwloc} is
  306. installed. This step is done only once per user and per machine.
  307. @node Kernel threads started by StarPU
  308. @section Kernel threads started by StarPU
  309. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  310. them per GPU. The application is not supposed to do computations in its own
  311. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  312. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  313. worker).
  314. @node Using accelerators
  315. @section Using accelerators
  316. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  317. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  318. This design choice was necessary as OpenCL and CUDA can not run at the
  319. same time on the same NVIDIA GPU, as there is currently no interoperability
  320. between them.
  321. Details on how to specify devices running OpenCL and the ones running
  322. CUDA are given in @ref{Enabling OpenCL}.
  323. @c ---------------------------------------------------------------------
  324. @c Basic Examples
  325. @c ---------------------------------------------------------------------
  326. @node Basic Examples
  327. @chapter Basic Examples
  328. @menu
  329. * Compiling and linking options::
  330. * Hello World:: Submitting Tasks
  331. * Scaling a Vector:: Manipulating Data
  332. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  333. * Task and Worker Profiling::
  334. * Partitioning Data:: Partitioning Data
  335. * Performance model example::
  336. * Theoretical lower bound on execution time::
  337. * More examples:: More examples shipped with StarPU
  338. @end menu
  339. @node Compiling and linking options
  340. @section Compiling and linking options
  341. Let's suppose StarPU has been installed in the directory
  342. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  343. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  344. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  345. libraries at runtime.
  346. @example
  347. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  348. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  349. @end example
  350. The Makefile could for instance contain the following lines to define which
  351. options must be given to the compiler and to the linker:
  352. @cartouche
  353. @example
  354. CFLAGS += $$(pkg-config --cflags libstarpu)
  355. LDFLAGS += $$(pkg-config --libs libstarpu)
  356. @end example
  357. @end cartouche
  358. @node Hello World
  359. @section Hello World
  360. @menu
  361. * Required Headers::
  362. * Defining a Codelet::
  363. * Submitting a Task::
  364. * Execution of Hello World::
  365. @end menu
  366. In this section, we show how to implement a simple program that submits a task to StarPU.
  367. @node Required Headers
  368. @subsection Required Headers
  369. The @code{starpu.h} header should be included in any code using StarPU.
  370. @cartouche
  371. @smallexample
  372. #include <starpu.h>
  373. @end smallexample
  374. @end cartouche
  375. @node Defining a Codelet
  376. @subsection Defining a Codelet
  377. @cartouche
  378. @smallexample
  379. struct params @{
  380. int i;
  381. float f;
  382. @};
  383. void cpu_func(void *buffers[], void *cl_arg)
  384. @{
  385. struct params *params = cl_arg;
  386. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  387. @}
  388. starpu_codelet cl =
  389. @{
  390. .where = STARPU_CPU,
  391. .cpu_func = cpu_func,
  392. .nbuffers = 0
  393. @};
  394. @end smallexample
  395. @end cartouche
  396. A codelet is a structure that represents a computational kernel. Such a codelet
  397. may contain an implementation of the same kernel on different architectures
  398. (e.g. CUDA, Cell's SPU, x86, ...).
  399. The @code{nbuffers} field specifies the number of data buffers that are
  400. manipulated by the codelet: here the codelet does not access or modify any data
  401. that is controlled by our data management library. Note that the argument
  402. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  403. structure) does not count as a buffer since it is not managed by our data
  404. management library, but just contain trivial parameters.
  405. @c TODO need a crossref to the proper description of "where" see bla for more ...
  406. We create a codelet which may only be executed on the CPUs. The @code{where}
  407. field is a bitmask that defines where the codelet may be executed. Here, the
  408. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  409. (@pxref{Codelets and Tasks} for more details on this field).
  410. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  411. which @emph{must} have the following prototype:
  412. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  413. In this example, we can ignore the first argument of this function which gives a
  414. description of the input and output buffers (e.g. the size and the location of
  415. the matrices) since there is none.
  416. The second argument is a pointer to a buffer passed as an
  417. argument to the codelet by the means of the @code{cl_arg} field of the
  418. @code{starpu_task} structure.
  419. @c TODO rewrite so that it is a little clearer ?
  420. Be aware that this may be a pointer to a
  421. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  422. if the codelet modifies this buffer, there is no guarantee that the initial
  423. buffer will be modified as well: this for instance implies that the buffer
  424. cannot be used as a synchronization medium. If synchronization is needed, data
  425. has to be registered to StarPU, see @ref{Scaling a Vector}.
  426. @node Submitting a Task
  427. @subsection Submitting a Task
  428. @cartouche
  429. @smallexample
  430. void callback_func(void *callback_arg)
  431. @{
  432. printf("Callback function (arg %x)\n", callback_arg);
  433. @}
  434. int main(int argc, char **argv)
  435. @{
  436. /* @b{initialize StarPU} */
  437. starpu_init(NULL);
  438. struct starpu_task *task = starpu_task_create();
  439. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  440. struct params params = @{ 1, 2.0f @};
  441. task->cl_arg = &params;
  442. task->cl_arg_size = sizeof(params);
  443. task->callback_func = callback_func;
  444. task->callback_arg = 0x42;
  445. /* @b{starpu_task_submit will be a blocking call} */
  446. task->synchronous = 1;
  447. /* @b{submit the task to StarPU} */
  448. starpu_task_submit(task);
  449. /* @b{terminate StarPU} */
  450. starpu_shutdown();
  451. return 0;
  452. @}
  453. @end smallexample
  454. @end cartouche
  455. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  456. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  457. be submitted after the termination of StarPU by a call to
  458. @code{starpu_shutdown}.
  459. In the example above, a task structure is allocated by a call to
  460. @code{starpu_task_create}. This function only allocates and fills the
  461. corresponding structure with the default settings (@pxref{starpu_task_create}),
  462. but it does not submit the task to StarPU.
  463. @c not really clear ;)
  464. The @code{cl} field is a pointer to the codelet which the task will
  465. execute: in other words, the codelet structure describes which computational
  466. kernel should be offloaded on the different architectures, and the task
  467. structure is a wrapper containing a codelet and the piece of data on which the
  468. codelet should operate.
  469. The optional @code{cl_arg} field is a pointer to a buffer (of size
  470. @code{cl_arg_size}) with some parameters for the kernel
  471. described by the codelet. For instance, if a codelet implements a computational
  472. kernel that multiplies its input vector by a constant, the constant could be
  473. specified by the means of this buffer, instead of registering it as a StarPU
  474. data.
  475. Once a task has been executed, an optional callback function is be called.
  476. While the computational kernel could be offloaded on various architectures, the
  477. callback function is always executed on a CPU. The @code{callback_arg}
  478. pointer is passed as an argument of the callback. The prototype of a callback
  479. function must be:
  480. @code{void (*callback_function)(void *);}
  481. If the @code{synchronous} field is non-zero, task submission will be
  482. synchronous: the @code{starpu_task_submit} function will not return until the
  483. task was executed. Note that the @code{starpu_shutdown} method does not
  484. guarantee that asynchronous tasks have been executed before it returns,
  485. @code{starpu_task_wait_for_all} can be used to that effect..
  486. @node Execution of Hello World
  487. @subsection Execution of Hello World
  488. @smallexample
  489. % make hello_world
  490. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  491. % ./hello_world
  492. Hello world (params = @{1, 2.000000@} )
  493. Callback function (arg 42)
  494. @end smallexample
  495. @node Scaling a Vector
  496. @section Manipulating Data: Scaling a Vector
  497. The previous example has shown how to submit tasks. In this section,
  498. we show how StarPU tasks can manipulate data. The full source code for
  499. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  500. @menu
  501. * Source code of Vector Scaling::
  502. * Execution of Vector Scaling::
  503. @end menu
  504. @node Source code of Vector Scaling
  505. @subsection Source code of Vector Scaling
  506. Programmers can describe the data layout of their application so that StarPU is
  507. responsible for enforcing data coherency and availability across the machine.
  508. Instead of handling complex (and non-portable) mechanisms to perform data
  509. movements, programmers only declare which piece of data is accessed and/or
  510. modified by a task, and StarPU makes sure that when a computational kernel
  511. starts somewhere (e.g. on a GPU), its data are available locally.
  512. Before submitting those tasks, the programmer first needs to declare the
  513. different pieces of data to StarPU using the @code{starpu_*_data_register}
  514. functions. To ease the development of applications for StarPU, it is possible
  515. to describe multiple types of data layout. A type of data layout is called an
  516. @b{interface}. There are different predefined interfaces available in StarPU:
  517. here we will consider the @b{vector interface}.
  518. The following lines show how to declare an array of @code{NX} elements of type
  519. @code{float} using the vector interface:
  520. @cartouche
  521. @smallexample
  522. float vector[NX];
  523. starpu_data_handle vector_handle;
  524. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  525. sizeof(vector[0]));
  526. @end smallexample
  527. @end cartouche
  528. The first argument, called the @b{data handle}, is an opaque pointer which
  529. designates the array in StarPU. This is also the structure which is used to
  530. describe which data is used by a task. The second argument is the node number
  531. where the data originally resides. Here it is 0 since the @code{vector} array is in
  532. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  533. the number of elements in the vector and the size of each element.
  534. The following shows how to construct a StarPU task that will manipulate the
  535. vector and a constant factor.
  536. @cartouche
  537. @smallexample
  538. float factor = 3.14;
  539. struct starpu_task *task = starpu_task_create();
  540. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  541. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  542. task->buffers[0].mode = STARPU_RW;
  543. task->cl_arg = &factor;
  544. task->cl_arg_size = sizeof(factor);
  545. task->synchronous = 1;
  546. starpu_task_submit(task);
  547. @end smallexample
  548. @end cartouche
  549. Since the factor is a mere constant float value parameter,
  550. it does not need a preliminary registration, and
  551. can just be passed through the @code{cl_arg} pointer like in the previous
  552. example. The vector parameter is described by its handle.
  553. There are two fields in each element of the @code{buffers} array.
  554. @code{handle} is the handle of the data, and @code{mode} specifies how the
  555. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  556. write-only and @code{STARPU_RW} for read and write access).
  557. The definition of the codelet can be written as follows:
  558. @cartouche
  559. @smallexample
  560. void scal_cpu_func(void *buffers[], void *cl_arg)
  561. @{
  562. unsigned i;
  563. float *factor = cl_arg;
  564. /* length of the vector */
  565. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  566. /* local copy of the vector pointer */
  567. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  568. for (i = 0; i < n; i++)
  569. val[i] *= *factor;
  570. @}
  571. starpu_codelet cl = @{
  572. .where = STARPU_CPU,
  573. .cpu_func = scal_cpu_func,
  574. .nbuffers = 1
  575. @};
  576. @end smallexample
  577. @end cartouche
  578. The first argument is an array that gives
  579. a description of all the buffers passed in the @code{task->buffers}@ array. The
  580. size of this array is given by the @code{nbuffers} field of the codelet
  581. structure. For the sake of genericity, this array contains pointers to the
  582. different interfaces describing each buffer. In the case of the @b{vector
  583. interface}, the location of the vector (resp. its length) is accessible in the
  584. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  585. read-write fashion, any modification will automatically affect future accesses
  586. to this vector made by other tasks.
  587. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  588. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  589. constant factor from this pointer.
  590. @node Execution of Vector Scaling
  591. @subsection Execution of Vector Scaling
  592. @smallexample
  593. % make vector_scal
  594. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  595. % ./vector_scal
  596. 0.000000 3.000000 6.000000 9.000000 12.000000
  597. @end smallexample
  598. @node Vector Scaling on an Hybrid CPU/GPU Machine
  599. @section Vector Scaling on an Hybrid CPU/GPU Machine
  600. Contrary to the previous examples, the task submitted in this example may not
  601. only be executed by the CPUs, but also by a CUDA device.
  602. @menu
  603. * Definition of the CUDA Kernel::
  604. * Definition of the OpenCL Kernel::
  605. * Definition of the Main Code::
  606. * Execution of Hybrid Vector Scaling::
  607. @end menu
  608. @node Definition of the CUDA Kernel
  609. @subsection Definition of the CUDA Kernel
  610. The CUDA implementation can be written as follows. It needs to be
  611. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  612. driver.
  613. @cartouche
  614. @smallexample
  615. #include <starpu.h>
  616. static __global__ void vector_mult_cuda(float *val, unsigned n,
  617. float factor)
  618. @{
  619. unsigned i;
  620. if (i < n)
  621. val[i] *= factor;
  622. @}
  623. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  624. @{
  625. float *factor = (float *)_args;
  626. /* length of the vector */
  627. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  628. /* local copy of the vector pointer */
  629. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  630. unsigned threads_per_block = 64;
  631. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  632. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  633. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  634. @}
  635. @end smallexample
  636. @end cartouche
  637. @node Definition of the OpenCL Kernel
  638. @subsection Definition of the OpenCL Kernel
  639. The OpenCL implementation can be written as follows. StarPU provides
  640. tools to compile a OpenCL kernel stored in a file.
  641. @cartouche
  642. @smallexample
  643. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  644. @{
  645. const int i = get_global_id(0);
  646. if (i < nx) @{
  647. val[i] *= factor;
  648. @}
  649. @}
  650. @end smallexample
  651. @end cartouche
  652. @cartouche
  653. @smallexample
  654. #include <starpu.h>
  655. @i{#include <starpu_opencl.h>}
  656. @i{extern struct starpu_opencl_program programs;}
  657. void scal_opencl_func(void *buffers[], void *_args)
  658. @{
  659. float *factor = _args;
  660. @i{ int id, devid, err;}
  661. @i{ cl_kernel kernel;}
  662. @i{ cl_command_queue queue;}
  663. @i{ cl_event event;}
  664. /* length of the vector */
  665. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  666. /* local copy of the vector pointer */
  667. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  668. @i{ id = starpu_worker_get_id();}
  669. @i{ devid = starpu_worker_get_devid(id);}
  670. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  671. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  672. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  673. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  674. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  675. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  676. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  677. @i{ @{}
  678. @i{ size_t global=1;}
  679. @i{ size_t local=1;}
  680. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  681. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  682. @i{ @}}
  683. @i{ clFinish(queue);}
  684. @i{ starpu_opencl_collect_stats(event);}
  685. @i{ clReleaseEvent(event);}
  686. @i{ starpu_opencl_release_kernel(kernel);}
  687. @}
  688. @end smallexample
  689. @end cartouche
  690. @node Definition of the Main Code
  691. @subsection Definition of the Main Code
  692. The CPU implementation is the same as in the previous section.
  693. Here is the source of the main application. You can notice the value of the
  694. field @code{where} for the codelet. We specify
  695. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  696. can be executed either on a CPU or on a CUDA or an OpenCL device.
  697. @cartouche
  698. @smallexample
  699. #include <starpu.h>
  700. #define NX 2048
  701. extern void scal_cuda_func(void *buffers[], void *_args);
  702. extern void scal_cpu_func(void *buffers[], void *_args);
  703. extern void scal_opencl_func(void *buffers[], void *_args);
  704. /* @b{Definition of the codelet} */
  705. static starpu_codelet cl = @{
  706. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  707. /* @b{on a CUDA device, or on an OpenCL device} */
  708. .cuda_func = scal_cuda_func;
  709. .cpu_func = scal_cpu_func;
  710. .opencl_func = scal_opencl_func;
  711. .nbuffers = 1;
  712. @}
  713. #ifdef STARPU_USE_OPENCL
  714. /* @b{The compiled version of the OpenCL program} */
  715. struct starpu_opencl_program programs;
  716. #endif
  717. int main(int argc, char **argv)
  718. @{
  719. float *vector;
  720. int i, ret;
  721. float factor=3.0;
  722. struct starpu_task *task;
  723. starpu_data_handle vector_handle;
  724. starpu_init(NULL); /* @b{Initialising StarPU} */
  725. #ifdef STARPU_USE_OPENCL
  726. starpu_opencl_load_opencl_from_file(
  727. "examples/basic_examples/vector_scal_opencl_codelet.cl", &programs);
  728. #endif
  729. vector = malloc(NX*sizeof(vector[0]));
  730. assert(vector);
  731. for(i=0 ; i<NX ; i++) vector[i] = i;
  732. @end smallexample
  733. @end cartouche
  734. @cartouche
  735. @smallexample
  736. /* @b{Registering data within StarPU} */
  737. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  738. NX, sizeof(vector[0]));
  739. /* @b{Definition of the task} */
  740. task = starpu_task_create();
  741. task->cl = &cl;
  742. task->buffers[0].handle = vector_handle;
  743. task->buffers[0].mode = STARPU_RW;
  744. task->cl_arg = &factor;
  745. task->cl_arg_size = sizeof(factor);
  746. @end smallexample
  747. @end cartouche
  748. @cartouche
  749. @smallexample
  750. /* @b{Submitting the task} */
  751. ret = starpu_task_submit(task);
  752. if (ret == -ENODEV) @{
  753. fprintf(stderr, "No worker may execute this task\n");
  754. return 1;
  755. @}
  756. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  757. /* @b{Waiting for its termination} */
  758. starpu_task_wait_for_all();
  759. /* @b{Update the vector in RAM} */
  760. starpu_data_acquire(vector_handle, STARPU_R);
  761. @end smallexample
  762. @end cartouche
  763. @cartouche
  764. @smallexample
  765. /* @b{Access the data} */
  766. for(i=0 ; i<NX; i++) @{
  767. fprintf(stderr, "%f ", vector[i]);
  768. @}
  769. fprintf(stderr, "\n");
  770. /* @b{Release the data and shutdown StarPU} */
  771. starpu_data_release(vector_handle);
  772. starpu_shutdown();
  773. return 0;
  774. @}
  775. @end smallexample
  776. @end cartouche
  777. @node Execution of Hybrid Vector Scaling
  778. @subsection Execution of Hybrid Vector Scaling
  779. The Makefile given at the beginning of the section must be extended to
  780. give the rules to compile the CUDA source code. Note that the source
  781. file of the OpenCL kernel does not need to be compiled now, it will
  782. be compiled at run-time when calling the function
  783. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  784. @cartouche
  785. @smallexample
  786. CFLAGS += $(shell pkg-config --cflags libstarpu)
  787. LDFLAGS += $(shell pkg-config --libs libstarpu)
  788. CC = gcc
  789. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  790. %.o: %.cu
  791. nvcc $(CFLAGS) $< -c $@
  792. clean:
  793. rm -f vector_scal *.o
  794. @end smallexample
  795. @end cartouche
  796. @smallexample
  797. % make
  798. @end smallexample
  799. and to execute it, with the default configuration:
  800. @smallexample
  801. % ./vector_scal
  802. 0.000000 3.000000 6.000000 9.000000 12.000000
  803. @end smallexample
  804. or for example, by disabling CPU devices:
  805. @smallexample
  806. % STARPU_NCPUS=0 ./vector_scal
  807. 0.000000 3.000000 6.000000 9.000000 12.000000
  808. @end smallexample
  809. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  810. see @ref{Using accelerators}):
  811. @smallexample
  812. % STARPU_NCUDA=0 ./vector_scal
  813. 0.000000 3.000000 6.000000 9.000000 12.000000
  814. @end smallexample
  815. @node Task and Worker Profiling
  816. @section Task and Worker Profiling
  817. A full example showing how to use the profiling API is available in
  818. the StarPU sources in the directory @code{examples/profiling/}.
  819. @cartouche
  820. @smallexample
  821. struct starpu_task *task = starpu_task_create();
  822. task->cl = &cl;
  823. task->synchronous = 1;
  824. /* We will destroy the task structure by hand so that we can
  825. * query the profiling info before the task is destroyed. */
  826. task->destroy = 0;
  827. /* Submit and wait for completion (since synchronous was set to 1) */
  828. starpu_task_submit(task);
  829. /* The task is finished, get profiling information */
  830. struct starpu_task_profiling_info *info = task->profiling_info;
  831. /* How much time did it take before the task started ? */
  832. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  833. /* How long was the task execution ? */
  834. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  835. /* We don't need the task structure anymore */
  836. starpu_task_destroy(task);
  837. @end smallexample
  838. @end cartouche
  839. @cartouche
  840. @smallexample
  841. /* Display the occupancy of all workers during the test */
  842. int worker;
  843. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  844. @{
  845. struct starpu_worker_profiling_info worker_info;
  846. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  847. STARPU_ASSERT(!ret);
  848. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  849. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  850. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  851. float executing_ratio = 100.0*executing_time/total_time;
  852. float sleeping_ratio = 100.0*sleeping_time/total_time;
  853. char workername[128];
  854. starpu_worker_get_name(worker, workername, 128);
  855. fprintf(stderr, "Worker %s:\n", workername);
  856. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  857. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  858. executing_ratio);
  859. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  860. sleeping_ratio);
  861. @}
  862. @end smallexample
  863. @end cartouche
  864. @node Partitioning Data
  865. @section Partitioning Data
  866. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  867. @cartouche
  868. @smallexample
  869. int vector[NX];
  870. starpu_data_handle handle;
  871. /* Declare data to StarPU */
  872. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  873. /* Partition the vector in PARTS sub-vectors */
  874. starpu_filter f =
  875. @{
  876. .filter_func = starpu_block_filter_func_vector,
  877. .nchildren = PARTS,
  878. .get_nchildren = NULL,
  879. .get_child_ops = NULL
  880. @};
  881. starpu_data_partition(handle, &f);
  882. @end smallexample
  883. @end cartouche
  884. @cartouche
  885. @smallexample
  886. /* Submit a task on each sub-vector */
  887. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  888. /* Get subdata number i (there is only 1 dimension) */
  889. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  890. struct starpu_task *task = starpu_task_create();
  891. task->buffers[0].handle = sub_handle;
  892. task->buffers[0].mode = STARPU_RW;
  893. task->cl = &cl;
  894. task->synchronous = 1;
  895. task->cl_arg = &factor;
  896. task->cl_arg_size = sizeof(factor);
  897. starpu_task_submit(task);
  898. @}
  899. @end smallexample
  900. @end cartouche
  901. Partitioning can be applied several times, see
  902. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  903. @node Performance model example
  904. @section Performance model example
  905. To achieve good scheduling, StarPU scheduling policies need to be able to
  906. estimate in advance the duration of a task. This is done by giving to codelets a
  907. performance model. There are several kinds of performance models.
  908. @itemize
  909. @item
  910. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  911. see for instance
  912. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  913. @item
  914. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  915. given set of data input/output sizes, the performance will always be about the
  916. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  917. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  918. few different sets of data input/output sizes. StarPU will then keep record of
  919. the average time of previous executions on the various processing units, and use
  920. it as an estimation. It will also save it in @code{~/.starpu/sampling/codelets}
  921. for further executions. The following is a small code example.
  922. @cartouche
  923. @smallexample
  924. static struct starpu_perfmodel_t mult_perf_model = @{
  925. .type = STARPU_HISTORY_BASED,
  926. .symbol = "mult_perf_model"
  927. @};
  928. starpu_codelet cl = @{
  929. .where = STARPU_CPU,
  930. .cpu_func = cpu_mult,
  931. .nbuffers = 3,
  932. /* for the scheduling policy to be able to use performance models */
  933. .model = &mult_perf_model
  934. @};
  935. @end smallexample
  936. @end cartouche
  937. @item
  938. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  939. type). This still assumes performance regularity, but can work with various data
  940. input sizes, by applying a*n^b+c regression over observed execution times.
  941. @end itemize
  942. The same can be done for task power consumption estimation, by setting the
  943. @code{power_model} field the same way as the @code{model} field. Note: for
  944. now, the application has to give to the power consumption performance model
  945. a different name.
  946. @node Theoretical lower bound on execution time
  947. @section Theoretical lower bound on execution time
  948. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  949. bound for the execution time of a whole set of tasks. See for
  950. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  951. call @code{starpu_bound_start}, and after complete execution, call
  952. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  953. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  954. problem corresponding to the schedule of your tasks. Run it through
  955. @code{lp_solve} or any other linear programming solver, and that will give you a
  956. lower bound for the total execution time of your tasks. If StarPU was compiled
  957. with the glpk library installed, @code{starpu_bound_compute} can be used to
  958. solve it immediately and get the optimized minimum. Its @code{integer}
  959. parameter allows to decide whether integer resolution should be computed
  960. and returned.
  961. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  962. dependencies into account. It must be understood that the linear programming
  963. problem size is quadratic with the number of tasks and thus the time to solve it
  964. will be very long, it could be minutes for just a few dozen tasks. You should
  965. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  966. problem to MPS format and then use a better solver, @code{glpsol} might be
  967. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  968. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  969. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  970. of @code{lp_solve}. For instance, we often just use
  971. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  972. the @code{-gr} option can also be quite useful.
  973. Setting @code{deps} to 0 will only take into account the actual computations
  974. on processing units. It however still properly takes into account the varying
  975. performances of kernels and processing units, which is quite more accurate than
  976. just comparing StarPU performances with the fastest of the kernels being used.
  977. The @code{prio} parameter tells StarPU whether to simulate taking into account
  978. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  979. tasks before less prioritized tasks, to check to which extend this results
  980. to a less optimal solution. This increases even more computation time.
  981. Note that for simplicity, all this however doesn't take into account data
  982. transfers, which are assumed to be completely overlapped.
  983. @c TODO: document starpu_insert_task
  984. @node More examples
  985. @section More examples
  986. More examples are available in the StarPU sources in the @code{examples/}
  987. directory. Simple examples include:
  988. @table @asis
  989. @item @code{incrementer/}:
  990. Trivial incrementation test.
  991. @item @code{basic_examples/}:
  992. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  993. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  994. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  995. interface, and an example using the variable data interface.
  996. @item @code{matvecmult/}:
  997. OpenCL example from NVidia, adapted to StarPU.
  998. @item @code{axpy/}:
  999. AXPY CUBLAS operation adapted to StarPU.
  1000. @item @code{fortran/}:
  1001. Example of Fortran bindings.
  1002. @end table
  1003. More advanced examples include:
  1004. @table @asis
  1005. @item @code{filters/}:
  1006. Examples using filters, as shown in @ref{Partitioning Data}.
  1007. @item @code{lu/}:
  1008. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1009. @item @code{cholesky/}:
  1010. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1011. @end table
  1012. @c ---------------------------------------------------------------------
  1013. @c Performance options
  1014. @c ---------------------------------------------------------------------
  1015. @node Performance optimization
  1016. @chapter How to optimize performance with StarPU
  1017. TODO: improve!
  1018. @menu
  1019. * Data management::
  1020. * Task submission::
  1021. * Task scheduling policy::
  1022. * Task distribution vs Data transfer::
  1023. * Power-based scheduling::
  1024. * Profiling::
  1025. * CUDA-specific optimizations::
  1026. @end menu
  1027. Simply encapsulating application kernels into tasks already permits to
  1028. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1029. few additional changes are needed.
  1030. @node Data management
  1031. @section Data management
  1032. By default, StarPU does not enable data prefetching, because CUDA does
  1033. not announce when too many data transfers were scheduled and can thus block
  1034. unexpectedly... To enable data prefetching, use @code{export STARPU_PREFETCH=1}
  1035. .
  1036. By default, StarPU leaves replicates of data wherever they were used, in case they
  1037. will be re-used by other tasks, thus saving the data transfer time. When some
  1038. task modifies some data, all the other replicates are invalidated, and only the
  1039. processing unit will have a valid replicate of the data. If the application knows
  1040. that this data will not be re-used by further tasks, it should advise StarPU to
  1041. immediately replicate it to a desired list of memory nodes (given through a
  1042. bitmask). This can be understood like the write-through mode of CPU caches.
  1043. @example
  1044. starpu_data_set_wt_mask(img_handle, 1<<0);
  1045. @end example
  1046. will for instance request to always transfer a replicate into the main memory (node
  1047. 0), as bit 0 of the write-through bitmask is being set.
  1048. When the application allocates data, whenever possible it should use the
  1049. @code{starpu_data_malloc_pinned_if_possible} function, which will ask CUDA or
  1050. OpenCL to make the allocation itself and pin the corresponding allocated
  1051. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1052. transfer to overlap with computations.
  1053. @node Task submission
  1054. @section Task submission
  1055. To let StarPU make online optimizations, tasks should be submitted
  1056. asynchronously as much as possible. Ideally, all the tasks should be
  1057. submitted, and a mere @code{starpu_task_wait_for_all} call be done to wait for
  1058. termination. StarPU will then be able to rework the whole schedule, overlap
  1059. computation with communication, manage accelerator local memory usage, etc.
  1060. @node Task scheduling policy
  1061. @section Task scheduling policy
  1062. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1063. because it provides correct load balance even if the application codelets do not
  1064. have performance models. If your application codelets have performance models,
  1065. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1066. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1067. the list of available schedulers.
  1068. Most schedulers are based on an estimation of codelet duration on each kind
  1069. of processing unit. For this to be possible, the application programmer needs
  1070. to configure a performance model for the codelets of the application (see
  1071. @ref{Performance model example} for instance). History-based performance models
  1072. use on-line calibration. StarPU will automatically calibrate codelets
  1073. which have never been calibrated yet. To force continuing calibration, use
  1074. @code{export STARPU_CALIBRATE=1} . To drop existing calibration information
  1075. completely and re-calibrate from start, use @code{export STARPU_CALIBRATE=2}.
  1076. Note: due to CUDA limitations, to be able to measure kernel duration,
  1077. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1078. disables data transfer / computation overlapping, and should thus not be used
  1079. for eventual benchmarks.
  1080. @node Task distribution vs Data transfer
  1081. @section Task distribution vs Data transfer
  1082. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1083. thus needs to find a balance between both. The target function that the
  1084. @code{dmda} scheduler of StarPU
  1085. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1086. @code{T_execution} is the estimated execution time of the codelet (usually
  1087. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1088. latter is however estimated based on bus calibration before execution start,
  1089. i.e. with an idle machine. You can force bus re-calibration by running
  1090. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1091. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance.
  1092. This is of course imprecise, but in practice, a rough estimation already gives
  1093. the good results that a precise estimation would give.
  1094. @node Power-based scheduling
  1095. @section Power-based scheduling
  1096. If the application can provide some power performance model (through
  1097. the @code{power_model} field of the codelet structure), StarPU will
  1098. take it into account when distributing tasks. The target function that
  1099. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1100. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1101. is the estimated task consumption in Joules. To tune this parameter, use
  1102. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1103. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1104. alpha and beta to zero permits to only take into account power consumption.
  1105. This is however not sufficient to correctly optimize power: the scheduler would
  1106. simply tend to run all computations on the most energy-conservative processing
  1107. unit. To account for the consumption of the whole machine (including idle
  1108. processing units), the idle power of the machine should be given by setting
  1109. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1110. be obtained from the machine power supplier.
  1111. The power actually consumed by the total execution can be displayed by setting
  1112. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1113. @node Profiling
  1114. @section Profiling
  1115. Profiling can be enabled by using @code{export STARPU_PROFILING=1} or by
  1116. calling @code{starpu_profiling_status_set} from the source code.
  1117. Statistics on the execution can then be obtained by using @code{export
  1118. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} . Workers
  1119. stats will include an approximation of the number of executed tasks even if
  1120. @code{STARPU_PROFILING} is not set. This is a convenient way to check that
  1121. execution did happen on accelerators without penalizing performance with
  1122. the profiling overhead. More details on performance feedback are provided by the
  1123. next chapter.
  1124. @node CUDA-specific optimizations
  1125. @section CUDA-specific optimizations
  1126. Due to CUDA limitations, StarPU will have a hard time overlapping
  1127. communications and computations if the application does not use a dedicated
  1128. CUDA stream for its computations. StarPU provides one by the use of
  1129. @code{starpu_cuda_get_local_stream()}. For instance:
  1130. @example
  1131. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1132. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1133. @end example
  1134. Unfortunately, a lot of cuda libraries do not have stream variants of kernels.
  1135. @c ---------------------------------------------------------------------
  1136. @c Performance feedback
  1137. @c ---------------------------------------------------------------------
  1138. @node Performance feedback
  1139. @chapter Performance feedback
  1140. @menu
  1141. * On-line:: On-line performance feedback
  1142. * Off-line:: Off-line performance feedback
  1143. * Codelet performance:: Performance of codelets
  1144. @end menu
  1145. @node On-line
  1146. @section On-line performance feedback
  1147. @menu
  1148. * Enabling monitoring:: Enabling on-line performance monitoring
  1149. * Task feedback:: Per-task feedback
  1150. * Codelet feedback:: Per-codelet feedback
  1151. * Worker feedback:: Per-worker feedback
  1152. * Bus feedback:: Bus-related feedback
  1153. @end menu
  1154. @node Enabling monitoring
  1155. @subsection Enabling on-line performance monitoring
  1156. In order to enable online performance monitoring, the application can call
  1157. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1158. detect whether monitoring is already enabled or not by calling
  1159. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1160. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1161. can also be set to 1 to achieve the same effect.
  1162. Likewise, performance monitoring is stopped by calling
  1163. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1164. does not reset the performance counters so that the application may consult
  1165. them later on.
  1166. More details about the performance monitoring API are available in section
  1167. @ref{Profiling API}.
  1168. @node Task feedback
  1169. @subsection Per-task feedback
  1170. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1171. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1172. structure when a task terminates.
  1173. This structure is automatically destroyed when the task structure is destroyed,
  1174. either automatically or by calling @code{starpu_task_destroy}.
  1175. The @code{starpu_task_profiling_info} structure indicates the date when the
  1176. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1177. terminated (@code{end_time}), relative to the initialization of
  1178. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1179. that has executed the task (@code{workerid}).
  1180. These date are stored as @code{timespec} structures which the user may convert
  1181. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1182. function.
  1183. It it worth noting that the application may directly access this structure from
  1184. the callback executed at the end of the task. The @code{starpu_task} structure
  1185. associated to the callback currently being executed is indeed accessible with
  1186. the @code{starpu_get_current_task()} function.
  1187. @node Codelet feedback
  1188. @subsection Per-codelet feedback
  1189. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1190. an array of counters. The i-th entry of the array is incremented every time a
  1191. task implementing the codelet is executed on the i-th worker.
  1192. This array is not reinitialized when profiling is enabled or disabled.
  1193. @node Worker feedback
  1194. @subsection Per-worker feedback
  1195. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1196. function is a @code{starpu_worker_profiling_info} structure that gives
  1197. statistics about the specified worker. This structure specifies when StarPU
  1198. started collecting profiling information for that worker (@code{start_time}),
  1199. the duration of the profiling measurement interval (@code{total_time}), the
  1200. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1201. because there is no task to execute at all (@code{sleeping_time}), and the
  1202. number of tasks that were executed while profiling was enabled.
  1203. These values give an estimation of the proportion of time spent do real work,
  1204. and the time spent either sleeping because there are not enough executable
  1205. tasks or simply wasted in pure StarPU overhead.
  1206. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1207. information associated to a worker.
  1208. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1209. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1210. generate a graphic showing the evolution of these values during the time, for
  1211. the different workers.
  1212. @node Bus feedback
  1213. @subsection Bus-related feedback
  1214. TODO
  1215. @c how to enable/disable performance monitoring
  1216. @c what kind of information do we get ?
  1217. @node Off-line
  1218. @section Off-line performance feedback
  1219. @menu
  1220. * Generating traces:: Generating traces with FxT
  1221. * Gantt diagram:: Creating a Gantt Diagram
  1222. * DAG:: Creating a DAG with graphviz
  1223. * starpu-top:: Monitoring activity
  1224. @end menu
  1225. @node Generating traces
  1226. @subsection Generating traces with FxT
  1227. StarPU can use the FxT library (see
  1228. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1229. with a limited runtime overhead.
  1230. You can either get the FxT library from CVS (autotools are required):
  1231. @example
  1232. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1233. % ./bootstrap
  1234. @end example
  1235. If autotools are not available on your machine, or if you prefer to do so,
  1236. FxT's code is also available as a tarball:
  1237. @example
  1238. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.tar.gz
  1239. @end example
  1240. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1241. done following the standard procedure:
  1242. @example
  1243. % ./configure --prefix=$FXTDIR
  1244. % make
  1245. % make install
  1246. @end example
  1247. In order to have StarPU to generate traces, StarPU should be configured with
  1248. the @code{--with-fxt} option:
  1249. @example
  1250. $ ./configure --with-fxt=$FXTDIR
  1251. @end example
  1252. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1253. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1254. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1255. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1256. @code{/tmp/} directory by default, or by the directory specified by
  1257. the @code{STARPU_FXT_PREFIX} environment variable.
  1258. @node Gantt diagram
  1259. @subsection Creating a Gantt Diagram
  1260. When the FxT trace file @code{filename} has been generated, it is possible to
  1261. generate a trace in the Paje format by calling:
  1262. @example
  1263. % starpu_fxt_tool -i filename
  1264. @end example
  1265. This will create a @code{paje.trace} file in the current directory that can be
  1266. inspected with the ViTE trace visualizing open-source tool. More information
  1267. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1268. possible to open the @code{paje.trace} file with ViTE by using the following
  1269. command:
  1270. @example
  1271. % vite paje.trace
  1272. @end example
  1273. @node DAG
  1274. @subsection Creating a DAG with graphviz
  1275. When the FxT trace file @code{filename} has been generated, it is possible to
  1276. generate a task graph in the DOT format by calling:
  1277. @example
  1278. $ starpu_fxt_tool -i filename
  1279. @end example
  1280. This will create a @code{dag.dot} file in the current directory. This file is a
  1281. task graph described using the DOT language. It is possible to get a
  1282. graphical output of the graph by using the graphviz library:
  1283. @example
  1284. $ dot -Tpdf dag.dot -o output.pdf
  1285. @end example
  1286. @node starpu-top
  1287. @subsection Monitoring activity
  1288. When the FxT trace file @code{filename} has been generated, it is possible to
  1289. generate a activity trace by calling:
  1290. @example
  1291. $ starpu_fxt_tool -i filename
  1292. @end example
  1293. This will create an @code{activity.data} file in the current
  1294. directory. A profile of the application showing the activity of StarPU
  1295. during the execution of the program can be generated:
  1296. @example
  1297. $ starpu_top.sh activity.data
  1298. @end example
  1299. This will create a file named @code{activity.eps} in the current directory.
  1300. This picture is composed of two parts.
  1301. The first part shows the activity of the different workers. The green sections
  1302. indicate which proportion of the time was spent executed kernels on the
  1303. processing unit. The red sections indicate the proportion of time spent in
  1304. StartPU: an important overhead may indicate that the granularity may be too
  1305. low, and that bigger tasks may be appropriate to use the processing unit more
  1306. efficiently. The black sections indicate that the processing unit was blocked
  1307. because there was no task to process: this may indicate a lack of parallelism
  1308. which may be alleviated by creating more tasks when it is possible.
  1309. The second part of the @code{activity.eps} picture is a graph showing the
  1310. evolution of the number of tasks available in the system during the execution.
  1311. Ready tasks are shown in black, and tasks that are submitted but not
  1312. schedulable yet are shown in grey.
  1313. @node Codelet performance
  1314. @section Performance of codelets
  1315. The performance model of codelets can be examined by using the
  1316. @code{starpu_perfmodel_display} tool:
  1317. @example
  1318. $ starpu_perfmodel_display -l
  1319. file: <malloc_pinned.hannibal>
  1320. file: <starpu_slu_lu_model_21.hannibal>
  1321. file: <starpu_slu_lu_model_11.hannibal>
  1322. file: <starpu_slu_lu_model_22.hannibal>
  1323. file: <starpu_slu_lu_model_12.hannibal>
  1324. @end example
  1325. Here, the codelets of the lu example are available. We can examine the
  1326. performance of the 22 kernel:
  1327. @example
  1328. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1329. performance model for cpu
  1330. # hash size mean dev n
  1331. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1332. performance model for cuda_0
  1333. # hash size mean dev n
  1334. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1335. performance model for cuda_1
  1336. # hash size mean dev n
  1337. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1338. performance model for cuda_2
  1339. # hash size mean dev n
  1340. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1341. @end example
  1342. We can see that for the given size, over a sample of a few hundreds of
  1343. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1344. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1345. CPUs.
  1346. @c ---------------------------------------------------------------------
  1347. @c MPI support
  1348. @c ---------------------------------------------------------------------
  1349. @node StarPU MPI support
  1350. @chapter StarPU MPI support
  1351. TODO: document include/starpu_mpi.h and explain a simple example (pingpong?)
  1352. @c ---------------------------------------------------------------------
  1353. @c Configuration options
  1354. @c ---------------------------------------------------------------------
  1355. @node Configuring StarPU
  1356. @chapter Configuring StarPU
  1357. @menu
  1358. * Compilation configuration::
  1359. * Execution configuration through environment variables::
  1360. @end menu
  1361. @node Compilation configuration
  1362. @section Compilation configuration
  1363. The following arguments can be given to the @code{configure} script.
  1364. @menu
  1365. * Common configuration::
  1366. * Configuring workers::
  1367. * Advanced configuration::
  1368. @end menu
  1369. @node Common configuration
  1370. @subsection Common configuration
  1371. @menu
  1372. * --enable-debug::
  1373. * --enable-fast::
  1374. * --enable-verbose::
  1375. * --enable-coverage::
  1376. @end menu
  1377. @node --enable-debug
  1378. @subsubsection @code{--enable-debug}
  1379. @table @asis
  1380. @item @emph{Description}:
  1381. Enable debugging messages.
  1382. @end table
  1383. @node --enable-fast
  1384. @subsubsection @code{--enable-fast}
  1385. @table @asis
  1386. @item @emph{Description}:
  1387. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1388. @end table
  1389. @node --enable-verbose
  1390. @subsubsection @code{--enable-verbose}
  1391. @table @asis
  1392. @item @emph{Description}:
  1393. Augment the verbosity of the debugging messages. This can be disabled
  1394. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1395. any value.
  1396. @smallexample
  1397. % STARPU_SILENT=1 ./vector_scal
  1398. @end smallexample
  1399. @end table
  1400. @node --enable-coverage
  1401. @subsubsection @code{--enable-coverage}
  1402. @table @asis
  1403. @item @emph{Description}:
  1404. Enable flags for the @code{gcov} coverage tool.
  1405. @end table
  1406. @node Configuring workers
  1407. @subsection Configuring workers
  1408. @menu
  1409. * --enable-nmaxcpus::
  1410. * --disable-cpu::
  1411. * --enable-maxcudadev::
  1412. * --disable-cuda::
  1413. * --with-cuda-dir::
  1414. * --with-cuda-include-dir::
  1415. * --with-cuda-lib-dir::
  1416. * --enable-maxopencldev::
  1417. * --disable-opencl::
  1418. * --with-opencl-dir::
  1419. * --with-opencl-include-dir::
  1420. * --with-opencl-lib-dir::
  1421. * --enable-gordon::
  1422. * --with-gordon-dir::
  1423. @end menu
  1424. @node --enable-nmaxcpus
  1425. @subsubsection @code{--enable-nmaxcpus=<number>}
  1426. @table @asis
  1427. @item @emph{Description}:
  1428. Defines the maximum number of CPU cores that StarPU will support, then
  1429. available as the @code{STARPU_NMAXCPUS} macro.
  1430. @end table
  1431. @node --disable-cpu
  1432. @subsubsection @code{--disable-cpu}
  1433. @table @asis
  1434. @item @emph{Description}:
  1435. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1436. @end table
  1437. @node --enable-maxcudadev
  1438. @subsubsection @code{--enable-maxcudadev=<number>}
  1439. @table @asis
  1440. @item @emph{Description}:
  1441. Defines the maximum number of CUDA devices that StarPU will support, then
  1442. available as the @code{STARPU_MAXCUDADEVS} macro.
  1443. @end table
  1444. @node --disable-cuda
  1445. @subsubsection @code{--disable-cuda}
  1446. @table @asis
  1447. @item @emph{Description}:
  1448. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1449. @end table
  1450. @node --with-cuda-dir
  1451. @subsubsection @code{--with-cuda-dir=<path>}
  1452. @table @asis
  1453. @item @emph{Description}:
  1454. Specify the directory where CUDA is installed. This directory should notably contain
  1455. @code{include/cuda.h}.
  1456. @end table
  1457. @node --with-cuda-include-dir
  1458. @subsubsection @code{--with-cuda-include-dir=<path>}
  1459. @table @asis
  1460. @item @emph{Description}:
  1461. Specify the directory where CUDA headers are installed. This directory should
  1462. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1463. value given to @code{--with-cuda-dir}.
  1464. @end table
  1465. @node --with-cuda-lib-dir
  1466. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1467. @table @asis
  1468. @item @emph{Description}:
  1469. Specify the directory where the CUDA library is installed. This directory should
  1470. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1471. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1472. @end table
  1473. @node --enable-maxopencldev
  1474. @subsubsection @code{--enable-maxopencldev=<number>}
  1475. @table @asis
  1476. @item @emph{Description}:
  1477. Defines the maximum number of OpenCL devices that StarPU will support, then
  1478. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1479. @end table
  1480. @node --disable-opencl
  1481. @subsubsection @code{--disable-opencl}
  1482. @table @asis
  1483. @item @emph{Description}:
  1484. Disable the use of OpenCL, even if the SDK is detected.
  1485. @end table
  1486. @node --with-opencl-dir
  1487. @subsubsection @code{--with-opencl-dir=<path>}
  1488. @table @asis
  1489. @item @emph{Description}:
  1490. Specify the location of the OpenCL SDK. This directory should notably contain
  1491. @code{include/CL/cl.h}.
  1492. @end table
  1493. @node --with-opencl-include-dir
  1494. @subsubsection @code{--with-opencl-include-dir=<path>}
  1495. @table @asis
  1496. @item @emph{Description}:
  1497. Specify the location of OpenCL headers. This directory should notably contain
  1498. @code{CL/cl.h}. This defaults to
  1499. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1500. @end table
  1501. @node --with-opencl-lib-dir
  1502. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1503. @table @asis
  1504. @item @emph{Description}:
  1505. Specify the location of the OpenCL library. This directory should notably
  1506. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1507. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1508. @end table
  1509. @node --enable-gordon
  1510. @subsubsection @code{--enable-gordon}
  1511. @table @asis
  1512. @item @emph{Description}:
  1513. Enable the use of the Gordon runtime for Cell SPUs.
  1514. @c TODO: rather default to enabled when detected
  1515. @end table
  1516. @node --with-gordon-dir
  1517. @subsubsection @code{--with-gordon-dir=<path>}
  1518. @table @asis
  1519. @item @emph{Description}:
  1520. Specify the location of the Gordon SDK.
  1521. @end table
  1522. @node Advanced configuration
  1523. @subsection Advanced configuration
  1524. @menu
  1525. * --enable-perf-debug::
  1526. * --enable-model-debug::
  1527. * --enable-stats::
  1528. * --enable-maxbuffers::
  1529. * --enable-allocation-cache::
  1530. * --enable-opengl-render::
  1531. * --enable-blas-lib::
  1532. * --with-magma::
  1533. * --with-fxt::
  1534. * --with-perf-model-dir::
  1535. * --with-mpicc::
  1536. * --with-goto-dir::
  1537. * --with-atlas-dir::
  1538. * --with-mkl-cflags::
  1539. * --with-mkl-ldflags::
  1540. @end menu
  1541. @node --enable-perf-debug
  1542. @subsubsection @code{--enable-perf-debug}
  1543. @table @asis
  1544. @item @emph{Description}:
  1545. Enable performance debugging.
  1546. @end table
  1547. @node --enable-model-debug
  1548. @subsubsection @code{--enable-model-debug}
  1549. @table @asis
  1550. @item @emph{Description}:
  1551. Enable performance model debugging.
  1552. @end table
  1553. @node --enable-stats
  1554. @subsubsection @code{--enable-stats}
  1555. @table @asis
  1556. @item @emph{Description}:
  1557. Enable statistics.
  1558. @end table
  1559. @node --enable-maxbuffers
  1560. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1561. @table @asis
  1562. @item @emph{Description}:
  1563. Define the maximum number of buffers that tasks will be able to take
  1564. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1565. @end table
  1566. @node --enable-allocation-cache
  1567. @subsubsection @code{--enable-allocation-cache}
  1568. @table @asis
  1569. @item @emph{Description}:
  1570. Enable the use of a data allocation cache to avoid the cost of it with
  1571. CUDA. Still experimental.
  1572. @end table
  1573. @node --enable-opengl-render
  1574. @subsubsection @code{--enable-opengl-render}
  1575. @table @asis
  1576. @item @emph{Description}:
  1577. Enable the use of OpenGL for the rendering of some examples.
  1578. @c TODO: rather default to enabled when detected
  1579. @end table
  1580. @node --enable-blas-lib
  1581. @subsubsection @code{--enable-blas-lib=<name>}
  1582. @table @asis
  1583. @item @emph{Description}:
  1584. Specify the blas library to be used by some of the examples. The
  1585. library has to be 'atlas' or 'goto'.
  1586. @end table
  1587. @node --with-magma
  1588. @subsubsection @code{--with-magma=<path>}
  1589. @table @asis
  1590. @item @emph{Description}:
  1591. Specify where magma is installed. This directory should notably contain
  1592. @code{include/magmablas.h}.
  1593. @end table
  1594. @node --with-fxt
  1595. @subsubsection @code{--with-fxt=<path>}
  1596. @table @asis
  1597. @item @emph{Description}:
  1598. Specify the location of FxT (for generating traces and rendering them
  1599. using ViTE). This directory should notably contain
  1600. @code{include/fxt/fxt.h}.
  1601. @c TODO add ref to other section
  1602. @end table
  1603. @node --with-perf-model-dir
  1604. @subsubsection @code{--with-perf-model-dir=<dir>}
  1605. @table @asis
  1606. @item @emph{Description}:
  1607. Specify where performance models should be stored (instead of defaulting to the
  1608. current user's home).
  1609. @end table
  1610. @node --with-mpicc
  1611. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1612. @table @asis
  1613. @item @emph{Description}:
  1614. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1615. @end table
  1616. @node --with-goto-dir
  1617. @subsubsection @code{--with-goto-dir=<dir>}
  1618. @table @asis
  1619. @item @emph{Description}:
  1620. Specify the location of GotoBLAS.
  1621. @end table
  1622. @node --with-atlas-dir
  1623. @subsubsection @code{--with-atlas-dir=<dir>}
  1624. @table @asis
  1625. @item @emph{Description}:
  1626. Specify the location of ATLAS. This directory should notably contain
  1627. @code{include/cblas.h}.
  1628. @end table
  1629. @node --with-mkl-cflags
  1630. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1631. @table @asis
  1632. @item @emph{Description}:
  1633. Specify the compilation flags for the MKL Library.
  1634. @end table
  1635. @node --with-mkl-ldflags
  1636. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1637. @table @asis
  1638. @item @emph{Description}:
  1639. Specify the linking flags for the MKL Library. Note that the
  1640. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1641. website provides a script to determine the linking flags.
  1642. @end table
  1643. @c ---------------------------------------------------------------------
  1644. @c Environment variables
  1645. @c ---------------------------------------------------------------------
  1646. @node Execution configuration through environment variables
  1647. @section Execution configuration through environment variables
  1648. @menu
  1649. * Workers:: Configuring workers
  1650. * Scheduling:: Configuring the Scheduling engine
  1651. * Misc:: Miscellaneous and debug
  1652. @end menu
  1653. Note: the values given in @code{starpu_conf} structure passed when
  1654. calling @code{starpu_init} will override the values of the environment
  1655. variables.
  1656. @node Workers
  1657. @subsection Configuring workers
  1658. @menu
  1659. * STARPU_NCPUS:: Number of CPU workers
  1660. * STARPU_NCUDA:: Number of CUDA workers
  1661. * STARPU_NOPENCL:: Number of OpenCL workers
  1662. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1663. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1664. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1665. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1666. @end menu
  1667. @node STARPU_NCPUS
  1668. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1669. @table @asis
  1670. @item @emph{Description}:
  1671. Specify the number of CPU workers. Note that by default, StarPU will not allocate
  1672. more CPUs than there are physical CPUs, and that some CPUs are used to control
  1673. the accelerators.
  1674. @end table
  1675. @node STARPU_NCUDA
  1676. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1677. @table @asis
  1678. @item @emph{Description}:
  1679. Specify the number of CUDA devices that StarPU can use. If
  1680. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1681. possible to select which CUDA devices should be used by the means of the
  1682. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1683. create as many CUDA workers as there are CUDA devices.
  1684. @end table
  1685. @node STARPU_NOPENCL
  1686. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1687. @table @asis
  1688. @item @emph{Description}:
  1689. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1690. @end table
  1691. @node STARPU_NGORDON
  1692. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1693. @table @asis
  1694. @item @emph{Description}:
  1695. Specify the number of SPUs that StarPU can use.
  1696. @end table
  1697. @node STARPU_WORKERS_CPUID
  1698. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1699. @table @asis
  1700. @item @emph{Description}:
  1701. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1702. specifies on which logical CPU the different workers should be
  1703. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1704. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1705. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1706. determined by the OS, or provided by the @code{hwloc} library in case it is
  1707. available.
  1708. Note that the first workers correspond to the CUDA workers, then come the
  1709. OpenCL and the SPU, and finally the CPU workers. For example if
  1710. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1711. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1712. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1713. the logical CPUs #1 and #3 will be used by the CPU workers.
  1714. If the number of workers is larger than the array given in
  1715. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1716. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1717. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1718. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1719. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1720. @end table
  1721. @node STARPU_WORKERS_CUDAID
  1722. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1723. @table @asis
  1724. @item @emph{Description}:
  1725. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1726. possible to select which CUDA devices should be used by StarPU. On a machine
  1727. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1728. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1729. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1730. the one reported by CUDA).
  1731. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1732. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1733. @end table
  1734. @node STARPU_WORKERS_OPENCLID
  1735. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1736. @table @asis
  1737. @item @emph{Description}:
  1738. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1739. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1740. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1741. @end table
  1742. @node Scheduling
  1743. @subsection Configuring the Scheduling engine
  1744. @menu
  1745. * STARPU_SCHED:: Scheduling policy
  1746. * STARPU_CALIBRATE:: Calibrate performance models
  1747. * STARPU_PREFETCH:: Use data prefetch
  1748. * STARPU_SCHED_ALPHA:: Computation factor
  1749. * STARPU_SCHED_BETA:: Communication factor
  1750. @end menu
  1751. @node STARPU_SCHED
  1752. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1753. @table @asis
  1754. @item @emph{Description}:
  1755. This chooses between the different scheduling policies proposed by StarPU: work
  1756. random, stealing, greedy, with performance models, etc.
  1757. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1758. @end table
  1759. @node STARPU_CALIBRATE
  1760. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1761. @table @asis
  1762. @item @emph{Description}:
  1763. If this variable is set to 1, the performance models are calibrated during
  1764. the execution. If it is set to 2, the previous values are dropped to restart
  1765. calibration from scratch. Setting this variable to 0 disable calibration, this
  1766. is the default behaviour.
  1767. Note: this currently only applies to dm and dmda scheduling policies.
  1768. @end table
  1769. @node STARPU_PREFETCH
  1770. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1771. @table @asis
  1772. @item @emph{Description}:
  1773. This variable indicates whether data prefetching should be enabled (0 means
  1774. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1775. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1776. advance, so that data is already present on the GPU when the task starts. As a
  1777. result, computation and data transfers are overlapped.
  1778. @end table
  1779. @node STARPU_SCHED_ALPHA
  1780. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1781. @table @asis
  1782. @item @emph{Description}:
  1783. To estimate the cost of a task StarPU takes into account the estimated
  1784. computation time (obtained thanks to performance models). The alpha factor is
  1785. the coefficient to be applied to it before adding it to the communication part.
  1786. @end table
  1787. @node STARPU_SCHED_BETA
  1788. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1789. @table @asis
  1790. @item @emph{Description}:
  1791. To estimate the cost of a task StarPU takes into account the estimated
  1792. data transfer time (obtained thanks to performance models). The beta factor is
  1793. the coefficient to be applied to it before adding it to the computation part.
  1794. @end table
  1795. @node Misc
  1796. @subsection Miscellaneous and debug
  1797. @menu
  1798. * STARPU_SILENT:: Disable verbose mode
  1799. * STARPU_LOGFILENAME:: Select debug file name
  1800. * STARPU_FXT_PREFIX:: FxT trace location
  1801. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1802. @end menu
  1803. @node STARPU_SILENT
  1804. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  1805. @table @asis
  1806. @item @emph{Description}:
  1807. This variable allows to disable verbose mode at runtime when StarPU
  1808. has been configured with the option @code{--enable-verbose}.
  1809. @end table
  1810. @node STARPU_LOGFILENAME
  1811. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1812. @table @asis
  1813. @item @emph{Description}:
  1814. This variable specifies in which file the debugging output should be saved to.
  1815. @end table
  1816. @node STARPU_FXT_PREFIX
  1817. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1818. @table @asis
  1819. @item @emph{Description}
  1820. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1821. @end table
  1822. @node STARPU_LIMIT_GPU_MEM
  1823. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1824. @table @asis
  1825. @item @emph{Description}
  1826. This variable specifies the maximum number of megabytes that should be
  1827. available to the application on each GPUs. In case this value is smaller than
  1828. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1829. on the device. This variable is intended to be used for experimental purposes
  1830. as it emulates devices that have a limited amount of memory.
  1831. @end table
  1832. @c ---------------------------------------------------------------------
  1833. @c StarPU API
  1834. @c ---------------------------------------------------------------------
  1835. @node StarPU API
  1836. @chapter StarPU API
  1837. @menu
  1838. * Initialization and Termination:: Initialization and Termination methods
  1839. * Workers' Properties:: Methods to enumerate workers' properties
  1840. * Data Library:: Methods to manipulate data
  1841. * Data Interfaces::
  1842. * Data Partition::
  1843. * Codelets and Tasks:: Methods to construct tasks
  1844. * Explicit Dependencies:: Explicit Dependencies
  1845. * Implicit Data Dependencies:: Implicit Data Dependencies
  1846. * Performance Model API::
  1847. * Profiling API:: Profiling API
  1848. * CUDA extensions:: CUDA extensions
  1849. * OpenCL extensions:: OpenCL extensions
  1850. * Cell extensions:: Cell extensions
  1851. * Miscellaneous helpers::
  1852. @end menu
  1853. @node Initialization and Termination
  1854. @section Initialization and Termination
  1855. @menu
  1856. * starpu_init:: Initialize StarPU
  1857. * struct starpu_conf:: StarPU runtime configuration
  1858. * starpu_conf_init:: Initialize starpu_conf structure
  1859. * starpu_shutdown:: Terminate StarPU
  1860. @end menu
  1861. @node starpu_init
  1862. @subsection @code{starpu_init} -- Initialize StarPU
  1863. @table @asis
  1864. @item @emph{Description}:
  1865. This is StarPU initialization method, which must be called prior to any other
  1866. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1867. policy, number of cores, ...) by passing a non-null argument. Default
  1868. configuration is used if the passed argument is @code{NULL}.
  1869. @item @emph{Return value}:
  1870. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1871. indicates that no worker was available (so that StarPU was not initialized).
  1872. @item @emph{Prototype}:
  1873. @code{int starpu_init(struct starpu_conf *conf);}
  1874. @end table
  1875. @node struct starpu_conf
  1876. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1877. @table @asis
  1878. @item @emph{Description}:
  1879. This structure is passed to the @code{starpu_init} function in order
  1880. to configure StarPU.
  1881. When the default value is used, StarPU automatically selects the number
  1882. of processing units and takes the default scheduling policy. This parameter
  1883. overwrites the equivalent environment variables.
  1884. @item @emph{Fields}:
  1885. @table @asis
  1886. @item @code{sched_policy_name} (default = NULL):
  1887. This is the name of the scheduling policy. This can also be specified with the
  1888. @code{STARPU_SCHED} environment variable.
  1889. @item @code{sched_policy} (default = NULL):
  1890. This is the definition of the scheduling policy. This field is ignored
  1891. if @code{sched_policy_name} is set.
  1892. @item @code{ncpus} (default = -1):
  1893. This is the number of CPU cores that StarPU can use. This can also be
  1894. specified with the @code{STARPU_NCPUS} environment variable.
  1895. @item @code{ncuda} (default = -1):
  1896. This is the number of CUDA devices that StarPU can use. This can also be
  1897. specified with the @code{STARPU_NCUDA} environment variable.
  1898. @item @code{nopencl} (default = -1):
  1899. This is the number of OpenCL devices that StarPU can use. This can also be
  1900. specified with the @code{STARPU_NOPENCL} environment variable.
  1901. @item @code{nspus} (default = -1):
  1902. This is the number of Cell SPUs that StarPU can use. This can also be
  1903. specified with the @code{STARPU_NGORDON} environment variable.
  1904. @item @code{use_explicit_workers_bindid} (default = 0)
  1905. If this flag is set, the @code{workers_bindid} array indicates where the
  1906. different workers are bound, otherwise StarPU automatically selects where to
  1907. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  1908. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  1909. ignored if the @code{use_explicit_workers_bindid} flag is set.
  1910. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  1911. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  1912. where to bind the different workers. The i-th entry of the
  1913. @code{workers_bindid} indicates the logical identifier of the processor which
  1914. should execute the i-th worker. Note that the logical ordering of the CPUs is
  1915. either determined by the OS, or provided by the @code{hwloc} library in case it
  1916. is available.
  1917. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  1918. ignored.
  1919. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  1920. If this flag is set, the CUDA workers will be attached to the CUDA devices
  1921. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  1922. CUDA devices in a round-robin fashion.
  1923. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  1924. ignored.
  1925. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  1926. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  1927. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  1928. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  1929. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  1930. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  1931. OpenCL devices in a round-robin fashion.
  1932. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  1933. @item @code{calibrate} (default = 0):
  1934. If this flag is set, StarPU will calibrate the performance models when
  1935. executing tasks. If this value is equal to -1, the default value is used. The
  1936. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  1937. variable when it is set.
  1938. @end table
  1939. @end table
  1940. @node starpu_conf_init
  1941. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  1942. @table @asis
  1943. This function initializes the @code{starpu_conf} structure passed as argument
  1944. with the default values. In case some configuration parameters are already
  1945. specified through environment variables, @code{starpu_conf_init} initializes
  1946. the fields of the structure according to the environment variables. For
  1947. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  1948. @code{.ncuda} field of the structure passed as argument.
  1949. @item @emph{Return value}:
  1950. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1951. indicates that the argument was NULL.
  1952. @item @emph{Prototype}:
  1953. @code{int starpu_conf_init(struct starpu_conf *conf);}
  1954. @end table
  1955. @node starpu_shutdown
  1956. @subsection @code{starpu_shutdown} -- Terminate StarPU
  1957. @table @asis
  1958. @item @emph{Description}:
  1959. This is StarPU termination method. It must be called at the end of the
  1960. application: statistics and other post-mortem debugging information are not
  1961. guaranteed to be available until this method has been called.
  1962. @item @emph{Prototype}:
  1963. @code{void starpu_shutdown(void);}
  1964. @end table
  1965. @node Workers' Properties
  1966. @section Workers' Properties
  1967. @menu
  1968. * starpu_worker_get_count:: Get the number of processing units
  1969. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  1970. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  1971. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  1972. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  1973. * starpu_worker_get_id:: Get the identifier of the current worker
  1974. * starpu_worker_get_devid:: Get the device identifier of a worker
  1975. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  1976. * starpu_worker_get_name:: Get the name of a worker
  1977. * starpu_worker_get_memory_node:: Get the memory node of a worker
  1978. @end menu
  1979. @node starpu_worker_get_count
  1980. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  1981. @table @asis
  1982. @item @emph{Description}:
  1983. This function returns the number of workers (i.e. processing units executing
  1984. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  1985. @item @emph{Prototype}:
  1986. @code{unsigned starpu_worker_get_count(void);}
  1987. @end table
  1988. @node starpu_cpu_worker_get_count
  1989. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  1990. @table @asis
  1991. @item @emph{Description}:
  1992. This function returns the number of CPUs controlled by StarPU. The returned
  1993. value should be at most @code{STARPU_NMAXCPUS}.
  1994. @item @emph{Prototype}:
  1995. @code{unsigned starpu_cpu_worker_get_count(void);}
  1996. @end table
  1997. @node starpu_cuda_worker_get_count
  1998. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  1999. @table @asis
  2000. @item @emph{Description}:
  2001. This function returns the number of CUDA devices controlled by StarPU. The returned
  2002. value should be at most @code{STARPU_MAXCUDADEVS}.
  2003. @item @emph{Prototype}:
  2004. @code{unsigned starpu_cuda_worker_get_count(void);}
  2005. @end table
  2006. @node starpu_opencl_worker_get_count
  2007. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2008. @table @asis
  2009. @item @emph{Description}:
  2010. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2011. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2012. @item @emph{Prototype}:
  2013. @code{unsigned starpu_opencl_worker_get_count(void);}
  2014. @end table
  2015. @node starpu_spu_worker_get_count
  2016. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2017. @table @asis
  2018. @item @emph{Description}:
  2019. This function returns the number of Cell SPUs controlled by StarPU.
  2020. @item @emph{Prototype}:
  2021. @code{unsigned starpu_opencl_worker_get_count(void);}
  2022. @end table
  2023. @node starpu_worker_get_id
  2024. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2025. @table @asis
  2026. @item @emph{Description}:
  2027. This function returns the identifier of the worker associated to the calling
  2028. thread. The returned value is either -1 if the current context is not a StarPU
  2029. worker (i.e. when called from the application outside a task or a callback), or
  2030. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2031. @item @emph{Prototype}:
  2032. @code{int starpu_worker_get_id(void);}
  2033. @end table
  2034. @node starpu_worker_get_devid
  2035. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2036. @table @asis
  2037. @item @emph{Description}:
  2038. This functions returns the device id of the worker associated to an identifier
  2039. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2040. CUDA worker, this device identifier is the logical device identifier exposed by
  2041. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2042. identifier of a CPU worker is the logical identifier of the core on which the
  2043. worker was bound; this identifier is either provided by the OS or by the
  2044. @code{hwloc} library in case it is available.
  2045. @item @emph{Prototype}:
  2046. @code{int starpu_worker_get_devid(int id);}
  2047. @end table
  2048. @node starpu_worker_get_type
  2049. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2050. @table @asis
  2051. @item @emph{Description}:
  2052. This function returns the type of worker associated to an identifier (as
  2053. returned by the @code{starpu_worker_get_id} function). The returned value
  2054. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2055. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2056. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2057. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2058. identifier is unspecified.
  2059. @item @emph{Prototype}:
  2060. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  2061. @end table
  2062. @node starpu_worker_get_name
  2063. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2064. @table @asis
  2065. @item @emph{Description}:
  2066. StarPU associates a unique human readable string to each processing unit. This
  2067. function copies at most the @code{maxlen} first bytes of the unique string
  2068. associated to a worker identified by its identifier @code{id} into the
  2069. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  2070. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  2071. function on an invalid identifier results in an unspecified behaviour.
  2072. @item @emph{Prototype}:
  2073. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  2074. @end table
  2075. @node starpu_worker_get_memory_node
  2076. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2077. @table @asis
  2078. @item @emph{Description}:
  2079. This function returns the identifier of the memory node associated to the
  2080. worker identified by @code{workerid}.
  2081. @item @emph{Prototype}:
  2082. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  2083. @end table
  2084. @node Data Library
  2085. @section Data Library
  2086. This section describes the data management facilities provided by StarPU.
  2087. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2088. design their own data interfaces if required.
  2089. @menu
  2090. * starpu_data_malloc_pinned_if_possible:: Allocate data and pin it
  2091. * starpu_access_mode:: Data access mode
  2092. * unsigned memory_node:: Memory node
  2093. * starpu_data_handle:: StarPU opaque data handle
  2094. * void *interface:: StarPU data interface
  2095. * starpu_data_register:: Register a piece of data to StarPU
  2096. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2097. * starpu_data_invalidate:: Invalidate all data replicates
  2098. * starpu_data_acquire:: Access registered data from the application
  2099. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2100. * starpu_data_release:: Release registered data from the application
  2101. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2102. @end menu
  2103. @node starpu_data_malloc_pinned_if_possible
  2104. @subsection @code{starpu_data_malloc_pinned_if_possible} -- Allocate data and pin it
  2105. @table @asis
  2106. @item @emph{Description}:
  2107. This function allocates data of the given size. It will also try to pin it in
  2108. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2109. thus permit data transfer and computation overlapping.
  2110. @item @emph{Prototype}:
  2111. @code{int starpu_data_malloc_pinned_if_possible(void **A, size_t dim);}
  2112. @end table
  2113. @node starpu_access_mode
  2114. @subsection @code{starpu_access_mode} -- Data access mode
  2115. This datatype describes a data access mode. The different available modes are:
  2116. @table @asis
  2117. @table @asis
  2118. @item @code{STARPU_R} read-only mode.
  2119. @item @code{STARPU_W} write-only mode.
  2120. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2121. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2122. @end table
  2123. @end table
  2124. @node unsigned memory_node
  2125. @subsection @code{unsigned memory_node} -- Memory node
  2126. @table @asis
  2127. @item @emph{Description}:
  2128. Every worker is associated to a memory node which is a logical abstraction of
  2129. the address space from which the processing unit gets its data. For instance,
  2130. the memory node associated to the different CPU workers represents main memory
  2131. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2132. Every memory node is identified by a logical index which is accessible from the
  2133. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2134. to StarPU, the specified memory node indicates where the piece of data
  2135. initially resides (we also call this memory node the home node of a piece of
  2136. data).
  2137. @end table
  2138. @node starpu_data_handle
  2139. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2140. @table @asis
  2141. @item @emph{Description}:
  2142. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2143. data. Once a piece of data has been registered to StarPU, it is associated to a
  2144. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2145. over the entire machine, so that we can maintain data consistency and locate
  2146. data replicates for instance.
  2147. @end table
  2148. @node void *interface
  2149. @subsection @code{void *interface} -- StarPU data interface
  2150. @table @asis
  2151. @item @emph{Description}:
  2152. Data management is done at a high-level in StarPU: rather than accessing a mere
  2153. list of contiguous buffers, the tasks may manipulate data that are described by
  2154. a high-level construct which we call data interface.
  2155. An example of data interface is the "vector" interface which describes a
  2156. contiguous data array on a spefic memory node. This interface is a simple
  2157. structure containing the number of elements in the array, the size of the
  2158. elements, and the address of the array in the appropriate address space (this
  2159. address may be invalid if there is no valid copy of the array in the memory
  2160. node). More informations on the data interfaces provided by StarPU are
  2161. given in @ref{Data Interfaces}.
  2162. When a piece of data managed by StarPU is used by a task, the task
  2163. implementation is given a pointer to an interface describing a valid copy of
  2164. the data that is accessible from the current processing unit.
  2165. @end table
  2166. @node starpu_data_register
  2167. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2168. @table @asis
  2169. @item @emph{Description}:
  2170. Register a piece of data into the handle located at the @code{handleptr}
  2171. address. The @code{interface} buffer contains the initial description of the
  2172. data in the home node. The @code{ops} argument is a pointer to a structure
  2173. describing the different methods used to manipulate this type of interface. See
  2174. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2175. If @code{home_node} is -1, StarPU will automatically
  2176. allocate the memory when it is used for the
  2177. first time in write-only mode. Once such data handle has been automatically
  2178. allocated, it is possible to access it using any access mode.
  2179. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2180. matrix) which can be registered by the means of helper functions (e.g.
  2181. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2182. @item @emph{Prototype}:
  2183. @code{void starpu_data_register(starpu_data_handle *handleptr,
  2184. uint32_t home_node,
  2185. void *interface,
  2186. struct starpu_data_interface_ops_t *ops);}
  2187. @end table
  2188. @node starpu_data_unregister
  2189. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2190. @table @asis
  2191. @item @emph{Description}:
  2192. This function unregisters a data handle from StarPU. If the data was
  2193. automatically allocated by StarPU because the home node was -1, all
  2194. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2195. is put back into the home node in the buffer that was initially registered.
  2196. Using a data handle that has been unregistered from StarPU results in an
  2197. undefined behaviour.
  2198. @item @emph{Prototype}:
  2199. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2200. @end table
  2201. @node starpu_data_invalidate
  2202. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2203. @table @asis
  2204. @item @emph{Description}:
  2205. Destroy all replicates of the data handle. After data invalidation, the first
  2206. access to the handle must be performed in write-only mode. Accessing an
  2207. invalidated data in read-mode results in undefined behaviour.
  2208. @item @emph{Prototype}:
  2209. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2210. @end table
  2211. @c TODO create a specific sections about user interaction with the DSM ?
  2212. @node starpu_data_acquire
  2213. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2214. @table @asis
  2215. @item @emph{Description}:
  2216. The application must call this function prior to accessing registered data from
  2217. main memory outside tasks. StarPU ensures that the application will get an
  2218. up-to-date copy of the data in main memory located where the data was
  2219. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2220. be consistent with the access mode specified in the @code{mode} argument.
  2221. @code{starpu_data_release} must be called once the application does not need to
  2222. access the piece of data anymore.
  2223. Note that implicit data dependencies are also enforced by
  2224. @code{starpu_data_acquire} in case they are enabled.
  2225. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2226. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2227. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2228. @item @emph{Prototype}:
  2229. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2230. @end table
  2231. @node starpu_data_acquire_cb
  2232. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2233. @table @asis
  2234. @item @emph{Description}:
  2235. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2236. @code{starpu_data_release}. When the data specified in the first argument is
  2237. available in the appropriate access mode, the callback function is executed.
  2238. The application may access the requested data during the execution of this
  2239. callback. The callback function must call @code{starpu_data_release} once the
  2240. application does not need to access the piece of data anymore.
  2241. Note that implicit data dependencies are also enforced by
  2242. @code{starpu_data_acquire_cb} in case they are enabled.
  2243. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2244. be called from task callbacks. Upon successful completion, this function
  2245. returns 0.
  2246. @item @emph{Prototype}:
  2247. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2248. @end table
  2249. @node starpu_data_release
  2250. @subsection @code{starpu_data_release} -- Release registered data from the application
  2251. @table @asis
  2252. @item @emph{Description}:
  2253. This function releases the piece of data acquired by the application either by
  2254. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2255. @item @emph{Prototype}:
  2256. @code{void starpu_data_release(starpu_data_handle handle);}
  2257. @end table
  2258. @node starpu_data_set_wt_mask
  2259. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2260. @table @asis
  2261. @item @emph{Description}:
  2262. This function sets the write-through mask of a given data, i.e. a bitmask of
  2263. nodes where the data should be always replicated after modification.
  2264. @item @emph{Prototype}:
  2265. @code{void starpu_data_set_wt_mask(starpu_data_handle handle, uint32_t wt_mask);}
  2266. @end table
  2267. @node Data Interfaces
  2268. @section Data Interfaces
  2269. @menu
  2270. * Variable Interface::
  2271. * Vector Interface::
  2272. * Matrix Interface::
  2273. * 3D Matrix Interface::
  2274. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2275. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2276. @end menu
  2277. @node Variable Interface
  2278. @subsection Variable Interface
  2279. @table @asis
  2280. @item @emph{Description}:
  2281. This variant of @code{starpu_data_register} uses the variable interface,
  2282. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2283. and @code{elemsize} is the size of the variable.
  2284. @item @emph{Prototype}:
  2285. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2286. uint32_t home_node,
  2287. uintptr_t ptr, size_t elemsize);}
  2288. @item @emph{Example}:
  2289. @cartouche
  2290. @smallexample
  2291. float var;
  2292. starpu_data_handle var_handle;
  2293. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2294. @end smallexample
  2295. @end cartouche
  2296. @end table
  2297. @node Vector Interface
  2298. @subsection Vector Interface
  2299. @table @asis
  2300. @item @emph{Description}:
  2301. This variant of @code{starpu_data_register} uses the vector interface,
  2302. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2303. element in the home node. @code{nx} is the number of elements in the vector.
  2304. @code{elemsize} is the size of each element.
  2305. @item @emph{Prototype}:
  2306. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2307. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2308. @item @emph{Example}:
  2309. @cartouche
  2310. @smallexample
  2311. float vector[NX];
  2312. starpu_data_handle vector_handle;
  2313. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2314. sizeof(vector[0]));
  2315. @end smallexample
  2316. @end cartouche
  2317. @end table
  2318. @node Matrix Interface
  2319. @subsection Matrix Interface
  2320. @table @asis
  2321. @item @emph{Description}:
  2322. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2323. matrices of elements. @code{ptr} is the address of the first element in the home
  2324. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2325. of elements in a row (this can be different from @code{ld} if there are extra
  2326. elements for alignment for instance). @code{ny} is the number of rows.
  2327. @code{elemsize} is the size of each element.
  2328. @item @emph{Prototype}:
  2329. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2330. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2331. uint32_t ny, size_t elemsize);}
  2332. @item @emph{Example}:
  2333. @cartouche
  2334. @smallexample
  2335. float *matrix;
  2336. starpu_data_handle matrix_handle;
  2337. matrix = (float*)malloc(width * height * sizeof(float));
  2338. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2339. width, width, height, sizeof(float));
  2340. @end smallexample
  2341. @end cartouche
  2342. @end table
  2343. @node 3D Matrix Interface
  2344. @subsection 3D Matrix Interface
  2345. @table @asis
  2346. @item @emph{Description}:
  2347. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2348. @code{ptr} is the address of the array of first element in the home node.
  2349. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2350. of rows between z planes. @code{nx} is the number of elements in a row (this
  2351. can be different from @code{ldy} if there are extra elements for alignment
  2352. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2353. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2354. each element.
  2355. @item @emph{Prototype}:
  2356. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2357. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2358. uint32_t ny, uint32_t nz, size_t elemsize);}
  2359. @item @emph{Example}:
  2360. @cartouche
  2361. @smallexample
  2362. float *block;
  2363. starpu_data_handle block_handle;
  2364. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2365. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2366. nx, nx*ny, nx, ny, nz, sizeof(float));
  2367. @end smallexample
  2368. @end cartouche
  2369. @end table
  2370. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2371. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2372. @table @asis
  2373. @item @emph{Description}:
  2374. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2375. TODO
  2376. @item @emph{Prototype}:
  2377. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2378. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2379. @item @emph{Example}:
  2380. @cartouche
  2381. @smallexample
  2382. @end smallexample
  2383. @end cartouche
  2384. @end table
  2385. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2386. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2387. @table @asis
  2388. @item @emph{Description}:
  2389. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2390. TODO
  2391. @item @emph{Prototype}:
  2392. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2393. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2394. @item @emph{Example}:
  2395. @cartouche
  2396. @smallexample
  2397. @end smallexample
  2398. @end cartouche
  2399. @end table
  2400. @node Data Partition
  2401. @section Data Partition
  2402. @menu
  2403. * struct starpu_data_filter:: StarPU filter structure
  2404. * starpu_data_partition:: Partition Data
  2405. * starpu_data_unpartition:: Unpartition Data
  2406. * starpu_data_get_nb_children::
  2407. * starpu_data_get_sub_data::
  2408. * Predefined filter functions::
  2409. @end menu
  2410. @node struct starpu_data_filter
  2411. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2412. @table @asis
  2413. @item @emph{Description}:
  2414. The filter structure describes a data partitioning operation, to be given to the
  2415. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2416. @item @emph{Fields}:
  2417. @table @asis
  2418. @item @code{filter_func}:
  2419. This function fills the @code{child_interface} structure with interface
  2420. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2421. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2422. @item @code{nchildren}:
  2423. This is the number of parts to partition the data into.
  2424. @item @code{get_nchildren}:
  2425. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2426. children depends on the actual data (e.g. the number of blocks in a sparse
  2427. matrix).
  2428. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2429. @item @code{get_child_ops}:
  2430. In case the resulting children use a different data interface, this function
  2431. returns which interface is used by child number @code{id}.
  2432. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2433. @item @code{filter_arg}:
  2434. Some filters take an addition parameter, but this is usually unused.
  2435. @item @code{filter_arg_ptr}:
  2436. Some filters take an additional array parameter like the sizes of the parts, but
  2437. this is usually unused.
  2438. @end table
  2439. @end table
  2440. @node starpu_data_partition
  2441. @subsection starpu_data_partition -- Partition Data
  2442. @table @asis
  2443. @item @emph{Description}:
  2444. This requests partitioning one StarPU data @code{initial_handle} into several
  2445. subdata according to the filter @code{f}
  2446. @item @emph{Prototype}:
  2447. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2448. @item @emph{Example}:
  2449. @cartouche
  2450. @smallexample
  2451. struct starpu_data_filter f = @{
  2452. .filter_func = starpu_vertical_block_filter_func,
  2453. .nchildren = nslicesx,
  2454. .get_nchildren = NULL,
  2455. .get_child_ops = NULL
  2456. @};
  2457. starpu_data_partition(A_handle, &f);
  2458. @end smallexample
  2459. @end cartouche
  2460. @end table
  2461. @node starpu_data_unpartition
  2462. @subsection starpu_data_unpartition -- Unpartition data
  2463. @table @asis
  2464. @item @emph{Description}:
  2465. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2466. collected back into one big piece in the @code{gathering_node} (usually 0).
  2467. @item @emph{Prototype}:
  2468. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2469. @item @emph{Example}:
  2470. @cartouche
  2471. @smallexample
  2472. starpu_data_unpartition(A_handle, 0);
  2473. @end smallexample
  2474. @end cartouche
  2475. @end table
  2476. @node starpu_data_get_nb_children
  2477. @subsection starpu_data_get_nb_children
  2478. @table @asis
  2479. @item @emph{Description}:
  2480. This function returns the number of children.
  2481. @item @emph{Return value}:
  2482. The number of children.
  2483. @item @emph{Prototype}:
  2484. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2485. @end table
  2486. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2487. @node starpu_data_get_sub_data
  2488. @subsection starpu_data_get_sub_data
  2489. @table @asis
  2490. @item @emph{Description}:
  2491. After partitioning a StarPU data by applying a filter,
  2492. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2493. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2494. is the number of filters to traverse (in case several filters have been applied,
  2495. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2496. parameters are the indexes.
  2497. @item @emph{Return value}:
  2498. A handle to the subdata.
  2499. @item @emph{Prototype}:
  2500. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2501. @item @emph{Example}:
  2502. @cartouche
  2503. @smallexample
  2504. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2505. @end smallexample
  2506. @end cartouche
  2507. @end table
  2508. @node Predefined filter functions
  2509. @subsection Predefined filter functions
  2510. @menu
  2511. * Partitioning BCSR Data::
  2512. * Partitioning BLAS interface::
  2513. * Partitioning Vector Data::
  2514. * Partitioning Block Data::
  2515. @end menu
  2516. This section gives a partial list of the predefined partitioning functions.
  2517. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2518. list can be found in @code{starpu_data_filters.h} .
  2519. @node Partitioning BCSR Data
  2520. @subsubsection Partitioning BCSR Data
  2521. @table @asis
  2522. @item @emph{Description}:
  2523. TODO
  2524. @item @emph{Prototype}:
  2525. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2526. @end table
  2527. @table @asis
  2528. @item @emph{Description}:
  2529. TODO
  2530. @item @emph{Prototype}:
  2531. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2532. @end table
  2533. @node Partitioning BLAS interface
  2534. @subsubsection Partitioning BLAS interface
  2535. @table @asis
  2536. @item @emph{Description}:
  2537. This partitions a dense Matrix into horizontal blocks.
  2538. @item @emph{Prototype}:
  2539. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2540. @end table
  2541. @table @asis
  2542. @item @emph{Description}:
  2543. This partitions a dense Matrix into vertical blocks.
  2544. @item @emph{Prototype}:
  2545. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2546. @end table
  2547. @node Partitioning Vector Data
  2548. @subsubsection Partitioning Vector Data
  2549. @table @asis
  2550. @item @emph{Description}:
  2551. This partitions a vector into blocks of the same size.
  2552. @item @emph{Prototype}:
  2553. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2554. @end table
  2555. @table @asis
  2556. @item @emph{Description}:
  2557. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2558. @item @emph{Prototype}:
  2559. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2560. @end table
  2561. @table @asis
  2562. @item @emph{Description}:
  2563. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2564. @item @emph{Prototype}:
  2565. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2566. @end table
  2567. @node Partitioning Block Data
  2568. @subsubsection Partitioning Block Data
  2569. @table @asis
  2570. @item @emph{Description}:
  2571. This partitions a 3D matrix along the X axis.
  2572. @item @emph{Prototype}:
  2573. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2574. @end table
  2575. @node Codelets and Tasks
  2576. @section Codelets and Tasks
  2577. @menu
  2578. * struct starpu_codelet:: StarPU codelet structure
  2579. * struct starpu_task:: StarPU task structure
  2580. * starpu_task_init:: Initialize a Task
  2581. * starpu_task_create:: Allocate and Initialize a Task
  2582. * starpu_task_deinit:: Release all the resources used by a Task
  2583. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2584. * starpu_task_wait:: Wait for the termination of a Task
  2585. * starpu_task_submit:: Submit a Task
  2586. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2587. * starpu_get_current_task:: Return the task currently executed by the worker
  2588. * starpu_display_codelet_stats:: Display statistics
  2589. @end menu
  2590. @node struct starpu_codelet
  2591. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2592. @table @asis
  2593. @item @emph{Description}:
  2594. The codelet structure describes a kernel that is possibly implemented on various
  2595. targets. For compatibility, make sure to initialize the whole structure to zero.
  2596. @item @emph{Fields}:
  2597. @table @asis
  2598. @item @code{where}:
  2599. Indicates which types of processing units are able to execute the codelet.
  2600. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2601. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2602. indicates that it is only available on Cell SPUs.
  2603. @item @code{cpu_func} (optional):
  2604. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2605. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2606. argument being the array of data managed by the data management library, and
  2607. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2608. field of the @code{starpu_task} structure.
  2609. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2610. the @code{where} field, it must be non-null otherwise.
  2611. @item @code{cuda_func} (optional):
  2612. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2613. must be a host-function written in the CUDA runtime API}. Its prototype must
  2614. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2615. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2616. field, it must be non-null otherwise.
  2617. @item @code{opencl_func} (optional):
  2618. Is a function pointer to the OpenCL implementation of the codelet. Its
  2619. prototype must be:
  2620. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2621. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2622. @code{where} field, it must be non-null otherwise.
  2623. @item @code{gordon_func} (optional):
  2624. This is the index of the Cell SPU implementation within the Gordon library.
  2625. See Gordon documentation for more details on how to register a kernel and
  2626. retrieve its index.
  2627. @item @code{nbuffers}:
  2628. Specifies the number of arguments taken by the codelet. These arguments are
  2629. managed by the DSM and are accessed from the @code{void *buffers[]}
  2630. array. The constant argument passed with the @code{cl_arg} field of the
  2631. @code{starpu_task} structure is not counted in this number. This value should
  2632. not be above @code{STARPU_NMAXBUFS}.
  2633. @item @code{model} (optional):
  2634. This is a pointer to the task duration performance model associated to this
  2635. codelet. This optional field is ignored when set to @code{NULL}.
  2636. TODO
  2637. @item @code{power_model} (optional):
  2638. This is a pointer to the task power consumption performance model associated
  2639. to this codelet. This optional field is ignored when set to @code{NULL}.
  2640. In the case of parallel codelets, this has to account for all processing units
  2641. involved in the parallel execution.
  2642. TODO
  2643. @end table
  2644. @end table
  2645. @node struct starpu_task
  2646. @subsection @code{struct starpu_task} -- StarPU task structure
  2647. @table @asis
  2648. @item @emph{Description}:
  2649. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2650. processing units managed by StarPU. It instantiates a codelet. It can either be
  2651. allocated dynamically with the @code{starpu_task_create} method, or declared
  2652. statically. In the latter case, the programmer has to zero the
  2653. @code{starpu_task} structure and to fill the different fields properly. The
  2654. indicated default values correspond to the configuration of a task allocated
  2655. with @code{starpu_task_create}.
  2656. @item @emph{Fields}:
  2657. @table @asis
  2658. @item @code{cl}:
  2659. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2660. describes where the kernel should be executed, and supplies the appropriate
  2661. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2662. such empty tasks can be useful for synchronization purposes.
  2663. @item @code{buffers}:
  2664. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2665. different pieces of data accessed by the task, and how they should be accessed.
  2666. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2667. @code{handle} field specifies the handle of the piece of data, and the
  2668. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2669. of entries in this array must be specified in the @code{nbuffers} field of the
  2670. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2671. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2672. option when configuring StarPU.
  2673. @item @code{cl_arg} (optional) (default = NULL):
  2674. This pointer is passed to the codelet through the second argument
  2675. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2676. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2677. argument.
  2678. @item @code{cl_arg_size} (optional, Cell specific):
  2679. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2680. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2681. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2682. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2683. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2684. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2685. codelets.
  2686. @item @code{callback_func} (optional) (default = @code{NULL}):
  2687. This is a function pointer of prototype @code{void (*f)(void *)} which
  2688. specifies a possible callback. If this pointer is non-null, the callback
  2689. function is executed @emph{on the host} after the execution of the task. The
  2690. callback is passed the value contained in the @code{callback_arg} field. No
  2691. callback is executed if the field is set to @code{NULL}.
  2692. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2693. This is the pointer passed to the callback function. This field is ignored if
  2694. the @code{callback_func} is set to @code{NULL}.
  2695. @item @code{use_tag} (optional) (default = 0):
  2696. If set, this flag indicates that the task should be associated with the tag
  2697. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2698. with the task and to express task dependencies easily.
  2699. @item @code{tag_id}:
  2700. This fields contains the tag associated to the task if the @code{use_tag} field
  2701. was set, it is ignored otherwise.
  2702. @item @code{synchronous}:
  2703. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2704. returns only when the task has been executed (or if no worker is able to
  2705. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2706. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2707. This field indicates a level of priority for the task. This is an integer value
  2708. that must be set between the return values of the
  2709. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2710. and that of the @code{starpu_sched_get_max_priority} for the most important
  2711. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2712. are provided for convenience and respectively returns value of
  2713. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2714. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2715. order to allow static task initialization. Scheduling strategies that take
  2716. priorities into account can use this parameter to take better scheduling
  2717. decisions, but the scheduling policy may also ignore it.
  2718. @item @code{execute_on_a_specific_worker} (default = 0):
  2719. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2720. task to the worker specified by the @code{workerid} field.
  2721. @item @code{workerid} (optional):
  2722. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2723. which is the identifier of the worker that should process this task (as
  2724. returned by @code{starpu_worker_get_id}). This field is ignored if
  2725. @code{execute_on_a_specific_worker} field is set to 0.
  2726. @item @code{detach} (optional) (default = 1):
  2727. If this flag is set, it is not possible to synchronize with the task
  2728. by the means of @code{starpu_task_wait} later on. Internal data structures
  2729. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2730. flag is not set.
  2731. @item @code{destroy} (optional) (default = 1):
  2732. If this flag is set, the task structure will automatically be freed, either
  2733. after the execution of the callback if the task is detached, or during
  2734. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2735. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2736. called explicitly. Setting this flag for a statically allocated task structure
  2737. will result in undefined behaviour.
  2738. @item @code{predicted} (output field):
  2739. Predicted duration of the task. This field is only set if the scheduling
  2740. strategy used performance models.
  2741. @end table
  2742. @end table
  2743. @node starpu_task_init
  2744. @subsection @code{starpu_task_init} -- Initialize a Task
  2745. @table @asis
  2746. @item @emph{Description}:
  2747. Initialize a task structure with default values. This function is implicitly
  2748. called by @code{starpu_task_create}. By default, tasks initialized with
  2749. @code{starpu_task_init} must be deinitialized explicitly with
  2750. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2751. constant @code{STARPU_TASK_INITIALIZER}.
  2752. @item @emph{Prototype}:
  2753. @code{void starpu_task_init(struct starpu_task *task);}
  2754. @end table
  2755. @node starpu_task_create
  2756. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2757. @table @asis
  2758. @item @emph{Description}:
  2759. Allocate a task structure and initialize it with default values. Tasks
  2760. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2761. task is terminated. If the destroy flag is explicitly unset, the resources used
  2762. by the task are freed by calling
  2763. @code{starpu_task_destroy}.
  2764. @item @emph{Prototype}:
  2765. @code{struct starpu_task *starpu_task_create(void);}
  2766. @end table
  2767. @node starpu_task_deinit
  2768. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2769. @table @asis
  2770. @item @emph{Description}:
  2771. Release all the structures automatically allocated to execute the task. This is
  2772. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2773. freed. This should be used for statically allocated tasks for instance.
  2774. @item @emph{Prototype}:
  2775. @code{void starpu_task_deinit(struct starpu_task *task);}
  2776. @end table
  2777. @node starpu_task_destroy
  2778. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2779. @table @asis
  2780. @item @emph{Description}:
  2781. Free the resource allocated during @code{starpu_task_create}. This function can be
  2782. called automatically after the execution of a task by setting the
  2783. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2784. Calling this function on a statically allocated task results in an undefined
  2785. behaviour.
  2786. @item @emph{Prototype}:
  2787. @code{void starpu_task_destroy(struct starpu_task *task);}
  2788. @end table
  2789. @node starpu_task_wait
  2790. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2791. @table @asis
  2792. @item @emph{Description}:
  2793. This function blocks until the task has been executed. It is not possible to
  2794. synchronize with a task more than once. It is not possible to wait for
  2795. synchronous or detached tasks.
  2796. @item @emph{Return value}:
  2797. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2798. indicates that the specified task was either synchronous or detached.
  2799. @item @emph{Prototype}:
  2800. @code{int starpu_task_wait(struct starpu_task *task);}
  2801. @end table
  2802. @node starpu_task_submit
  2803. @subsection @code{starpu_task_submit} -- Submit a Task
  2804. @table @asis
  2805. @item @emph{Description}:
  2806. This function submits a task to StarPU. Calling this function does
  2807. not mean that the task will be executed immediately as there can be data or task
  2808. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2809. scheduling this task with respect to such dependencies.
  2810. This function returns immediately if the @code{synchronous} field of the
  2811. @code{starpu_task} structure was set to 0, and block until the termination of
  2812. the task otherwise. It is also possible to synchronize the application with
  2813. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2814. function for instance.
  2815. @item @emph{Return value}:
  2816. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2817. means that there is no worker able to process this task (e.g. there is no GPU
  2818. available and this task is only implemented for CUDA devices).
  2819. @item @emph{Prototype}:
  2820. @code{int starpu_task_submit(struct starpu_task *task);}
  2821. @end table
  2822. @node starpu_task_wait_for_all
  2823. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2824. @table @asis
  2825. @item @emph{Description}:
  2826. This function blocks until all the tasks that were submitted are terminated.
  2827. @item @emph{Prototype}:
  2828. @code{void starpu_task_wait_for_all(void);}
  2829. @end table
  2830. @node starpu_get_current_task
  2831. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2832. @table @asis
  2833. @item @emph{Description}:
  2834. This function returns the task currently executed by the worker, or
  2835. NULL if it is called either from a thread that is not a task or simply
  2836. because there is no task being executed at the moment.
  2837. @item @emph{Prototype}:
  2838. @code{struct starpu_task *starpu_get_current_task(void);}
  2839. @end table
  2840. @node starpu_display_codelet_stats
  2841. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2842. @table @asis
  2843. @item @emph{Description}:
  2844. Output on @code{stderr} some statistics on the codelet @code{cl}.
  2845. @item @emph{Prototype}:
  2846. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2847. @end table
  2848. @c Callbacks : what can we put in callbacks ?
  2849. @node Explicit Dependencies
  2850. @section Explicit Dependencies
  2851. @menu
  2852. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2853. * starpu_tag_t:: Task logical identifier
  2854. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2855. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2856. * starpu_tag_wait:: Block until a Tag is terminated
  2857. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2858. * starpu_tag_remove:: Destroy a Tag
  2859. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2860. @end menu
  2861. @node starpu_task_declare_deps_array
  2862. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2863. @table @asis
  2864. @item @emph{Description}:
  2865. Declare task dependencies between a @code{task} and an array of tasks of length
  2866. @code{ndeps}. This function must be called prior to the submission of the task,
  2867. but it may called after the submission or the execution of the tasks in the
  2868. array provided the tasks are still valid (ie. they were not automatically
  2869. destroyed). Calling this function on a task that was already submitted or with
  2870. an entry of @code{task_array} that is not a valid task anymore results in an
  2871. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2872. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2873. same task, in this case, the dependencies are added. It is possible to have
  2874. redundancy in the task dependencies.
  2875. @item @emph{Prototype}:
  2876. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2877. @end table
  2878. @node starpu_tag_t
  2879. @subsection @code{starpu_tag_t} -- Task logical identifier
  2880. @table @asis
  2881. @item @emph{Description}:
  2882. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  2883. dependencies between tasks by the means of those tags. To do so, fill the
  2884. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2885. be arbitrary) and set the @code{use_tag} field to 1.
  2886. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2887. not be started until the tasks which holds the declared dependency tags are
  2888. completed.
  2889. @end table
  2890. @node starpu_tag_declare_deps
  2891. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2892. @table @asis
  2893. @item @emph{Description}:
  2894. Specify the dependencies of the task identified by tag @code{id}. The first
  2895. argument specifies the tag which is configured, the second argument gives the
  2896. number of tag(s) on which @code{id} depends. The following arguments are the
  2897. tags which have to be terminated to unlock the task.
  2898. This function must be called before the associated task is submitted to StarPU
  2899. with @code{starpu_task_submit}.
  2900. @item @emph{Remark}
  2901. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2902. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2903. typically need to be explicitly casted. Using the
  2904. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2905. @item @emph{Prototype}:
  2906. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  2907. @item @emph{Example}:
  2908. @cartouche
  2909. @example
  2910. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2911. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2912. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2913. @end example
  2914. @end cartouche
  2915. @end table
  2916. @node starpu_tag_declare_deps_array
  2917. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  2918. @table @asis
  2919. @item @emph{Description}:
  2920. This function is similar to @code{starpu_tag_declare_deps}, except that its
  2921. does not take a variable number of arguments but an array of tags of size
  2922. @code{ndeps}.
  2923. @item @emph{Prototype}:
  2924. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  2925. @item @emph{Example}:
  2926. @cartouche
  2927. @example
  2928. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2929. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2930. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2931. @end example
  2932. @end cartouche
  2933. @end table
  2934. @node starpu_tag_wait
  2935. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  2936. @table @asis
  2937. @item @emph{Description}:
  2938. This function blocks until the task associated to tag @code{id} has been
  2939. executed. This is a blocking call which must therefore not be called within
  2940. tasks or callbacks, but only from the application directly. It is possible to
  2941. synchronize with the same tag multiple times, as long as the
  2942. @code{starpu_tag_remove} function is not called. Note that it is still
  2943. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2944. data structure was freed (e.g. if the @code{destroy} flag of the
  2945. @code{starpu_task} was enabled).
  2946. @item @emph{Prototype}:
  2947. @code{void starpu_tag_wait(starpu_tag_t id);}
  2948. @end table
  2949. @node starpu_tag_wait_array
  2950. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  2951. @table @asis
  2952. @item @emph{Description}:
  2953. This function is similar to @code{starpu_tag_wait} except that it blocks until
  2954. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  2955. terminated.
  2956. @item @emph{Prototype}:
  2957. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  2958. @end table
  2959. @node starpu_tag_remove
  2960. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  2961. @table @asis
  2962. @item @emph{Description}:
  2963. This function releases the resources associated to tag @code{id}. It can be
  2964. called once the corresponding task has been executed and when there is
  2965. no other tag that depend on this tag anymore.
  2966. @item @emph{Prototype}:
  2967. @code{void starpu_tag_remove(starpu_tag_t id);}
  2968. @end table
  2969. @node starpu_tag_notify_from_apps
  2970. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  2971. @table @asis
  2972. @item @emph{Description}:
  2973. This function explicitly unlocks tag @code{id}. It may be useful in the
  2974. case of applications which execute part of their computation outside StarPU
  2975. tasks (e.g. third-party libraries). It is also provided as a
  2976. convenient tool for the programmer, for instance to entirely construct the task
  2977. DAG before actually giving StarPU the opportunity to execute the tasks.
  2978. @item @emph{Prototype}:
  2979. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  2980. @end table
  2981. @node Implicit Data Dependencies
  2982. @section Implicit Data Dependencies
  2983. @menu
  2984. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  2985. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  2986. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  2987. @end menu
  2988. In this section, we describe how StarPU makes it possible to insert implicit
  2989. task dependencies in order to enforce sequential data consistency. When this
  2990. data consistency is enabled on a specific data handle, any data access will
  2991. appear as sequentially consistent from the application. For instance, if the
  2992. application submits two tasks that access the same piece of data in read-only
  2993. mode, and then a third task that access it in write mode, dependencies will be
  2994. added between the two first tasks and the third one. Implicit data dependencies
  2995. are also inserted in the case of data accesses from the application.
  2996. @node starpu_data_set_default_sequential_consistency_flag
  2997. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  2998. @table @asis
  2999. @item @emph{Description}:
  3000. Set the default sequential consistency flag. If a non-zero value is passed, a
  3001. sequential data consistency will be enforced for all handles registered after
  3002. this function call, otherwise it is disabled. By default, StarPU enables
  3003. sequential data consistency. It is also possible to select the data consistency
  3004. mode of a specific data handle with the
  3005. @code{starpu_data_set_sequential_consistency_flag} function.
  3006. @item @emph{Prototype}:
  3007. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  3008. @end table
  3009. @node starpu_data_get_default_sequential_consistency_flag
  3010. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3011. @table @asis
  3012. @item @emph{Description}:
  3013. This function returns the current default sequential consistency flag.
  3014. @item @emph{Prototype}:
  3015. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  3016. @end table
  3017. @node starpu_data_set_sequential_consistency_flag
  3018. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3019. @table @asis
  3020. @item @emph{Description}:
  3021. Select the data consistency mode associated to a data handle. The consistency
  3022. mode set using this function has the priority over the default mode which can
  3023. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3024. @item @emph{Prototype}:
  3025. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  3026. @end table
  3027. @node Performance Model API
  3028. @section Performance Model API
  3029. @menu
  3030. * starpu_load_history_debug::
  3031. * starpu_perfmodel_debugfilepath::
  3032. * starpu_perfmodel_get_arch_name::
  3033. * starpu_force_bus_sampling::
  3034. @end menu
  3035. @node starpu_load_history_debug
  3036. @subsection @code{starpu_load_history_debug}
  3037. @table @asis
  3038. @item @emph{Description}:
  3039. TODO
  3040. @item @emph{Prototype}:
  3041. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  3042. @end table
  3043. @node starpu_perfmodel_debugfilepath
  3044. @subsection @code{starpu_perfmodel_debugfilepath}
  3045. @table @asis
  3046. @item @emph{Description}:
  3047. TODO
  3048. @item @emph{Prototype}:
  3049. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  3050. @end table
  3051. @node starpu_perfmodel_get_arch_name
  3052. @subsection @code{starpu_perfmodel_get_arch_name}
  3053. @table @asis
  3054. @item @emph{Description}:
  3055. TODO
  3056. @item @emph{Prototype}:
  3057. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  3058. @end table
  3059. @node starpu_force_bus_sampling
  3060. @subsection @code{starpu_force_bus_sampling}
  3061. @table @asis
  3062. @item @emph{Description}:
  3063. This forces sampling the bus performance model again.
  3064. @item @emph{Prototype}:
  3065. @code{void starpu_force_bus_sampling(void);}
  3066. @end table
  3067. @node Profiling API
  3068. @section Profiling API
  3069. @menu
  3070. * starpu_profiling_status_set:: starpu_profiling_status_set
  3071. * starpu_profiling_status_get:: starpu_profiling_status_get
  3072. * struct starpu_task_profiling_info:: task profiling information
  3073. * struct starpu_worker_profiling_info:: worker profiling information
  3074. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3075. * struct starpu_bus_profiling_info:: bus profiling information
  3076. * starpu_bus_get_count::
  3077. * starpu_bus_get_id::
  3078. * starpu_bus_get_src::
  3079. * starpu_bus_get_dst::
  3080. * starpu_timing_timespec_delay_us::
  3081. * starpu_timing_timespec_to_us::
  3082. * starpu_bus_profiling_helper_display_summary::
  3083. * starpu_worker_profiling_helper_display_summary::
  3084. @end menu
  3085. @node starpu_profiling_status_set
  3086. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3087. @table @asis
  3088. @item @emph{Description}:
  3089. Thie function sets the profiling status. Profiling is activated by passing
  3090. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3091. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3092. resets all profiling measurements. When profiling is enabled, the
  3093. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3094. to a valid @code{struct starpu_task_profiling_info} structure containing
  3095. information about the execution of the task.
  3096. @item @emph{Return value}:
  3097. Negative return values indicate an error, otherwise the previous status is
  3098. returned.
  3099. @item @emph{Prototype}:
  3100. @code{int starpu_profiling_status_set(int status);}
  3101. @end table
  3102. @node starpu_profiling_status_get
  3103. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3104. @table @asis
  3105. @item @emph{Description}:
  3106. Return the current profiling status or a negative value in case there was an error.
  3107. @item @emph{Prototype}:
  3108. @code{int starpu_profiling_status_get(void);}
  3109. @end table
  3110. @node struct starpu_task_profiling_info
  3111. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3112. @table @asis
  3113. @item @emph{Description}:
  3114. This structure contains information about the execution of a task. It is
  3115. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3116. structure if profiling was enabled.
  3117. @item @emph{Fields}:
  3118. @table @asis
  3119. @item @code{submit_time}:
  3120. Date of task submission (relative to the initialization of StarPU).
  3121. @item @code{start_time}:
  3122. Date of task execution beginning (relative to the initialization of StarPU).
  3123. @item @code{end_time}:
  3124. Date of task execution termination (relative to the initialization of StarPU).
  3125. @item @code{workerid}:
  3126. Identifier of the worker which has executed the task.
  3127. @end table
  3128. @end table
  3129. @node struct starpu_worker_profiling_info
  3130. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3131. @table @asis
  3132. @item @emph{Description}:
  3133. This structure contains the profiling information associated to a worker.
  3134. @item @emph{Fields}:
  3135. @table @asis
  3136. @item @code{start_time}:
  3137. Starting date for the reported profiling measurements.
  3138. @item @code{total_time}:
  3139. Duration of the profiling measurement interval.
  3140. @item @code{executing_time}:
  3141. Time spent by the worker to execute tasks during the profiling measurement interval.
  3142. @item @code{sleeping_time}:
  3143. Time spent idling by the worker during the profiling measurement interval.
  3144. @item @code{executed_tasks}:
  3145. Number of tasks executed by the worker during the profiling measurement interval.
  3146. @end table
  3147. @end table
  3148. @node starpu_worker_get_profiling_info
  3149. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3150. @table @asis
  3151. @item @emph{Description}:
  3152. Get the profiling info associated to the worker identified by @code{workerid},
  3153. and reset the profiling measurements. If the @code{worker_info} argument is
  3154. NULL, only reset the counters associated to worker @code{workerid}.
  3155. @item @emph{Return value}:
  3156. Upon successful completion, this function returns 0. Otherwise, a negative
  3157. value is returned.
  3158. @item @emph{Prototype}:
  3159. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3160. @end table
  3161. @node struct starpu_bus_profiling_info
  3162. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3163. @table @asis
  3164. @item @emph{Description}:
  3165. TODO
  3166. @item @emph{Fields}:
  3167. @table @asis
  3168. @item @code{start_time}:
  3169. TODO
  3170. @item @code{total_time}:
  3171. TODO
  3172. @item @code{transferred_bytes}:
  3173. TODO
  3174. @item @code{transfer_count}:
  3175. TODO
  3176. @end table
  3177. @end table
  3178. @node starpu_bus_get_count
  3179. @subsection @code{starpu_bus_get_count}
  3180. @table @asis
  3181. @item @emph{Description}:
  3182. TODO
  3183. @item @emph{Prototype}:
  3184. @code{int starpu_bus_get_count(void);}
  3185. @end table
  3186. @node starpu_bus_get_id
  3187. @subsection @code{starpu_bus_get_id}
  3188. @table @asis
  3189. @item @emph{Description}:
  3190. TODO
  3191. @item @emph{Prototype}:
  3192. @code{int starpu_bus_get_id(int src, int dst);}
  3193. @end table
  3194. @node starpu_bus_get_src
  3195. @subsection @code{starpu_bus_get_src}
  3196. @table @asis
  3197. @item @emph{Description}:
  3198. TODO
  3199. @item @emph{Prototype}:
  3200. @code{int starpu_bus_get_src(int busid);}
  3201. @end table
  3202. @node starpu_bus_get_dst
  3203. @subsection @code{starpu_bus_get_dst}
  3204. @table @asis
  3205. @item @emph{Description}:
  3206. TODO
  3207. @item @emph{Prototype}:
  3208. @code{int starpu_bus_get_dst(int busid);}
  3209. @end table
  3210. @node starpu_timing_timespec_delay_us
  3211. @subsection @code{starpu_timing_timespec_delay_us}
  3212. @table @asis
  3213. @item @emph{Description}:
  3214. TODO
  3215. @item @emph{Prototype}:
  3216. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3217. @end table
  3218. @node starpu_timing_timespec_to_us
  3219. @subsection @code{starpu_timing_timespec_to_us}
  3220. @table @asis
  3221. @item @emph{Description}:
  3222. TODO
  3223. @item @emph{Prototype}:
  3224. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3225. @end table
  3226. @node starpu_bus_profiling_helper_display_summary
  3227. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3228. @table @asis
  3229. @item @emph{Description}:
  3230. TODO
  3231. @item @emph{Prototype}:
  3232. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3233. @end table
  3234. @node starpu_worker_profiling_helper_display_summary
  3235. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3236. @table @asis
  3237. @item @emph{Description}:
  3238. TODO
  3239. @item @emph{Prototype}:
  3240. @code{void starpu_worker_profiling_helper_display_summary(void);}
  3241. @end table
  3242. @node CUDA extensions
  3243. @section CUDA extensions
  3244. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  3245. @menu
  3246. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3247. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3248. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3249. @end menu
  3250. @node starpu_cuda_get_local_stream
  3251. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3252. @table @asis
  3253. @item @emph{Description}:
  3254. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3255. function is only provided for convenience so that programmers can easily use
  3256. asynchronous operations within codelets without having to create a stream by
  3257. hand. Note that the application is not forced to use the stream provided by
  3258. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3259. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3260. the likelihood of having all transfers overlapped.
  3261. @item @emph{Prototype}:
  3262. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3263. @end table
  3264. @node starpu_helper_cublas_init
  3265. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3266. @table @asis
  3267. @item @emph{Description}:
  3268. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3269. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3270. controlled by StarPU. This call blocks until CUBLAS has been properly
  3271. initialized on every device.
  3272. @item @emph{Prototype}:
  3273. @code{void starpu_helper_cublas_init(void);}
  3274. @end table
  3275. @node starpu_helper_cublas_shutdown
  3276. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3277. @table @asis
  3278. @item @emph{Description}:
  3279. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3280. @item @emph{Prototype}:
  3281. @code{void starpu_helper_cublas_shutdown(void);}
  3282. @end table
  3283. @node OpenCL extensions
  3284. @section OpenCL extensions
  3285. @menu
  3286. * Enabling OpenCL:: Enabling OpenCL
  3287. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3288. * Loading OpenCL kernels:: Loading OpenCL kernels
  3289. * OpenCL statistics:: Collecting statistics from OpenCL
  3290. @end menu
  3291. @node Enabling OpenCL
  3292. @subsection Enabling OpenCL
  3293. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3294. enabled by default. To enable OpenCL, you need either to disable CUDA
  3295. when configuring StarPU:
  3296. @example
  3297. % ./configure --disable-cuda
  3298. @end example
  3299. or when running applications:
  3300. @example
  3301. % STARPU_NCUDA=0 ./application
  3302. @end example
  3303. OpenCL will automatically be started on any device not yet used by
  3304. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3305. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3306. so:
  3307. @example
  3308. % STARPU_NCUDA=2 ./application
  3309. @end example
  3310. @node Compiling OpenCL kernels
  3311. @subsection Compiling OpenCL kernels
  3312. Source codes for OpenCL kernels can be stored in a file or in a
  3313. string. StarPU provides functions to build the program executable for
  3314. each available OpenCL device as a @code{cl_program} object. This
  3315. program executable can then be loaded within a specific queue as
  3316. explained in the next section. These are only helpers, Applications
  3317. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3318. use (e.g. different programs on the different OpenCL devices, for
  3319. relocation purpose for instance).
  3320. @menu
  3321. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3322. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3323. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3324. @end menu
  3325. @node starpu_opencl_load_opencl_from_file
  3326. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3327. @table @asis
  3328. @item @emph{Description}:
  3329. TODO
  3330. @item @emph{Prototype}:
  3331. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  3332. @end table
  3333. @node starpu_opencl_load_opencl_from_string
  3334. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3335. @table @asis
  3336. @item @emph{Description}:
  3337. TODO
  3338. @item @emph{Prototype}:
  3339. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  3340. @end table
  3341. @node starpu_opencl_unload_opencl
  3342. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3343. @table @asis
  3344. @item @emph{Description}:
  3345. TODO
  3346. @item @emph{Prototype}:
  3347. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3348. @end table
  3349. @node Loading OpenCL kernels
  3350. @subsection Loading OpenCL kernels
  3351. @menu
  3352. * starpu_opencl_load_kernel:: Loading a kernel
  3353. * starpu_opencl_relase_kernel:: Releasing a kernel
  3354. @end menu
  3355. @node starpu_opencl_load_kernel
  3356. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3357. @table @asis
  3358. @item @emph{Description}:
  3359. TODO
  3360. @item @emph{Prototype}:
  3361. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3362. }
  3363. @end table
  3364. @node starpu_opencl_relase_kernel
  3365. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3366. @table @asis
  3367. @item @emph{Description}:
  3368. TODO
  3369. @item @emph{Prototype}:
  3370. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3371. @end table
  3372. @node OpenCL statistics
  3373. @subsection OpenCL statistics
  3374. @menu
  3375. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3376. @end menu
  3377. @node starpu_opencl_collect_stats
  3378. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3379. @table @asis
  3380. @item @emph{Description}:
  3381. After termination of the kernels, the OpenCL codelet should call this function
  3382. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3383. collect statistics about the kernel execution (used cycles, consumed power).
  3384. @item @emph{Prototype}:
  3385. @code{int starpu_opencl_collect_stats(cl_event event);}
  3386. @end table
  3387. @node Cell extensions
  3388. @section Cell extensions
  3389. nothing yet.
  3390. @node Miscellaneous helpers
  3391. @section Miscellaneous helpers
  3392. @menu
  3393. * starpu_data_cpy:: Copy a data handle into another data handle
  3394. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3395. @end menu
  3396. @node starpu_data_cpy
  3397. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3398. @table @asis
  3399. @item @emph{Description}:
  3400. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3401. The @code{asynchronous} parameter indicates whether the function should
  3402. block or not. In the case of an asynchronous call, it is possible to
  3403. synchronize with the termination of this operation either by the means of
  3404. implicit dependencies (if enabled) or by calling
  3405. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3406. this callback function is executed after the handle has been copied, and it is
  3407. given the @code{callback_arg} pointer as argument.
  3408. @item @emph{Prototype}:
  3409. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3410. @end table
  3411. @node starpu_execute_on_each_worker
  3412. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3413. @table @asis
  3414. @item @emph{Description}:
  3415. When calling this method, the offloaded function specified by the first argument is
  3416. executed by every StarPU worker that may execute the function.
  3417. The second argument is passed to the offloaded function.
  3418. The last argument specifies on which types of processing units the function
  3419. should be executed. Similarly to the @code{where} field of the
  3420. @code{starpu_codelet} structure, it is possible to specify that the function
  3421. should be executed on every CUDA device and every CPU by passing
  3422. @code{STARPU_CPU|STARPU_CUDA}.
  3423. This function blocks until the function has been executed on every appropriate
  3424. processing units, so that it may not be called from a callback function for
  3425. instance.
  3426. @item @emph{Prototype}:
  3427. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3428. @end table
  3429. @c ---------------------------------------------------------------------
  3430. @c Advanced Topics
  3431. @c ---------------------------------------------------------------------
  3432. @node Advanced Topics
  3433. @chapter Advanced Topics
  3434. @menu
  3435. * Defining a new data interface::
  3436. * Defining a new scheduling policy::
  3437. @end menu
  3438. @node Defining a new data interface
  3439. @section Defining a new data interface
  3440. @menu
  3441. * struct starpu_data_interface_ops_t:: Per-interface methods
  3442. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3443. * An example of data interface:: An example of data interface
  3444. @end menu
  3445. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3446. @node struct starpu_data_interface_ops_t
  3447. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3448. @table @asis
  3449. @item @emph{Description}:
  3450. TODO describe all the different fields
  3451. @end table
  3452. @node struct starpu_data_copy_methods
  3453. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3454. @table @asis
  3455. @item @emph{Description}:
  3456. TODO describe all the different fields
  3457. @end table
  3458. @node An example of data interface
  3459. @subsection An example of data interface
  3460. @table @asis
  3461. TODO
  3462. @end table
  3463. @node Defining a new scheduling policy
  3464. @section Defining a new scheduling policy
  3465. TODO
  3466. A full example showing how to define a new scheduling policy is available in
  3467. the StarPU sources in the directory @code{examples/scheduler/}.
  3468. @menu
  3469. * struct starpu_sched_policy_s::
  3470. * starpu_worker_set_sched_condition::
  3471. * starpu_sched_set_min_priority:: Set the minimum priority level
  3472. * starpu_sched_set_max_priority:: Set the maximum priority level
  3473. * Source code::
  3474. @end menu
  3475. @node struct starpu_sched_policy_s
  3476. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3477. @table @asis
  3478. @item @emph{Description}:
  3479. This structure contains all the methods that implement a scheduling policy. An
  3480. application may specify which scheduling strategy in the @code{sched_policy}
  3481. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3482. function.
  3483. @item @emph{Fields}:
  3484. @table @asis
  3485. @item @code{init_sched}:
  3486. Initialize the scheduling policy.
  3487. @item @code{deinit_sched}:
  3488. Cleanup the scheduling policy.
  3489. @item @code{push_task}:
  3490. Insert a task into the scheduler.
  3491. @item @code{push_prio_task}:
  3492. Insert a priority task into the scheduler.
  3493. @item @code{pop_task}:
  3494. Get a task from the scheduler. The mutex associated to the worker is already
  3495. taken when this method is called.
  3496. @item @code{pop_every_task}:
  3497. Remove all available tasks from the scheduler (tasks are chained by the means
  3498. of the prev and next fields of the starpu_task structure). The mutex associated
  3499. to the worker is already taken when this method is called.
  3500. @item @code{post_exec_hook} (optionnal):
  3501. This method is called every time a task has been executed.
  3502. @item @code{policy_name}:
  3503. Name of the policy (optionnal).
  3504. @item @code{policy_description}:
  3505. Description of the policy (optionnal).
  3506. @end table
  3507. @end table
  3508. @node starpu_worker_set_sched_condition
  3509. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3510. @table @asis
  3511. @item @emph{Description}:
  3512. When there is no available task for a worker, StarPU blocks this worker on a
  3513. condition variable. This function specifies which condition variable (and the
  3514. associated mutex) should be used to block (and to wake up) a worker. Note that
  3515. multiple workers may use the same condition variable. For instance, in the case
  3516. of a scheduling strategy with a single task queue, the same condition variable
  3517. would be used to block and wake up all workers.
  3518. The initialization method of a scheduling strategy (@code{init_sched}) must
  3519. call this function once per worker.
  3520. @item @emph{Prototype}:
  3521. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3522. @end table
  3523. @node starpu_sched_set_min_priority
  3524. @subsection @code{starpu_sched_set_min_priority}
  3525. @table @asis
  3526. @item @emph{Description}:
  3527. Defines the minimum priority level supported by the scheduling policy. The
  3528. default minimum priority level is the same as the default priority level which
  3529. is 0 by convention. The application may access that value by calling the
  3530. @code{starpu_sched_get_min_priority} function. This function should only be
  3531. called from the initialization method of the scheduling policy, and should not
  3532. be used directly from the application.
  3533. @item @emph{Prototype}:
  3534. @code{void starpu_sched_set_min_priority(int min_prio)}
  3535. @end table
  3536. @node starpu_sched_set_max_priority
  3537. @subsection @code{starpu_sched_set_max_priority}
  3538. @table @asis
  3539. @item @emph{Description}:
  3540. Defines the maximum priority level supported by the scheduling policy. The
  3541. default maximum priority level is 1. The application may access that value by
  3542. calling the @code{starpu_sched_get_max_priority} function. This function should
  3543. only be called from the initialization method of the scheduling policy, and
  3544. should not be used directly from the application.
  3545. @item @emph{Prototype}:
  3546. @code{void starpu_sched_set_min_priority(int max_prio)}
  3547. @end table
  3548. @node Source code
  3549. @subsection Source code
  3550. @cartouche
  3551. @smallexample
  3552. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3553. .init_sched = init_dummy_sched,
  3554. .deinit_sched = deinit_dummy_sched,
  3555. .push_task = push_task_dummy,
  3556. .push_prio_task = NULL,
  3557. .pop_task = pop_task_dummy,
  3558. .post_exec_hook = NULL,
  3559. .pop_every_task = NULL,
  3560. .policy_name = "dummy",
  3561. .policy_description = "dummy scheduling strategy"
  3562. @};
  3563. @end smallexample
  3564. @end cartouche
  3565. @c ---------------------------------------------------------------------
  3566. @c Appendices
  3567. @c ---------------------------------------------------------------------
  3568. @c ---------------------------------------------------------------------
  3569. @c Full source code for the 'Scaling a Vector' example
  3570. @c ---------------------------------------------------------------------
  3571. @node Full source code for the 'Scaling a Vector' example
  3572. @appendix Full source code for the 'Scaling a Vector' example
  3573. @menu
  3574. * Main application::
  3575. * CPU Kernel::
  3576. * CUDA Kernel::
  3577. * OpenCL Kernel::
  3578. @end menu
  3579. @node Main application
  3580. @section Main application
  3581. @smallexample
  3582. @include vector_scal_c.texi
  3583. @end smallexample
  3584. @node CPU Kernel
  3585. @section CPU Kernel
  3586. @smallexample
  3587. @include vector_scal_cpu.texi
  3588. @end smallexample
  3589. @node CUDA Kernel
  3590. @section CUDA Kernel
  3591. @smallexample
  3592. @include vector_scal_cuda.texi
  3593. @end smallexample
  3594. @node OpenCL Kernel
  3595. @section OpenCL Kernel
  3596. @menu
  3597. * Invoking the kernel::
  3598. * Source of the kernel::
  3599. @end menu
  3600. @node Invoking the kernel
  3601. @subsection Invoking the kernel
  3602. @smallexample
  3603. @include vector_scal_opencl.texi
  3604. @end smallexample
  3605. @node Source of the kernel
  3606. @subsection Source of the kernel
  3607. @smallexample
  3608. @include vector_scal_opencl_codelet.texi
  3609. @end smallexample
  3610. @bye