starpu.texi 200 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @include version.texi
  7. @copying
  8. Copyright @copyright{} 2009--2011 Universit@'e de Bordeaux 1
  9. @noindent
  10. Copyright @copyright{} 2010, 2011 Centre National de la Recherche Scientifique
  11. @noindent
  12. Copyright @copyright{} 2011 Institut National de Recherche en Informatique et Automatique
  13. @quotation
  14. Permission is granted to copy, distribute and/or modify this document
  15. under the terms of the GNU Free Documentation License, Version 1.3
  16. or any later version published by the Free Software Foundation;
  17. with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
  18. Texts. A copy of the license is included in the section entitled ``GNU
  19. Free Documentation License''.
  20. @end quotation
  21. @end copying
  22. @setchapternewpage odd
  23. @dircategory Development
  24. @direntry
  25. * StarPU: (starpu). StarPU Handbook
  26. @end direntry
  27. @titlepage
  28. @title StarPU Handbook
  29. @subtitle for StarPU @value{VERSION}
  30. @page
  31. @vskip 0pt plus 1fill
  32. @insertcopying
  33. @end titlepage
  34. @c @summarycontents
  35. @contents
  36. @page
  37. @node Top
  38. @top Preface
  39. This manual documents the usage of StarPU version @value{VERSION}. It
  40. was last updated on @value{UPDATED}.
  41. @ifnottex
  42. @insertcopying
  43. @end ifnottex
  44. @comment
  45. @comment When you add a new menu item, please keep the right hand
  46. @comment aligned to the same column. Do not use tabs. This provides
  47. @comment better formatting.
  48. @comment
  49. @menu
  50. * Introduction:: A basic introduction to using StarPU
  51. * Installing StarPU:: How to configure, build and install StarPU
  52. * Using StarPU:: How to run StarPU application
  53. * Basic Examples:: Basic examples of the use of StarPU
  54. * Performance optimization:: How to optimize performance with StarPU
  55. * Performance feedback:: Performance debugging tools
  56. * StarPU MPI support:: How to combine StarPU with MPI
  57. * Tips and Tricks:: Tips and tricks to know about
  58. * Configuring StarPU:: How to configure StarPU
  59. * StarPU API:: The API to use StarPU
  60. * Advanced Topics:: Advanced use of StarPU
  61. * C Extensions:: Easier StarPU programming with GCC
  62. * Full source code for the 'Scaling a Vector' example::
  63. * Function Index:: Index of C functions.
  64. * GNU Free Documentation License:: How you can copy and share this manual.
  65. @end menu
  66. @c ---------------------------------------------------------------------
  67. @c Introduction to StarPU
  68. @c ---------------------------------------------------------------------
  69. @node Introduction
  70. @chapter Introduction to StarPU
  71. @menu
  72. * Motivation:: Why StarPU ?
  73. * StarPU in a Nutshell:: The Fundamentals of StarPU
  74. @end menu
  75. @node Motivation
  76. @section Motivation
  77. @c complex machines with heterogeneous cores/devices
  78. The use of specialized hardware such as accelerators or coprocessors offers an
  79. interesting approach to overcome the physical limits encountered by processor
  80. architects. As a result, many machines are now equipped with one or several
  81. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  82. efforts have been devoted to offload computation onto such accelerators, very
  83. little attention as been paid to portability concerns on the one hand, and to the
  84. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  85. StarPU is a runtime system that offers support for heterogeneous multicore
  86. architectures, it not only offers a unified view of the computational resources
  87. (i.e. CPUs and accelerators at the same time), but it also takes care of
  88. efficiently mapping and executing tasks onto an heterogeneous machine while
  89. transparently handling low-level issues such as data transfers in a portable
  90. fashion.
  91. @c this leads to a complicated distributed memory design
  92. @c which is not (easily) manageable by hand
  93. @c added value/benefits of StarPU
  94. @c - portability
  95. @c - scheduling, perf. portability
  96. @node StarPU in a Nutshell
  97. @section StarPU in a Nutshell
  98. @menu
  99. * Codelet and Tasks::
  100. * StarPU Data Management Library::
  101. * Glossary::
  102. * Research Papers::
  103. @end menu
  104. From a programming point of view, StarPU is not a new language but a library
  105. that executes tasks explicitly submitted by the application. The data that a
  106. task manipulates are automatically transferred onto the accelerator so that the
  107. programmer does not have to take care of complex data movements. StarPU also
  108. takes particular care of scheduling those tasks efficiently and allows
  109. scheduling experts to implement custom scheduling policies in a portable
  110. fashion.
  111. @c explain the notion of codelet and task (i.e. g(A, B)
  112. @node Codelet and Tasks
  113. @subsection Codelet and Tasks
  114. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  115. computational kernel that can possibly be implemented on multiple architectures
  116. such as a CPU, a CUDA device or a Cell's SPU.
  117. @c TODO insert illustration f : f_spu, f_cpu, ...
  118. Another important data structure is the @b{task}. Executing a StarPU task
  119. consists in applying a codelet on a data set, on one of the architectures on
  120. which the codelet is implemented. A task thus describes the codelet that it
  121. uses, but also which data are accessed, and how they are
  122. accessed during the computation (read and/or write).
  123. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  124. operation. The task structure can also specify a @b{callback} function that is
  125. called once StarPU has properly executed the task. It also contains optional
  126. fields that the application may use to give hints to the scheduler (such as
  127. priority levels).
  128. By default, task dependencies are inferred from data dependency (sequential
  129. coherence) by StarPU. The application can however disable sequential coherency
  130. for some data, and dependencies be expressed by hand.
  131. A task may be identified by a unique 64-bit number chosen by the application
  132. which we refer as a @b{tag}.
  133. Task dependencies can be enforced by hand either by the means of callback functions, by
  134. submitting other tasks, or by expressing dependencies
  135. between tags (which can thus correspond to tasks that have not been submitted
  136. yet).
  137. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  138. @c DSM
  139. @node StarPU Data Management Library
  140. @subsection StarPU Data Management Library
  141. Because StarPU schedules tasks at runtime, data transfers have to be
  142. done automatically and ``just-in-time'' between processing units,
  143. relieving the application programmer from explicit data transfers.
  144. Moreover, to avoid unnecessary transfers, StarPU keeps data
  145. where it was last needed, even if was modified there, and it
  146. allows multiple copies of the same data to reside at the same time on
  147. several processing units as long as it is not modified.
  148. @node Glossary
  149. @subsection Glossary
  150. A @b{codelet} records pointers to various implementations of the same
  151. theoretical function.
  152. A @b{memory node} can be either the main RAM or GPU-embedded memory.
  153. A @b{bus} is a link between memory nodes.
  154. A @b{data handle} keeps track of replicates of the same data (@b{registered} by the
  155. application) over various memory nodes. The data management library manages
  156. keeping them coherent.
  157. The @b{home} memory node of a data handle is the memory node from which the data
  158. was registered (usually the main memory node).
  159. A @b{task} represents a scheduled execution of a codelet on some data handles.
  160. A @b{tag} is a rendez-vous point. Tasks typically have their own tag, and can
  161. depend on other tags. The value is chosen by the application.
  162. A @b{worker} execute tasks. There is typically one per CPU computation core and
  163. one per accelerator (for which a whole CPU core is dedicated).
  164. A @b{driver} drives a given kind of workers. There are currently CPU, CUDA,
  165. OpenCL and Gordon drivers. They usually start several workers to actually drive
  166. them.
  167. A @b{performance model} is a (dynamic or static) model of the performance of a
  168. given codelet. Codelets can have execution time performance model as well as
  169. power consumption performance models.
  170. A data @b{interface} describes the layout of the data: for a vector, a pointer
  171. for the start, the number of elements and the size of elements ; for a matrix, a
  172. pointer for the start, the number of elements per row, the offset between rows,
  173. and the size of each element ; etc. To access their data, codelet functions are
  174. given interfaces for the local memory node replicates of the data handles of the
  175. scheduled task.
  176. @b{Partitioning} data means dividing the data of a given data handle (called
  177. @b{father}) into a series of @b{children} data handles which designate various
  178. portions of the former.
  179. A @b{filter} is the function which computes children data handles from a father
  180. data handle, and thus describes how the partitioning should be done (horizontal,
  181. vertical, etc.)
  182. @b{Acquiring} a data handle can be done from the main application, to safely
  183. access the data of a data handle from its home node, without having to
  184. unregister it.
  185. @node Research Papers
  186. @subsection Research Papers
  187. Research papers about StarPU can be found at
  188. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  189. Notably a good overview in the research report
  190. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  191. @c ---------------------------------------------------------------------
  192. @c Installing StarPU
  193. @c ---------------------------------------------------------------------
  194. @node Installing StarPU
  195. @chapter Installing StarPU
  196. @menu
  197. * Downloading StarPU::
  198. * Configuration of StarPU::
  199. * Building and Installing StarPU::
  200. @end menu
  201. StarPU can be built and installed by the standard means of the GNU
  202. autotools. The following chapter is intended to briefly remind how these tools
  203. can be used to install StarPU.
  204. @node Downloading StarPU
  205. @section Downloading StarPU
  206. @menu
  207. * Getting Sources::
  208. * Optional dependencies::
  209. @end menu
  210. @node Getting Sources
  211. @subsection Getting Sources
  212. The simplest way to get StarPU sources is to download the latest official
  213. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  214. or the latest nightly snapshot from
  215. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  216. how to get the very latest version from the subversion repository itself, it
  217. should be needed only if you need the very latest changes (i.e. less than a
  218. day!)
  219. The source code is managed by a Subversion server hosted by the
  220. InriaGforge. To get the source code, you need:
  221. @itemize
  222. @item
  223. To install the client side of the software Subversion if it is
  224. not already available on your system. The software can be obtained from
  225. @indicateurl{http://subversion.tigris.org} . If you are running
  226. on Windows, you will probably prefer to use TortoiseSVN from
  227. @indicateurl{http://tortoisesvn.tigris.org/} .
  228. @item
  229. You can check out the project's SVN repository through anonymous
  230. access. This will provide you with a read access to the
  231. repository.
  232. If you need to have write access on the StarPU project, you can also choose to
  233. become a member of the project @code{starpu}. For this, you first need to get
  234. an account to the gForge server. You can then send a request to join the project
  235. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  236. @item
  237. More information on how to get a gForge account, to become a member of
  238. a project, or on any other related task can be obtained from the
  239. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  240. thing is to upload your public SSH key on the gForge server (see the
  241. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  242. instructions).
  243. @end itemize
  244. You can now check out the latest version from the Subversion server:
  245. @itemize
  246. @item
  247. using the anonymous access via svn:
  248. @example
  249. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  250. @end example
  251. @item
  252. using the anonymous access via https:
  253. @example
  254. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  255. @end example
  256. The password is @code{anonsvn}.
  257. @item
  258. using your gForge account
  259. @example
  260. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  261. @end example
  262. @end itemize
  263. The following step requires the availability of @code{autoconf} and
  264. @code{automake} to generate the @code{./configure} script. This is
  265. done by calling @code{./autogen.sh}. The required version for
  266. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  267. @example
  268. % ./autogen.sh
  269. @end example
  270. If the autotools are not available on your machine or not recent
  271. enough, you can choose to download the latest nightly tarball, which
  272. is provided with a @code{configure} script.
  273. @example
  274. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  275. @end example
  276. @node Optional dependencies
  277. @subsection Optional dependencies
  278. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  279. but strongly recommended. It allows to increase performance, and to
  280. perform some topology aware scheduling.
  281. @code{hwloc} is available in major distributions and for most OSes and can be
  282. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  283. @node Configuration of StarPU
  284. @section Configuration of StarPU
  285. @menu
  286. * Generating Makefiles and configuration scripts::
  287. * Running the configuration::
  288. @end menu
  289. @node Generating Makefiles and configuration scripts
  290. @subsection Generating Makefiles and configuration scripts
  291. This step is not necessary when using the tarball releases of StarPU. If you
  292. are using the source code from the svn repository, you first need to generate
  293. the configure scripts and the Makefiles.
  294. @example
  295. % ./autogen.sh
  296. @end example
  297. @node Running the configuration
  298. @subsection Running the configuration
  299. @example
  300. % ./configure
  301. @end example
  302. Details about options that are useful to give to @code{./configure} are given in
  303. @ref{Compilation configuration}.
  304. @node Building and Installing StarPU
  305. @section Building and Installing StarPU
  306. @menu
  307. * Building::
  308. * Sanity Checks::
  309. * Installing::
  310. @end menu
  311. @node Building
  312. @subsection Building
  313. @example
  314. % make
  315. @end example
  316. @node Sanity Checks
  317. @subsection Sanity Checks
  318. In order to make sure that StarPU is working properly on the system, it is also
  319. possible to run a test suite.
  320. @example
  321. % make check
  322. @end example
  323. @node Installing
  324. @subsection Installing
  325. In order to install StarPU at the location that was specified during
  326. configuration:
  327. @example
  328. % make install
  329. @end example
  330. @c ---------------------------------------------------------------------
  331. @c Using StarPU
  332. @c ---------------------------------------------------------------------
  333. @node Using StarPU
  334. @chapter Using StarPU
  335. @menu
  336. * Setting flags for compiling and linking applications::
  337. * Running a basic StarPU application::
  338. * Kernel threads started by StarPU::
  339. * Enabling OpenCL::
  340. @end menu
  341. @node Setting flags for compiling and linking applications
  342. @section Setting flags for compiling and linking applications
  343. Compiling and linking an application against StarPU may require to use
  344. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  345. To this end, it is possible to use the @code{pkg-config} tool.
  346. If StarPU was not installed at some standard location, the path of StarPU's
  347. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  348. that @code{pkg-config} can find it. For example if StarPU was installed in
  349. @code{$prefix_dir}:
  350. @example
  351. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  352. @end example
  353. The flags required to compile or link against StarPU are then
  354. accessible with the following commands:
  355. @example
  356. % pkg-config --cflags libstarpu # options for the compiler
  357. % pkg-config --libs libstarpu # options for the linker
  358. @end example
  359. @node Running a basic StarPU application
  360. @section Running a basic StarPU application
  361. Basic examples using StarPU are built in the directory
  362. @code{examples/basic_examples/} (and installed in
  363. @code{$prefix_dir/lib/starpu/examples/}). You can for example run the example
  364. @code{vector_scal}.
  365. @example
  366. % ./examples/basic_examples/vector_scal
  367. BEFORE : First element was 1.000000
  368. AFTER First element is 3.140000
  369. %
  370. @end example
  371. When StarPU is used for the first time, the directory
  372. @code{$HOME/.starpu/} is created, performance models will be stored in
  373. that directory.
  374. Please note that buses are benchmarked when StarPU is launched for the
  375. first time. This may take a few minutes, or less if @code{hwloc} is
  376. installed. This step is done only once per user and per machine.
  377. @node Kernel threads started by StarPU
  378. @section Kernel threads started by StarPU
  379. StarPU automatically binds one thread per CPU core. It does not use
  380. SMT/hyperthreading because kernels are usually already optimized for using a
  381. full core, and using hyperthreading would make kernel calibration rather random.
  382. Since driving GPUs is a CPU-consuming task, StarPU dedicates one core per GPU
  383. While StarPU tasks are executing, the application is not supposed to do
  384. computations in the threads it starts itself, tasks should be used instead.
  385. TODO: add a StarPU function to bind an application thread (e.g. the main thread)
  386. to a dedicated core (and thus disable the corresponding StarPU CPU worker).
  387. @node Enabling OpenCL
  388. @section Enabling OpenCL
  389. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  390. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  391. This design choice was necessary as OpenCL and CUDA can not run at the
  392. same time on the same NVIDIA GPU, as there is currently no interoperability
  393. between them.
  394. To enable OpenCL, you need either to disable CUDA when configuring StarPU:
  395. @example
  396. % ./configure --disable-cuda
  397. @end example
  398. or when running applications:
  399. @example
  400. % STARPU_NCUDA=0 ./application
  401. @end example
  402. OpenCL will automatically be started on any device not yet used by
  403. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  404. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  405. so:
  406. @example
  407. % STARPU_NCUDA=2 ./application
  408. @end example
  409. @c ---------------------------------------------------------------------
  410. @c Basic Examples
  411. @c ---------------------------------------------------------------------
  412. @node Basic Examples
  413. @chapter Basic Examples
  414. @menu
  415. * Compiling and linking options::
  416. * Hello World:: Submitting Tasks
  417. * Scaling a Vector:: Manipulating Data
  418. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  419. * Using multiple implementations of a codelet::
  420. * Task and Worker Profiling::
  421. * Partitioning Data:: Partitioning Data
  422. * Performance model example::
  423. * Theoretical lower bound on execution time::
  424. * Insert Task Utility::
  425. * More examples:: More examples shipped with StarPU
  426. * Debugging:: When things go wrong.
  427. @end menu
  428. @node Compiling and linking options
  429. @section Compiling and linking options
  430. Let's suppose StarPU has been installed in the directory
  431. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  432. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  433. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  434. libraries at runtime.
  435. @example
  436. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  437. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  438. @end example
  439. The Makefile could for instance contain the following lines to define which
  440. options must be given to the compiler and to the linker:
  441. @cartouche
  442. @example
  443. CFLAGS += $$(pkg-config --cflags libstarpu)
  444. LDFLAGS += $$(pkg-config --libs libstarpu)
  445. @end example
  446. @end cartouche
  447. @node Hello World
  448. @section Hello World
  449. @menu
  450. * Required Headers::
  451. * Defining a Codelet::
  452. * Submitting a Task::
  453. * Execution of Hello World::
  454. @end menu
  455. In this section, we show how to implement a simple program that submits a task to StarPU.
  456. @node Required Headers
  457. @subsection Required Headers
  458. The @code{starpu.h} header should be included in any code using StarPU.
  459. @cartouche
  460. @smallexample
  461. #include <starpu.h>
  462. @end smallexample
  463. @end cartouche
  464. @node Defining a Codelet
  465. @subsection Defining a Codelet
  466. @cartouche
  467. @smallexample
  468. struct params @{
  469. int i;
  470. float f;
  471. @};
  472. void cpu_func(void *buffers[], void *cl_arg)
  473. @{
  474. struct params *params = cl_arg;
  475. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  476. @}
  477. starpu_codelet cl =
  478. @{
  479. .where = STARPU_CPU,
  480. .cpu_func = cpu_func,
  481. .nbuffers = 0
  482. @};
  483. @end smallexample
  484. @end cartouche
  485. A codelet is a structure that represents a computational kernel. Such a codelet
  486. may contain an implementation of the same kernel on different architectures
  487. (e.g. CUDA, Cell's SPU, x86, ...).
  488. The @code{nbuffers} field specifies the number of data buffers that are
  489. manipulated by the codelet: here the codelet does not access or modify any data
  490. that is controlled by our data management library. Note that the argument
  491. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  492. structure) does not count as a buffer since it is not managed by our data
  493. management library, but just contain trivial parameters.
  494. @c TODO need a crossref to the proper description of "where" see bla for more ...
  495. We create a codelet which may only be executed on the CPUs. The @code{where}
  496. field is a bitmask that defines where the codelet may be executed. Here, the
  497. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  498. (@pxref{Codelets and Tasks} for more details on this field).
  499. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  500. which @emph{must} have the following prototype:
  501. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  502. In this example, we can ignore the first argument of this function which gives a
  503. description of the input and output buffers (e.g. the size and the location of
  504. the matrices) since there is none.
  505. The second argument is a pointer to a buffer passed as an
  506. argument to the codelet by the means of the @code{cl_arg} field of the
  507. @code{starpu_task} structure.
  508. @c TODO rewrite so that it is a little clearer ?
  509. Be aware that this may be a pointer to a
  510. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  511. if the codelet modifies this buffer, there is no guarantee that the initial
  512. buffer will be modified as well: this for instance implies that the buffer
  513. cannot be used as a synchronization medium. If synchronization is needed, data
  514. has to be registered to StarPU, see @ref{Scaling a Vector}.
  515. @node Submitting a Task
  516. @subsection Submitting a Task
  517. @cartouche
  518. @smallexample
  519. void callback_func(void *callback_arg)
  520. @{
  521. printf("Callback function (arg %x)\n", callback_arg);
  522. @}
  523. int main(int argc, char **argv)
  524. @{
  525. /* @b{initialize StarPU} */
  526. starpu_init(NULL);
  527. struct starpu_task *task = starpu_task_create();
  528. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  529. struct params params = @{ 1, 2.0f @};
  530. task->cl_arg = &params;
  531. task->cl_arg_size = sizeof(params);
  532. task->callback_func = callback_func;
  533. task->callback_arg = 0x42;
  534. /* @b{starpu_task_submit will be a blocking call} */
  535. task->synchronous = 1;
  536. /* @b{submit the task to StarPU} */
  537. starpu_task_submit(task);
  538. /* @b{terminate StarPU} */
  539. starpu_shutdown();
  540. return 0;
  541. @}
  542. @end smallexample
  543. @end cartouche
  544. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  545. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  546. be submitted after the termination of StarPU by a call to
  547. @code{starpu_shutdown}.
  548. In the example above, a task structure is allocated by a call to
  549. @code{starpu_task_create}. This function only allocates and fills the
  550. corresponding structure with the default settings (@pxref{Codelets and
  551. Tasks, starpu_task_create}), but it does not submit the task to StarPU.
  552. @c not really clear ;)
  553. The @code{cl} field is a pointer to the codelet which the task will
  554. execute: in other words, the codelet structure describes which computational
  555. kernel should be offloaded on the different architectures, and the task
  556. structure is a wrapper containing a codelet and the piece of data on which the
  557. codelet should operate.
  558. The optional @code{cl_arg} field is a pointer to a buffer (of size
  559. @code{cl_arg_size}) with some parameters for the kernel
  560. described by the codelet. For instance, if a codelet implements a computational
  561. kernel that multiplies its input vector by a constant, the constant could be
  562. specified by the means of this buffer, instead of registering it as a StarPU
  563. data. It must however be noted that StarPU avoids making copy whenever possible
  564. and rather passes the pointer as such, so the buffer which is pointed at must
  565. kept allocated until the task terminates, and if several tasks are submitted
  566. with various parameters, each of them must be given a pointer to their own
  567. buffer.
  568. Once a task has been executed, an optional callback function is be called.
  569. While the computational kernel could be offloaded on various architectures, the
  570. callback function is always executed on a CPU. The @code{callback_arg}
  571. pointer is passed as an argument of the callback. The prototype of a callback
  572. function must be:
  573. @code{void (*callback_function)(void *);}
  574. If the @code{synchronous} field is non-zero, task submission will be
  575. synchronous: the @code{starpu_task_submit} function will not return until the
  576. task was executed. Note that the @code{starpu_shutdown} method does not
  577. guarantee that asynchronous tasks have been executed before it returns,
  578. @code{starpu_task_wait_for_all} can be used to that effect, or data can be
  579. unregistered (@code{starpu_data_unregister(vector_handle);}), which will
  580. implicitly wait for all the tasks scheduled to work on it, unless explicitly
  581. disabled thanks to @code{starpu_data_set_default_sequential_consistency_flag} or
  582. @code{starpu_data_set_sequential_consistency_flag}.
  583. @node Execution of Hello World
  584. @subsection Execution of Hello World
  585. @smallexample
  586. % make hello_world
  587. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  588. % ./hello_world
  589. Hello world (params = @{1, 2.000000@} )
  590. Callback function (arg 42)
  591. @end smallexample
  592. @node Scaling a Vector
  593. @section Manipulating Data: Scaling a Vector
  594. The previous example has shown how to submit tasks. In this section,
  595. we show how StarPU tasks can manipulate data. The full source code for
  596. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  597. @menu
  598. * Source code of Vector Scaling::
  599. * Execution of Vector Scaling::
  600. @end menu
  601. @node Source code of Vector Scaling
  602. @subsection Source code of Vector Scaling
  603. Programmers can describe the data layout of their application so that StarPU is
  604. responsible for enforcing data coherency and availability across the machine.
  605. Instead of handling complex (and non-portable) mechanisms to perform data
  606. movements, programmers only declare which piece of data is accessed and/or
  607. modified by a task, and StarPU makes sure that when a computational kernel
  608. starts somewhere (e.g. on a GPU), its data are available locally.
  609. Before submitting those tasks, the programmer first needs to declare the
  610. different pieces of data to StarPU using the @code{starpu_*_data_register}
  611. functions. To ease the development of applications for StarPU, it is possible
  612. to describe multiple types of data layout. A type of data layout is called an
  613. @b{interface}. There are different predefined interfaces available in StarPU:
  614. here we will consider the @b{vector interface}.
  615. The following lines show how to declare an array of @code{NX} elements of type
  616. @code{float} using the vector interface:
  617. @cartouche
  618. @smallexample
  619. float vector[NX];
  620. starpu_data_handle vector_handle;
  621. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  622. sizeof(vector[0]));
  623. @end smallexample
  624. @end cartouche
  625. The first argument, called the @b{data handle}, is an opaque pointer which
  626. designates the array in StarPU. This is also the structure which is used to
  627. describe which data is used by a task. The second argument is the node number
  628. where the data originally resides. Here it is 0 since the @code{vector} array is in
  629. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  630. the number of elements in the vector and the size of each element.
  631. The following shows how to construct a StarPU task that will manipulate the
  632. vector and a constant factor.
  633. @cartouche
  634. @smallexample
  635. float factor = 3.14;
  636. struct starpu_task *task = starpu_task_create();
  637. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  638. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  639. task->buffers[0].mode = STARPU_RW;
  640. task->cl_arg = &factor;
  641. task->cl_arg_size = sizeof(factor);
  642. task->synchronous = 1;
  643. starpu_task_submit(task);
  644. @end smallexample
  645. @end cartouche
  646. Since the factor is a mere constant float value parameter,
  647. it does not need a preliminary registration, and
  648. can just be passed through the @code{cl_arg} pointer like in the previous
  649. example. The vector parameter is described by its handle.
  650. There are two fields in each element of the @code{buffers} array.
  651. @code{handle} is the handle of the data, and @code{mode} specifies how the
  652. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  653. write-only and @code{STARPU_RW} for read and write access).
  654. The definition of the codelet can be written as follows:
  655. @cartouche
  656. @smallexample
  657. void scal_cpu_func(void *buffers[], void *cl_arg)
  658. @{
  659. unsigned i;
  660. float *factor = cl_arg;
  661. /* length of the vector */
  662. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  663. /* CPU copy of the vector pointer */
  664. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  665. for (i = 0; i < n; i++)
  666. val[i] *= *factor;
  667. @}
  668. starpu_codelet cl = @{
  669. .where = STARPU_CPU,
  670. .cpu_func = scal_cpu_func,
  671. .nbuffers = 1
  672. @};
  673. @end smallexample
  674. @end cartouche
  675. The first argument is an array that gives
  676. a description of all the buffers passed in the @code{task->buffers}@ array. The
  677. size of this array is given by the @code{nbuffers} field of the codelet
  678. structure. For the sake of genericity, this array contains pointers to the
  679. different interfaces describing each buffer. In the case of the @b{vector
  680. interface}, the location of the vector (resp. its length) is accessible in the
  681. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  682. read-write fashion, any modification will automatically affect future accesses
  683. to this vector made by other tasks.
  684. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  685. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  686. constant factor from this pointer.
  687. @node Execution of Vector Scaling
  688. @subsection Execution of Vector Scaling
  689. @smallexample
  690. % make vector_scal
  691. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  692. % ./vector_scal
  693. 0.000000 3.000000 6.000000 9.000000 12.000000
  694. @end smallexample
  695. @node Vector Scaling on an Hybrid CPU/GPU Machine
  696. @section Vector Scaling on an Hybrid CPU/GPU Machine
  697. Contrary to the previous examples, the task submitted in this example may not
  698. only be executed by the CPUs, but also by a CUDA device.
  699. @menu
  700. * Definition of the CUDA Kernel::
  701. * Definition of the OpenCL Kernel::
  702. * Definition of the Main Code::
  703. * Execution of Hybrid Vector Scaling::
  704. @end menu
  705. @node Definition of the CUDA Kernel
  706. @subsection Definition of the CUDA Kernel
  707. The CUDA implementation can be written as follows. It needs to be compiled with
  708. a CUDA compiler such as nvcc, the NVIDIA CUDA compiler driver. It must be noted
  709. that the vector pointer returned by STARPU_VECTOR_GET_PTR is here a pointer in GPU
  710. memory, so that it can be passed as such to the @code{vector_mult_cuda} kernel
  711. call.
  712. @cartouche
  713. @smallexample
  714. #include <starpu.h>
  715. #include <starpu_cuda.h>
  716. static __global__ void vector_mult_cuda(float *val, unsigned n,
  717. float factor)
  718. @{
  719. unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
  720. if (i < n)
  721. val[i] *= factor;
  722. @}
  723. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  724. @{
  725. float *factor = (float *)_args;
  726. /* length of the vector */
  727. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  728. /* CUDA copy of the vector pointer */
  729. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  730. unsigned threads_per_block = 64;
  731. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  732. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  733. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  734. @}
  735. @end smallexample
  736. @end cartouche
  737. @node Definition of the OpenCL Kernel
  738. @subsection Definition of the OpenCL Kernel
  739. The OpenCL implementation can be written as follows. StarPU provides
  740. tools to compile a OpenCL kernel stored in a file.
  741. @cartouche
  742. @smallexample
  743. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  744. @{
  745. const int i = get_global_id(0);
  746. if (i < nx) @{
  747. val[i] *= factor;
  748. @}
  749. @}
  750. @end smallexample
  751. @end cartouche
  752. Similarly to CUDA, the pointer returned by @code{STARPU_VECTOR_GET_PTR} is here
  753. a device pointer, so that it is passed as such to the OpenCL kernel.
  754. @cartouche
  755. @smallexample
  756. #include <starpu.h>
  757. @i{#include <starpu_opencl.h>}
  758. @i{extern struct starpu_opencl_program programs;}
  759. void scal_opencl_func(void *buffers[], void *_args)
  760. @{
  761. float *factor = _args;
  762. @i{ int id, devid, err;}
  763. @i{ cl_kernel kernel;}
  764. @i{ cl_command_queue queue;}
  765. @i{ cl_event event;}
  766. /* length of the vector */
  767. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  768. /* OpenCL copy of the vector pointer */
  769. cl_mem val = (cl_mem) STARPU_VECTOR_GET_PTR(buffers[0]);
  770. @i{ id = starpu_worker_get_id();}
  771. @i{ devid = starpu_worker_get_devid(id);}
  772. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  773. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  774. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  775. @i{ err = clSetKernelArg(kernel, 0, sizeof(val), &val);}
  776. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  777. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  778. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  779. @i{ @{}
  780. @i{ size_t global=1;}
  781. @i{ size_t local=1;}
  782. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  783. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  784. @i{ @}}
  785. @i{ clFinish(queue);}
  786. @i{ starpu_opencl_collect_stats(event);}
  787. @i{ clReleaseEvent(event);}
  788. @i{ starpu_opencl_release_kernel(kernel);}
  789. @}
  790. @end smallexample
  791. @end cartouche
  792. @node Definition of the Main Code
  793. @subsection Definition of the Main Code
  794. The CPU implementation is the same as in the previous section.
  795. Here is the source of the main application. You can notice the value of the
  796. field @code{where} for the codelet. We specify
  797. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  798. can be executed either on a CPU or on a CUDA or an OpenCL device.
  799. @cartouche
  800. @smallexample
  801. #include <starpu.h>
  802. #define NX 2048
  803. extern void scal_cuda_func(void *buffers[], void *_args);
  804. extern void scal_cpu_func(void *buffers[], void *_args);
  805. extern void scal_opencl_func(void *buffers[], void *_args);
  806. /* @b{Definition of the codelet} */
  807. static starpu_codelet cl = @{
  808. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  809. /* @b{on a CUDA device, or on an OpenCL device} */
  810. .cuda_func = scal_cuda_func,
  811. .cpu_func = scal_cpu_func,
  812. .opencl_func = scal_opencl_func,
  813. .nbuffers = 1
  814. @}
  815. #ifdef STARPU_USE_OPENCL
  816. /* @b{The compiled version of the OpenCL program} */
  817. struct starpu_opencl_program programs;
  818. #endif
  819. int main(int argc, char **argv)
  820. @{
  821. float *vector;
  822. int i, ret;
  823. float factor=3.0;
  824. struct starpu_task *task;
  825. starpu_data_handle vector_handle;
  826. starpu_init(NULL); /* @b{Initialising StarPU} */
  827. #ifdef STARPU_USE_OPENCL
  828. starpu_opencl_load_opencl_from_file(
  829. "examples/basic_examples/vector_scal_opencl_codelet.cl",
  830. &programs, NULL);
  831. #endif
  832. vector = malloc(NX*sizeof(vector[0]));
  833. assert(vector);
  834. for(i=0 ; i<NX ; i++) vector[i] = i;
  835. @end smallexample
  836. @end cartouche
  837. @cartouche
  838. @smallexample
  839. /* @b{Registering data within StarPU} */
  840. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  841. NX, sizeof(vector[0]));
  842. /* @b{Definition of the task} */
  843. task = starpu_task_create();
  844. task->cl = &cl;
  845. task->buffers[0].handle = vector_handle;
  846. task->buffers[0].mode = STARPU_RW;
  847. task->cl_arg = &factor;
  848. task->cl_arg_size = sizeof(factor);
  849. @end smallexample
  850. @end cartouche
  851. @cartouche
  852. @smallexample
  853. /* @b{Submitting the task} */
  854. ret = starpu_task_submit(task);
  855. if (ret == -ENODEV) @{
  856. fprintf(stderr, "No worker may execute this task\n");
  857. return 1;
  858. @}
  859. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  860. /* @b{Waiting for its termination} */
  861. starpu_task_wait_for_all();
  862. /* @b{Update the vector in RAM} */
  863. starpu_data_acquire(vector_handle, STARPU_R);
  864. @end smallexample
  865. @end cartouche
  866. @cartouche
  867. @smallexample
  868. /* @b{Access the data} */
  869. for(i=0 ; i<NX; i++) @{
  870. fprintf(stderr, "%f ", vector[i]);
  871. @}
  872. fprintf(stderr, "\n");
  873. /* @b{Release the RAM view of the data before unregistering it and shutting down StarPU} */
  874. starpu_data_release(vector_handle);
  875. starpu_data_unregister(vector_handle);
  876. starpu_shutdown();
  877. return 0;
  878. @}
  879. @end smallexample
  880. @end cartouche
  881. @node Execution of Hybrid Vector Scaling
  882. @subsection Execution of Hybrid Vector Scaling
  883. The Makefile given at the beginning of the section must be extended to
  884. give the rules to compile the CUDA source code. Note that the source
  885. file of the OpenCL kernel does not need to be compiled now, it will
  886. be compiled at run-time when calling the function
  887. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  888. @cartouche
  889. @smallexample
  890. CFLAGS += $(shell pkg-config --cflags libstarpu)
  891. LDFLAGS += $(shell pkg-config --libs libstarpu)
  892. CC = gcc
  893. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  894. %.o: %.cu
  895. nvcc $(CFLAGS) $< -c $@
  896. clean:
  897. rm -f vector_scal *.o
  898. @end smallexample
  899. @end cartouche
  900. @smallexample
  901. % make
  902. @end smallexample
  903. and to execute it, with the default configuration:
  904. @smallexample
  905. % ./vector_scal
  906. 0.000000 3.000000 6.000000 9.000000 12.000000
  907. @end smallexample
  908. or for example, by disabling CPU devices:
  909. @smallexample
  910. % STARPU_NCPUS=0 ./vector_scal
  911. 0.000000 3.000000 6.000000 9.000000 12.000000
  912. @end smallexample
  913. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  914. see @ref{Enabling OpenCL}):
  915. @smallexample
  916. % STARPU_NCUDA=0 ./vector_scal
  917. 0.000000 3.000000 6.000000 9.000000 12.000000
  918. @end smallexample
  919. @node Using multiple implementations of a codelet
  920. @section Using multiple implementations of a codelet
  921. One may want to write multiple implementations of a codelet for a single type of
  922. device and let StarPU choose which one to run. As an example, we will show how
  923. to use SSE to scale a vector. The codelet can be written as follows :
  924. @cartouche
  925. @smallexample
  926. #include <xmmintrin.h>
  927. void scal_sse_func(void *buffers[], void *cl_arg)
  928. @{
  929. float *vector = (float *) STARPU_VECTOR_GET_PTR(buffers[0]);
  930. unsigned int n = STARPU_VECTOR_GET_NX(buffers[0]);
  931. unsigned int n_iterations = n/4;
  932. if (n % 4 != 0)
  933. n_iterations++;
  934. __m128 *VECTOR = (__m128*) vector;
  935. __m128 factor __attribute__((aligned(16)));
  936. factor = _mm_set1_ps(*(float *) cl_arg);
  937. unsigned int i;
  938. for (i = 0; i < n_iterations; i++)
  939. VECTOR[i] = _mm_mul_ps(factor, VECTOR[i]);
  940. @}
  941. @end smallexample
  942. @end cartouche
  943. The @code{cpu_func} field of the @code{starpu_codelet} structure has to be set
  944. to the special value @code{STARPU_MULTIPLE_CPU_IMPLEMENTATIONS}. Note that
  945. @code{STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS} and
  946. @code{STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS} are also available.
  947. @cartouche
  948. @smallexample
  949. starpu_codelet cl = @{
  950. .where = STARPU_CPU,
  951. .cpu_func = STARPU_MULTIPLE_CPU_IMPLEMENTATIONS,
  952. .cpu_funcs = @{ scal_cpu_func, scal_sse_func @},
  953. .nbuffers = 1
  954. @};
  955. @end smallexample
  956. @end cartouche
  957. The scheduler will measure the performance of all the implementations it was
  958. given, and pick the one that seems to be the fastest.
  959. @node Task and Worker Profiling
  960. @section Task and Worker Profiling
  961. A full example showing how to use the profiling API is available in
  962. the StarPU sources in the directory @code{examples/profiling/}.
  963. @cartouche
  964. @smallexample
  965. struct starpu_task *task = starpu_task_create();
  966. task->cl = &cl;
  967. task->synchronous = 1;
  968. /* We will destroy the task structure by hand so that we can
  969. * query the profiling info before the task is destroyed. */
  970. task->destroy = 0;
  971. /* Submit and wait for completion (since synchronous was set to 1) */
  972. starpu_task_submit(task);
  973. /* The task is finished, get profiling information */
  974. struct starpu_task_profiling_info *info = task->profiling_info;
  975. /* How much time did it take before the task started ? */
  976. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  977. /* How long was the task execution ? */
  978. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  979. /* We don't need the task structure anymore */
  980. starpu_task_destroy(task);
  981. @end smallexample
  982. @end cartouche
  983. @cartouche
  984. @smallexample
  985. /* Display the occupancy of all workers during the test */
  986. int worker;
  987. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  988. @{
  989. struct starpu_worker_profiling_info worker_info;
  990. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  991. STARPU_ASSERT(!ret);
  992. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  993. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  994. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  995. float executing_ratio = 100.0*executing_time/total_time;
  996. float sleeping_ratio = 100.0*sleeping_time/total_time;
  997. char workername[128];
  998. starpu_worker_get_name(worker, workername, 128);
  999. fprintf(stderr, "Worker %s:\n", workername);
  1000. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  1001. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  1002. executing_ratio);
  1003. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  1004. sleeping_ratio);
  1005. @}
  1006. @end smallexample
  1007. @end cartouche
  1008. @node Partitioning Data
  1009. @section Partitioning Data
  1010. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  1011. @cartouche
  1012. @smallexample
  1013. int vector[NX];
  1014. starpu_data_handle handle;
  1015. /* Declare data to StarPU */
  1016. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  1017. /* Partition the vector in PARTS sub-vectors */
  1018. starpu_filter f =
  1019. @{
  1020. .filter_func = starpu_block_filter_func_vector,
  1021. .nchildren = PARTS
  1022. @};
  1023. starpu_data_partition(handle, &f);
  1024. @end smallexample
  1025. @end cartouche
  1026. @cartouche
  1027. @smallexample
  1028. /* Submit a task on each sub-vector */
  1029. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  1030. /* Get subdata number i (there is only 1 dimension) */
  1031. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  1032. struct starpu_task *task = starpu_task_create();
  1033. task->buffers[0].handle = sub_handle;
  1034. task->buffers[0].mode = STARPU_RW;
  1035. task->cl = &cl;
  1036. task->synchronous = 1;
  1037. task->cl_arg = &factor;
  1038. task->cl_arg_size = sizeof(factor);
  1039. starpu_task_submit(task);
  1040. @}
  1041. @end smallexample
  1042. @end cartouche
  1043. Partitioning can be applied several times, see
  1044. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  1045. @node Performance model example
  1046. @section Performance model example
  1047. To achieve good scheduling, StarPU scheduling policies need to be able to
  1048. estimate in advance the duration of a task. This is done by giving to codelets
  1049. a performance model, by defining a @code{starpu_perfmodel_t} structure and
  1050. providing its address in the @code{model} field of the @code{starpu_codelet}
  1051. structure. The @code{symbol} and @code{type} fields of @code{starpu_perfmodel_t}
  1052. are mandatory, to give a name to the model, and the type of the model, since
  1053. there are several kinds of performance models.
  1054. @itemize
  1055. @item
  1056. Measured at runtime (@code{STARPU_HISTORY_BASED} model type). This assumes that for a
  1057. given set of data input/output sizes, the performance will always be about the
  1058. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  1059. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  1060. few different sets of data input/output sizes. StarPU will then keep record of
  1061. the average time of previous executions on the various processing units, and use
  1062. it as an estimation. History is done per task size, by using a hash of the input
  1063. and ouput sizes as an index.
  1064. It will also save it in @code{~/.starpu/sampling/codelets}
  1065. for further executions, and can be observed by using the
  1066. @code{starpu_perfmodel_display} command, or drawn by using
  1067. the @code{starpu_perfmodel_plot}. The models are indexed by machine name. To
  1068. share the models between machines (e.g. for a homogeneous cluster), use
  1069. @code{export STARPU_HOSTNAME=some_global_name}. Measurements are only done when using a task scheduler which makes use of it, such as @code{heft} or @code{dmda}.
  1070. The following is a small code example.
  1071. If e.g. the code is recompiled with other compilation options, or several
  1072. variants of the code are used, the symbol string should be changed to reflect
  1073. that, in order to recalibrate a new model from zero. The symbol string can even
  1074. be constructed dynamically at execution time, as long as this is done before
  1075. submitting any task using it.
  1076. @cartouche
  1077. @smallexample
  1078. static struct starpu_perfmodel_t mult_perf_model = @{
  1079. .type = STARPU_HISTORY_BASED,
  1080. .symbol = "mult_perf_model"
  1081. @};
  1082. starpu_codelet cl = @{
  1083. .where = STARPU_CPU,
  1084. .cpu_func = cpu_mult,
  1085. .nbuffers = 3,
  1086. /* for the scheduling policy to be able to use performance models */
  1087. .model = &mult_perf_model
  1088. @};
  1089. @end smallexample
  1090. @end cartouche
  1091. @item
  1092. Measured at runtime and refined by regression (@code{STARPU_REGRESSION_*_BASED}
  1093. model type). This still assumes performance regularity, but can work
  1094. with various data input sizes, by applying regression over observed
  1095. execution times. STARPU_REGRESSION_BASED uses an a*n^b regression
  1096. form, STARPU_NL_REGRESSION_BASED uses an a*n^b+c (more precise than
  1097. STARPU_REGRESSION_BASED, but costs a lot more to compute). For instance,
  1098. @code{tests/perfmodels/regression_based.c} uses a regression-based performance
  1099. model for the @code{memset} operation.
  1100. @item
  1101. Provided as an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  1102. see for instance
  1103. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}.
  1104. @item
  1105. Provided explicitly by the application (@code{STARPU_PER_ARCH} model type): the
  1106. @code{.per_arch[i].cost_model} fields have to be filled with pointers to
  1107. functions which return the expected duration of the task in micro-seconds, one
  1108. per architecture.
  1109. @end itemize
  1110. How to use schedulers which can benefit from such performance model is explained
  1111. in @ref{Task scheduling policy}.
  1112. The same can be done for task power consumption estimation, by setting the
  1113. @code{power_model} field the same way as the @code{model} field. Note: for
  1114. now, the application has to give to the power consumption performance model
  1115. a name which is different from the execution time performance model.
  1116. The application can request time estimations from the StarPU performance
  1117. models by filling a task structure as usual without actually submitting
  1118. it. The data handles can be created by calling @code{starpu_data_register}
  1119. functions with a @code{NULL} pointer (and need to be unregistered as usual)
  1120. and the desired data sizes. The @code{starpu_task_expected_length} and
  1121. @code{starpu_task_expected_power} functions can then be called to get an
  1122. estimation of the task duration on a given arch. @code{starpu_task_destroy}
  1123. needs to be called to destroy the dummy task afterwards. See
  1124. @code{tests/perfmodels/regression_based.c} for an example.
  1125. @node Theoretical lower bound on execution time
  1126. @section Theoretical lower bound on execution time
  1127. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  1128. bound for the execution time of a whole set of tasks. See for
  1129. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  1130. call @code{starpu_bound_start}, and after complete execution, call
  1131. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  1132. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  1133. problem corresponding to the schedule of your tasks. Run it through
  1134. @code{lp_solve} or any other linear programming solver, and that will give you a
  1135. lower bound for the total execution time of your tasks. If StarPU was compiled
  1136. with the glpk library installed, @code{starpu_bound_compute} can be used to
  1137. solve it immediately and get the optimized minimum, in ms. Its @code{integer}
  1138. parameter allows to decide whether integer resolution should be computed
  1139. and returned too.
  1140. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  1141. dependencies into account. It must be understood that the linear programming
  1142. problem size is quadratic with the number of tasks and thus the time to solve it
  1143. will be very long, it could be minutes for just a few dozen tasks. You should
  1144. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  1145. problem to MPS format and then use a better solver, @code{glpsol} might be
  1146. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  1147. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  1148. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  1149. of @code{lp_solve}. For instance, we often just use
  1150. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  1151. the @code{-gr} option can also be quite useful.
  1152. Setting @code{deps} to 0 will only take into account the actual computations
  1153. on processing units. It however still properly takes into account the varying
  1154. performances of kernels and processing units, which is quite more accurate than
  1155. just comparing StarPU performances with the fastest of the kernels being used.
  1156. The @code{prio} parameter tells StarPU whether to simulate taking into account
  1157. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  1158. tasks before less prioritized tasks, to check to which extend this results
  1159. to a less optimal solution. This increases even more computation time.
  1160. Note that for simplicity, all this however doesn't take into account data
  1161. transfers, which are assumed to be completely overlapped.
  1162. @node Insert Task Utility
  1163. @section Insert Task Utility
  1164. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  1165. the creation and submission of tasks.
  1166. @deftypefun int starpu_insert_task (starpu_codelet *@var{cl}, ...)
  1167. Create and submit a task corresponding to @var{cl} with the following
  1168. arguments. The argument list must be zero-terminated.
  1169. The arguments following the codelets can be of the following types:
  1170. @itemize
  1171. @item
  1172. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  1173. @item
  1174. @code{STARPU_VALUE} followed by a pointer to a constant value and
  1175. the size of the constant;
  1176. @item
  1177. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  1178. @item
  1179. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1180. argument to the callback function;
  1181. @item
  1182. @code{STARPU_CALLBACK_WITH_ARG} followed by two pointers: one to a callback
  1183. function, and the other to be given as an argument to the callback
  1184. function; this is equivalent to using both @code{STARPU_CALLBACK} and
  1185. @code{STARPU_CALLBACK_WITH_ARG}
  1186. @item
  1187. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1188. @end itemize
  1189. Parameters to be passed to the codelet implementation are defined
  1190. through the type @code{STARPU_VALUE}. The function
  1191. @code{starpu_unpack_cl_args} must be called within the codelet
  1192. implementation to retrieve them.
  1193. @end deftypefun
  1194. Here the implementation of the codelet:
  1195. @smallexample
  1196. void func_cpu(void *descr[], void *_args)
  1197. @{
  1198. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1199. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1200. int ifactor;
  1201. float ffactor;
  1202. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1203. *x0 = *x0 * ifactor;
  1204. *x1 = *x1 * ffactor;
  1205. @}
  1206. starpu_codelet mycodelet = @{
  1207. .where = STARPU_CPU,
  1208. .cpu_func = func_cpu,
  1209. .nbuffers = 2
  1210. @};
  1211. @end smallexample
  1212. And the call to the @code{starpu_insert_task} wrapper:
  1213. @smallexample
  1214. starpu_insert_task(&mycodelet,
  1215. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1216. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1217. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1218. 0);
  1219. @end smallexample
  1220. The call to @code{starpu_insert_task} is equivalent to the following
  1221. code:
  1222. @smallexample
  1223. struct starpu_task *task = starpu_task_create();
  1224. task->cl = &mycodelet;
  1225. task->buffers[0].handle = data_handles[0];
  1226. task->buffers[0].mode = STARPU_RW;
  1227. task->buffers[1].handle = data_handles[1];
  1228. task->buffers[1].mode = STARPU_RW;
  1229. char *arg_buffer;
  1230. size_t arg_buffer_size;
  1231. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1232. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1233. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1234. 0);
  1235. task->cl_arg = arg_buffer;
  1236. task->cl_arg_size = arg_buffer_size;
  1237. int ret = starpu_task_submit(task);
  1238. @end smallexample
  1239. If some part of the task insertion depends on the value of some computation,
  1240. the @code{STARPU_DATA_ACQUIRE_CB} macro can be very convenient. For
  1241. instance, assuming that the index variable @code{i} was registered as handle
  1242. @code{i_handle}:
  1243. @smallexample
  1244. /* Compute which portion we will work on, e.g. pivot */
  1245. starpu_insert_task(&which_index, STARPU_W, i_handle, 0);
  1246. /* And submit the corresponding task */
  1247. STARPU_DATA_ACQUIRE_CB(i_handle, STARPU_R, starpu_insert_task(&work, STARPU_RW, A_handle[i], 0));
  1248. @end smallexample
  1249. The @code{STARPU_DATA_ACQUIRE_CB} macro submits an asynchronous request for
  1250. acquiring data @code{i} for the main application, and will execute the code
  1251. given as third parameter when it is acquired. In other words, as soon as the
  1252. value of @code{i} computed by the @code{which_index} codelet can be read, the
  1253. portion of code passed as third parameter of @code{STARPU_DATA_ACQUIRE_CB} will
  1254. be executed, and is allowed to read from @code{i} to use it e.g. as an
  1255. index. Note that this macro is only avaible when compiling StarPU with
  1256. the compiler @code{gcc}.
  1257. @node Debugging
  1258. @section Debugging
  1259. StarPU provides several tools to help debugging aplications. Execution traces
  1260. can be generated and displayed graphically, see @ref{Generating traces}. Some
  1261. gdb helpers are also provided to show the whole StarPU state:
  1262. @smallexample
  1263. (gdb) source tools/gdbinit
  1264. (gdb) help starpu
  1265. @end smallexample
  1266. @node More examples
  1267. @section More examples
  1268. More examples are available in the StarPU sources in the @code{examples/}
  1269. directory. Simple examples include:
  1270. @table @asis
  1271. @item @code{incrementer/}:
  1272. Trivial incrementation test.
  1273. @item @code{basic_examples/}:
  1274. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1275. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1276. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1277. interface, an example using the variable data interface, and an example
  1278. using different formats on CPUs and GPUs.
  1279. @item @code{matvecmult/}:
  1280. OpenCL example from NVidia, adapted to StarPU.
  1281. @item @code{axpy/}:
  1282. AXPY CUBLAS operation adapted to StarPU.
  1283. @item @code{fortran/}:
  1284. Example of Fortran bindings.
  1285. @end table
  1286. More advanced examples include:
  1287. @table @asis
  1288. @item @code{filters/}:
  1289. Examples using filters, as shown in @ref{Partitioning Data}.
  1290. @item @code{lu/}:
  1291. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1292. @item @code{cholesky/}:
  1293. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1294. @end table
  1295. @c ---------------------------------------------------------------------
  1296. @c Performance options
  1297. @c ---------------------------------------------------------------------
  1298. @node Performance optimization
  1299. @chapter How to optimize performance with StarPU
  1300. TODO: improve!
  1301. @menu
  1302. * Data management::
  1303. * Task submission::
  1304. * Task priorities::
  1305. * Task scheduling policy::
  1306. * Performance model calibration::
  1307. * Task distribution vs Data transfer::
  1308. * Data prefetch::
  1309. * Power-based scheduling::
  1310. * Profiling::
  1311. * CUDA-specific optimizations::
  1312. @end menu
  1313. Simply encapsulating application kernels into tasks already permits to
  1314. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1315. few additional changes are needed.
  1316. @node Data management
  1317. @section Data management
  1318. When the application allocates data, whenever possible it should use the
  1319. @code{starpu_malloc} function, which will ask CUDA or
  1320. OpenCL to make the allocation itself and pin the corresponding allocated
  1321. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1322. transfer to overlap with computations. Otherwise, the trace will show that the
  1323. @code{DriverCopyAsync} state takes a lot of time, this is because CUDA or OpenCL
  1324. then reverts to synchronous transfers.
  1325. By default, StarPU leaves replicates of data wherever they were used, in case they
  1326. will be re-used by other tasks, thus saving the data transfer time. When some
  1327. task modifies some data, all the other replicates are invalidated, and only the
  1328. processing unit which ran that task will have a valid replicate of the data. If the application knows
  1329. that this data will not be re-used by further tasks, it should advise StarPU to
  1330. immediately replicate it to a desired list of memory nodes (given through a
  1331. bitmask). This can be understood like the write-through mode of CPU caches.
  1332. @example
  1333. starpu_data_set_wt_mask(img_handle, 1<<0);
  1334. @end example
  1335. will for instance request to always automatically transfer a replicate into the
  1336. main memory (node 0), as bit 0 of the write-through bitmask is being set.
  1337. @example
  1338. starpu_data_set_wt_mask(img_handle, ~0U);
  1339. @end example
  1340. will request to always automatically broadcast the updated data to all memory
  1341. nodes.
  1342. @node Task submission
  1343. @section Task submission
  1344. To let StarPU make online optimizations, tasks should be submitted
  1345. asynchronously as much as possible. Ideally, all the tasks should be
  1346. submitted, and mere calls to @code{starpu_task_wait_for_all} or
  1347. @code{starpu_data_unregister} be done to wait for
  1348. termination. StarPU will then be able to rework the whole schedule, overlap
  1349. computation with communication, manage accelerator local memory usage, etc.
  1350. @node Task priorities
  1351. @section Task priorities
  1352. By default, StarPU will consider the tasks in the order they are submitted by
  1353. the application. If the application programmer knows that some tasks should
  1354. be performed in priority (for instance because their output is needed by many
  1355. other tasks and may thus be a bottleneck if not executed early enough), the
  1356. @code{priority} field of the task structure should be set to transmit the
  1357. priority information to StarPU.
  1358. @node Task scheduling policy
  1359. @section Task scheduling policy
  1360. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1361. because it provides correct load balance even if the application codelets do not
  1362. have performance models. If your application codelets have performance models
  1363. (@pxref{Performance model example} for examples showing how to do it),
  1364. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1365. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1366. the list of available schedulers.
  1367. The @b{eager} scheduler uses a central task queue, from which workers draw tasks
  1368. to work on. This however does not permit to prefetch data since the scheduling
  1369. decision is taken late. If a task has a non-0 priority, it is put at the front of the queue.
  1370. The @b{prio} scheduler also uses a central task queue, but sorts tasks by
  1371. priority (between -5 and 5).
  1372. The @b{random} scheduler distributes tasks randomly according to assumed worker
  1373. overall performance.
  1374. The @b{ws} (work stealing) scheduler schedules tasks on the local worker by
  1375. default. When a worker becomes idle, it steals a task from the most loaded
  1376. worker.
  1377. The @b{dm} (deque model) scheduler uses task execution performance models into account to
  1378. perform an HEFT-similar scheduling strategy: it schedules tasks where their
  1379. termination time will be minimal.
  1380. The @b{dmda} (deque model data aware) scheduler is similar to dm, it also takes
  1381. into account data transfer time.
  1382. The @b{dmdar} (deque model data aware ready) scheduler is similar to dmda,
  1383. it also sorts tasks on per-worker queues by number of already-available data
  1384. buffers.
  1385. The @b{dmdas} (deque model data aware sorted) scheduler is similar to dmda, it
  1386. also supports arbitrary priority values.
  1387. The @b{heft} (HEFT) scheduler is similar to dmda, it also supports task bundles.
  1388. The @b{pheft} (parallel HEFT) scheduler is similar to heft, it also supports
  1389. parallel tasks (still experimental).
  1390. The @b{pgreedy} (parallel greedy) scheduler is similar to greedy, it also
  1391. supports parallel tasks (still experimental).
  1392. @node Performance model calibration
  1393. @section Performance model calibration
  1394. Most schedulers are based on an estimation of codelet duration on each kind
  1395. of processing unit. For this to be possible, the application programmer needs
  1396. to configure a performance model for the codelets of the application (see
  1397. @ref{Performance model example} for instance). History-based performance models
  1398. use on-line calibration. StarPU will automatically calibrate codelets
  1399. which have never been calibrated yet, and save the result in
  1400. @code{~/.starpu/sampling/codelets}.
  1401. The models are indexed by machine name. To share the models between machines (e.g. for a homogeneous cluster), use @code{export STARPU_HOSTNAME=some_global_name}. To force continuing calibration, use
  1402. @code{export STARPU_CALIBRATE=1} . This may be necessary if your application
  1403. has not-so-stable performance. StarPU will force calibration (and thus ignore
  1404. the current result) until 10 (STARPU_CALIBRATION_MINIMUM) measurements have been
  1405. made on each architecture, to avoid badly scheduling tasks just because the
  1406. first measurements were not so good. Details on the current performance model status
  1407. can be obtained from the @code{starpu_perfmodel_display} command: the @code{-l}
  1408. option lists the available performance models, and the @code{-s} option permits
  1409. to choose the performance model to be displayed. The result looks like:
  1410. @example
  1411. $ starpu_perfmodel_display -s starpu_dlu_lu_model_22
  1412. performance model for cpu
  1413. # hash size mean dev n
  1414. 880805ba 98304 2.731309e+02 6.010210e+01 1240
  1415. b50b6605 393216 1.469926e+03 1.088828e+02 1240
  1416. 5c6c3401 1572864 1.125983e+04 3.265296e+03 1240
  1417. @end example
  1418. Which shows that for the LU 22 kernel with a 1.5MiB matrix, the average
  1419. execution time on CPUs was about 12ms, with a 2ms standard deviation, over
  1420. 1240 samples. It is a good idea to check this before doing actual performance
  1421. measurements.
  1422. A graph can be drawn by using the @code{starpu_perfmodel_plot}:
  1423. @example
  1424. $ starpu_perfmodel_plot -s starpu_dlu_lu_model_22
  1425. 98304 393216 1572864
  1426. $ gnuplot starpu_starpu_dlu_lu_model_22.gp
  1427. $ gv starpu_starpu_dlu_lu_model_22.eps
  1428. @end example
  1429. If a kernel source code was modified (e.g. performance improvement), the
  1430. calibration information is stale and should be dropped, to re-calibrate from
  1431. start. This can be done by using @code{export STARPU_CALIBRATE=2}.
  1432. Note: due to CUDA limitations, to be able to measure kernel duration,
  1433. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1434. disables data transfer / computation overlapping, and should thus not be used
  1435. for eventual benchmarks. Note 2: history-based performance models get calibrated
  1436. only if a performance-model-based scheduler is chosen.
  1437. @node Task distribution vs Data transfer
  1438. @section Task distribution vs Data transfer
  1439. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1440. thus needs to find a balance between both. The target function that the
  1441. @code{dmda} scheduler of StarPU
  1442. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1443. @code{T_execution} is the estimated execution time of the codelet (usually
  1444. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1445. latter is estimated based on bus calibration before execution start,
  1446. i.e. with an idle machine, thus without contention. You can force bus re-calibration by running
  1447. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1448. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance,
  1449. since during real application execution, contention makes transfer times bigger.
  1450. This is of course imprecise, but in practice, a rough estimation already gives
  1451. the good results that a precise estimation would give.
  1452. @node Data prefetch
  1453. @section Data prefetch
  1454. The @code{heft}, @code{dmda} and @code{pheft} scheduling policies perform data prefetch (see @ref{STARPU_PREFETCH}):
  1455. as soon as a scheduling decision is taken for a task, requests are issued to
  1456. transfer its required data to the target processing unit, if needeed, so that
  1457. when the processing unit actually starts the task, its data will hopefully be
  1458. already available and it will not have to wait for the transfer to finish.
  1459. The application may want to perform some manual prefetching, for several reasons
  1460. such as excluding initial data transfers from performance measurements, or
  1461. setting up an initial statically-computed data distribution on the machine
  1462. before submitting tasks, which will thus guide StarPU toward an initial task
  1463. distribution (since StarPU will try to avoid further transfers).
  1464. This can be achieved by giving the @code{starpu_data_prefetch_on_node} function
  1465. the handle and the desired target memory node.
  1466. @node Power-based scheduling
  1467. @section Power-based scheduling
  1468. If the application can provide some power performance model (through
  1469. the @code{power_model} field of the codelet structure), StarPU will
  1470. take it into account when distributing tasks. The target function that
  1471. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1472. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1473. is the estimated task consumption in Joules. To tune this parameter, use
  1474. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1475. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1476. @code{alpha} and @code{beta} to zero permits to only take into account power consumption.
  1477. This is however not sufficient to correctly optimize power: the scheduler would
  1478. simply tend to run all computations on the most energy-conservative processing
  1479. unit. To account for the consumption of the whole machine (including idle
  1480. processing units), the idle power of the machine should be given by setting
  1481. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1482. be obtained from the machine power supplier.
  1483. The power actually consumed by the total execution can be displayed by setting
  1484. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1485. @node Profiling
  1486. @section Profiling
  1487. A quick view of how many tasks each worker has executed can be obtained by setting
  1488. @code{export STARPU_WORKER_STATS=1} This is a convenient way to check that
  1489. execution did happen on accelerators without penalizing performance with
  1490. the profiling overhead.
  1491. A quick view of how much data transfers have been issued can be obtained by setting
  1492. @code{export STARPU_BUS_STATS=1} .
  1493. More detailed profiling information can be enabled by using @code{export STARPU_PROFILING=1} or by
  1494. calling @code{starpu_profiling_status_set} from the source code.
  1495. Statistics on the execution can then be obtained by using @code{export
  1496. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} .
  1497. More details on performance feedback are provided by the next chapter.
  1498. @node CUDA-specific optimizations
  1499. @section CUDA-specific optimizations
  1500. Due to CUDA limitations, StarPU will have a hard time overlapping its own
  1501. communications and the codelet computations if the application does not use a
  1502. dedicated CUDA stream for its computations. StarPU provides one by the use of
  1503. @code{starpu_cuda_get_local_stream()} which should be used by all CUDA codelet
  1504. operations. For instance:
  1505. @example
  1506. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1507. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1508. @end example
  1509. StarPU already does appropriate calls for the CUBLAS library.
  1510. Unfortunately, some CUDA libraries do not have stream variants of
  1511. kernels. That will lower the potential for overlapping.
  1512. @c ---------------------------------------------------------------------
  1513. @c Performance feedback
  1514. @c ---------------------------------------------------------------------
  1515. @node Performance feedback
  1516. @chapter Performance feedback
  1517. @menu
  1518. * On-line:: On-line performance feedback
  1519. * Off-line:: Off-line performance feedback
  1520. * Codelet performance:: Performance of codelets
  1521. @end menu
  1522. @node On-line
  1523. @section On-line performance feedback
  1524. @menu
  1525. * Enabling monitoring:: Enabling on-line performance monitoring
  1526. * Task feedback:: Per-task feedback
  1527. * Codelet feedback:: Per-codelet feedback
  1528. * Worker feedback:: Per-worker feedback
  1529. * Bus feedback:: Bus-related feedback
  1530. * StarPU-Top:: StarPU-Top interface
  1531. @end menu
  1532. @node Enabling monitoring
  1533. @subsection Enabling on-line performance monitoring
  1534. In order to enable online performance monitoring, the application can call
  1535. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1536. detect whether monitoring is already enabled or not by calling
  1537. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1538. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1539. can also be set to 1 to achieve the same effect.
  1540. Likewise, performance monitoring is stopped by calling
  1541. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1542. does not reset the performance counters so that the application may consult
  1543. them later on.
  1544. More details about the performance monitoring API are available in section
  1545. @ref{Profiling API}.
  1546. @node Task feedback
  1547. @subsection Per-task feedback
  1548. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1549. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1550. structure when a task terminates.
  1551. This structure is automatically destroyed when the task structure is destroyed,
  1552. either automatically or by calling @code{starpu_task_destroy}.
  1553. The @code{starpu_task_profiling_info} structure indicates the date when the
  1554. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1555. terminated (@code{end_time}), relative to the initialization of
  1556. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1557. that has executed the task (@code{workerid}).
  1558. These date are stored as @code{timespec} structures which the user may convert
  1559. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1560. function.
  1561. It it worth noting that the application may directly access this structure from
  1562. the callback executed at the end of the task. The @code{starpu_task} structure
  1563. associated to the callback currently being executed is indeed accessible with
  1564. the @code{starpu_get_current_task()} function.
  1565. @node Codelet feedback
  1566. @subsection Per-codelet feedback
  1567. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1568. an array of counters. The i-th entry of the array is incremented every time a
  1569. task implementing the codelet is executed on the i-th worker.
  1570. This array is not reinitialized when profiling is enabled or disabled.
  1571. @node Worker feedback
  1572. @subsection Per-worker feedback
  1573. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1574. function is a @code{starpu_worker_profiling_info} structure that gives
  1575. statistics about the specified worker. This structure specifies when StarPU
  1576. started collecting profiling information for that worker (@code{start_time}),
  1577. the duration of the profiling measurement interval (@code{total_time}), the
  1578. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1579. because there is no task to execute at all (@code{sleeping_time}), and the
  1580. number of tasks that were executed while profiling was enabled.
  1581. These values give an estimation of the proportion of time spent do real work,
  1582. and the time spent either sleeping because there are not enough executable
  1583. tasks or simply wasted in pure StarPU overhead.
  1584. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1585. information associated to a worker.
  1586. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1587. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1588. generate a graphic showing the evolution of these values during the time, for
  1589. the different workers.
  1590. @node Bus feedback
  1591. @subsection Bus-related feedback
  1592. TODO
  1593. @c how to enable/disable performance monitoring
  1594. @c what kind of information do we get ?
  1595. The bus speed measured by StarPU can be displayed by using the
  1596. @code{starpu_machine_display} tool, for instance:
  1597. @example
  1598. StarPU has found :
  1599. 3 CUDA devices
  1600. CUDA 0 (Tesla C2050 02:00.0)
  1601. CUDA 1 (Tesla C2050 03:00.0)
  1602. CUDA 2 (Tesla C2050 84:00.0)
  1603. from to RAM to CUDA 0 to CUDA 1 to CUDA 2
  1604. RAM 0.000000 5176.530428 5176.492994 5191.710722
  1605. CUDA 0 4523.732446 0.000000 2414.074751 2417.379201
  1606. CUDA 1 4523.718152 2414.078822 0.000000 2417.375119
  1607. CUDA 2 4534.229519 2417.069025 2417.060863 0.000000
  1608. @end example
  1609. @node StarPU-Top
  1610. @subsection StarPU-Top interface
  1611. StarPU-Top is an interface which remotely displays the on-line state of a StarPU
  1612. application and permits the user to change parameters on the fly.
  1613. Variables to be monitored can be registered by calling the
  1614. @code{starputop_add_data_boolean}, @code{starputop_add_data_integer},
  1615. @code{starputop_add_data_float} functions, e.g.:
  1616. @example
  1617. starputop_data *data = starputop_add_data_integer("mynum", 0, 100, 1);
  1618. @end example
  1619. The application should then call @code{starputop_init_and_wait} to give its name
  1620. and wait for StarPU-Top to get a start request from the user. The name is used
  1621. by StarPU-Top to quickly reload a previously-saved layout of parameter display.
  1622. @example
  1623. starputop_init_and_wait("the application");
  1624. @end example
  1625. The new values can then be provided thanks to
  1626. @code{starputop_update_data_boolean}, @code{starputop_update_data_integer},
  1627. @code{starputop_update_data_float}, e.g.:
  1628. @example
  1629. starputop_update_data_integer(data, mynum);
  1630. @end example
  1631. Updateable parameters can be registered thanks to @code{starputop_register_parameter_boolean}, @code{starputop_register_parameter_integer}, @code{starputop_register_parameter_float}, e.g.:
  1632. @example
  1633. float apha;
  1634. starputop_register_parameter_float("alpha", &alpha, 0, 10, modif_hook);
  1635. @end example
  1636. @code{modif_hook} is a function which will be called when the parameter is being modified, it can for instance print the new value:
  1637. @example
  1638. void modif_hook(struct starputop_param_t *d) @{
  1639. fprintf(stderr,"%s has been modified: %f\n", d->name, alpha);
  1640. @}
  1641. @end example
  1642. Task schedulers should notify StarPU-Top when it has decided when a task will be
  1643. scheduled, so that it can show it in its Gantt chart, for instance:
  1644. @example
  1645. starputop_task_prevision(task, workerid, begin, end);
  1646. @end example
  1647. Starting StarPU-Top and the application can be done two ways:
  1648. @itemize
  1649. @item The application is started by hand on some machine (and thus already
  1650. waiting for the start event). In the Preference dialog of StarPU-Top, the SSH
  1651. checkbox should be unchecked, and the hostname and port (default is 2011) on
  1652. which the application is already running should be specified. Clicking on the
  1653. connection button will thus connect to the already-running application.
  1654. @item StarPU-Top is started first, and clicking on the connection button will
  1655. start the application itself (possibly on a remote machine). The SSH checkbox
  1656. should be checked, and a command line provided, e.g.:
  1657. @example
  1658. ssh myserver STARPU_SCHED=heft ./application
  1659. @end example
  1660. If port 2011 of the remote machine can not be accessed directly, an ssh port bridge should be added:
  1661. @example
  1662. ssh -L 2011:localhost:2011 myserver STARPU_SCHED=heft ./application
  1663. @end example
  1664. and "localhost" should be used as IP Address to connect to.
  1665. @end itemize
  1666. @node Off-line
  1667. @section Off-line performance feedback
  1668. @menu
  1669. * Generating traces:: Generating traces with FxT
  1670. * Gantt diagram:: Creating a Gantt Diagram
  1671. * DAG:: Creating a DAG with graphviz
  1672. * starpu-top:: Monitoring activity
  1673. @end menu
  1674. @node Generating traces
  1675. @subsection Generating traces with FxT
  1676. StarPU can use the FxT library (see
  1677. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1678. with a limited runtime overhead.
  1679. You can either get a tarball:
  1680. @example
  1681. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz
  1682. @end example
  1683. or use the FxT library from CVS (autotools are required):
  1684. @example
  1685. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1686. % ./bootstrap
  1687. @end example
  1688. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1689. done following the standard procedure:
  1690. @example
  1691. % ./configure --prefix=$FXTDIR
  1692. % make
  1693. % make install
  1694. @end example
  1695. In order to have StarPU to generate traces, StarPU should be configured with
  1696. the @code{--with-fxt} option:
  1697. @example
  1698. $ ./configure --with-fxt=$FXTDIR
  1699. @end example
  1700. Or you can simply point the @code{PKG_CONFIG_PATH} to
  1701. @code{$FXTDIR/lib/pkgconfig} and pass @code{--with-fxt} to @code{./configure}
  1702. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1703. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1704. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1705. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1706. @code{/tmp/} directory by default, or by the directory specified by
  1707. the @code{STARPU_FXT_PREFIX} environment variable.
  1708. @node Gantt diagram
  1709. @subsection Creating a Gantt Diagram
  1710. When the FxT trace file @code{filename} has been generated, it is possible to
  1711. generate a trace in the Paje format by calling:
  1712. @example
  1713. % starpu_fxt_tool -i filename
  1714. @end example
  1715. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  1716. to 1 before application execution will make StarPU do it automatically at
  1717. application shutdown.
  1718. This will create a @code{paje.trace} file in the current directory that can be
  1719. inspected with the ViTE trace visualizing open-source tool. More information
  1720. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1721. possible to open the @code{paje.trace} file with ViTE by using the following
  1722. command:
  1723. @example
  1724. % vite paje.trace
  1725. @end example
  1726. @node DAG
  1727. @subsection Creating a DAG with graphviz
  1728. When the FxT trace file @code{filename} has been generated, it is possible to
  1729. generate a task graph in the DOT format by calling:
  1730. @example
  1731. $ starpu_fxt_tool -i filename
  1732. @end example
  1733. This will create a @code{dag.dot} file in the current directory. This file is a
  1734. task graph described using the DOT language. It is possible to get a
  1735. graphical output of the graph by using the graphviz library:
  1736. @example
  1737. $ dot -Tpdf dag.dot -o output.pdf
  1738. @end example
  1739. @node starpu-top
  1740. @subsection Monitoring activity
  1741. When the FxT trace file @code{filename} has been generated, it is possible to
  1742. generate a activity trace by calling:
  1743. @example
  1744. $ starpu_fxt_tool -i filename
  1745. @end example
  1746. This will create an @code{activity.data} file in the current
  1747. directory. A profile of the application showing the activity of StarPU
  1748. during the execution of the program can be generated:
  1749. @example
  1750. $ starpu_top activity.data
  1751. @end example
  1752. This will create a file named @code{activity.eps} in the current directory.
  1753. This picture is composed of two parts.
  1754. The first part shows the activity of the different workers. The green sections
  1755. indicate which proportion of the time was spent executed kernels on the
  1756. processing unit. The red sections indicate the proportion of time spent in
  1757. StartPU: an important overhead may indicate that the granularity may be too
  1758. low, and that bigger tasks may be appropriate to use the processing unit more
  1759. efficiently. The black sections indicate that the processing unit was blocked
  1760. because there was no task to process: this may indicate a lack of parallelism
  1761. which may be alleviated by creating more tasks when it is possible.
  1762. The second part of the @code{activity.eps} picture is a graph showing the
  1763. evolution of the number of tasks available in the system during the execution.
  1764. Ready tasks are shown in black, and tasks that are submitted but not
  1765. schedulable yet are shown in grey.
  1766. @node Codelet performance
  1767. @section Performance of codelets
  1768. The performance model of codelets (described in @ref{Performance model example}) can be examined by using the
  1769. @code{starpu_perfmodel_display} tool:
  1770. @example
  1771. $ starpu_perfmodel_display -l
  1772. file: <malloc_pinned.hannibal>
  1773. file: <starpu_slu_lu_model_21.hannibal>
  1774. file: <starpu_slu_lu_model_11.hannibal>
  1775. file: <starpu_slu_lu_model_22.hannibal>
  1776. file: <starpu_slu_lu_model_12.hannibal>
  1777. @end example
  1778. Here, the codelets of the lu example are available. We can examine the
  1779. performance of the 22 kernel:
  1780. @example
  1781. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1782. performance model for cpu
  1783. # hash size mean dev n
  1784. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1785. performance model for cuda_0
  1786. # hash size mean dev n
  1787. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1788. performance model for cuda_1
  1789. # hash size mean dev n
  1790. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1791. performance model for cuda_2
  1792. # hash size mean dev n
  1793. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1794. @end example
  1795. We can see that for the given size, over a sample of a few hundreds of
  1796. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1797. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1798. CPUs.
  1799. The @code{starpu_regression_display} tool does the same for regression-based
  1800. performance models. It also writes a @code{.gp} file in the current directory,
  1801. to be run in the @code{gnuplot} tool, which shows the corresponding curve.
  1802. @c ---------------------------------------------------------------------
  1803. @c MPI support
  1804. @c ---------------------------------------------------------------------
  1805. @node StarPU MPI support
  1806. @chapter StarPU MPI support
  1807. The integration of MPI transfers within task parallelism is done in a
  1808. very natural way by the means of asynchronous interactions between the
  1809. application and StarPU. This is implemented in a separate libstarpumpi library
  1810. which basically provides "StarPU" equivalents of @code{MPI_*} functions, where
  1811. @code{void *} buffers are replaced with @code{starpu_data_handle}s, and all
  1812. GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI. The user has to
  1813. use the usual @code{mpirun} command of the MPI implementation to start StarPU on
  1814. the different MPI nodes.
  1815. An MPI Insert Task function provides an even more seamless transition to a
  1816. distributed application, by automatically issuing all required data transfers
  1817. according to the task graph and an application-provided distribution.
  1818. @menu
  1819. * The API::
  1820. * Simple Example::
  1821. * MPI Insert Task Utility::
  1822. * MPI Collective Operations::
  1823. @end menu
  1824. @node The API
  1825. @section The API
  1826. @subsection Compilation
  1827. The flags required to compile or link against the MPI layer are then
  1828. accessible with the following commands:
  1829. @example
  1830. % pkg-config --cflags libstarpumpi # options for the compiler
  1831. % pkg-config --libs libstarpumpi # options for the linker
  1832. @end example
  1833. @subsection Initialisation
  1834. @deftypefun int starpu_mpi_initialize (void)
  1835. Initializes the starpumpi library. This must be called between calling
  1836. @code{starpu_init} and other @code{starpu_mpi} functions. This
  1837. function does not call @code{MPI_Init}, it should be called beforehand.
  1838. @end deftypefun
  1839. @deftypefun int starpu_mpi_initialize_extended (int *@var{rank}, int *@var{world_size})
  1840. Initializes the starpumpi library. This must be called between calling
  1841. @code{starpu_init} and other @code{starpu_mpi} functions.
  1842. This function calls @code{MPI_Init}, and therefore should be prefered
  1843. to the previous one for MPI implementations which are not thread-safe.
  1844. Returns the current MPI node rank and world size.
  1845. @end deftypefun
  1846. @deftypefun int starpu_mpi_shutdown (void)
  1847. Cleans the starpumpi library. This must be called between calling
  1848. @code{starpu_mpi} functions and @code{starpu_shutdown}.
  1849. @code{MPI_Finalize} will be called if StarPU-MPI has been initialized
  1850. by calling @code{starpu_mpi_initialize_extended}.
  1851. @end deftypefun
  1852. @subsection Communication
  1853. @deftypefun int starpu_mpi_send (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1854. @end deftypefun
  1855. @deftypefun int starpu_mpi_recv (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, MPI_Status *@var{status})
  1856. @end deftypefun
  1857. @deftypefun int starpu_mpi_isend (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1858. @end deftypefun
  1859. @deftypefun int starpu_mpi_irecv (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1860. @end deftypefun
  1861. @deftypefun int starpu_mpi_isend_detached (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1862. @end deftypefun
  1863. @deftypefun int starpu_mpi_irecv_detached (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1864. @end deftypefun
  1865. @deftypefun int starpu_mpi_wait (starpu_mpi_req *@var{req}, MPI_Status *@var{status})
  1866. @end deftypefun
  1867. @deftypefun int starpu_mpi_test (starpu_mpi_req *@var{req}, int *@var{flag}, MPI_Status *@var{status})
  1868. @end deftypefun
  1869. @deftypefun int starpu_mpi_barrier (MPI_Comm @var{comm})
  1870. @end deftypefun
  1871. @deftypefun int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1872. When the transfer is completed, the tag is unlocked
  1873. @end deftypefun
  1874. @deftypefun int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1875. @end deftypefun
  1876. @deftypefun int starpu_mpi_isend_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{dest}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1877. Asynchronously send an array of buffers, and unlocks the tag once all
  1878. of them are transmitted.
  1879. @end deftypefun
  1880. @deftypefun int starpu_mpi_irecv_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{source}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1881. @end deftypefun
  1882. @page
  1883. @node Simple Example
  1884. @section Simple Example
  1885. @cartouche
  1886. @smallexample
  1887. void increment_token(void)
  1888. @{
  1889. struct starpu_task *task = starpu_task_create();
  1890. task->cl = &increment_cl;
  1891. task->buffers[0].handle = token_handle;
  1892. task->buffers[0].mode = STARPU_RW;
  1893. starpu_task_submit(task);
  1894. @}
  1895. @end smallexample
  1896. @end cartouche
  1897. @cartouche
  1898. @smallexample
  1899. int main(int argc, char **argv)
  1900. @{
  1901. int rank, size;
  1902. starpu_init(NULL);
  1903. starpu_mpi_initialize_extended(&rank, &size);
  1904. starpu_vector_data_register(&token_handle, 0, (uintptr_t)&token, 1, sizeof(unsigned));
  1905. unsigned nloops = NITER;
  1906. unsigned loop;
  1907. unsigned last_loop = nloops - 1;
  1908. unsigned last_rank = size - 1;
  1909. @end smallexample
  1910. @end cartouche
  1911. @cartouche
  1912. @smallexample
  1913. for (loop = 0; loop < nloops; loop++) @{
  1914. int tag = loop*size + rank;
  1915. if (loop == 0 && rank == 0)
  1916. @{
  1917. token = 0;
  1918. fprintf(stdout, "Start with token value %d\n", token);
  1919. @}
  1920. else
  1921. @{
  1922. starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag,
  1923. MPI_COMM_WORLD, NULL, NULL);
  1924. @}
  1925. increment_token();
  1926. if (loop == last_loop && rank == last_rank)
  1927. @{
  1928. starpu_data_acquire(token_handle, STARPU_R);
  1929. fprintf(stdout, "Finished : token value %d\n", token);
  1930. starpu_data_release(token_handle);
  1931. @}
  1932. else
  1933. @{
  1934. starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1,
  1935. MPI_COMM_WORLD, NULL, NULL);
  1936. @}
  1937. @}
  1938. starpu_task_wait_for_all();
  1939. @end smallexample
  1940. @end cartouche
  1941. @cartouche
  1942. @smallexample
  1943. starpu_mpi_shutdown();
  1944. starpu_shutdown();
  1945. if (rank == last_rank)
  1946. @{
  1947. fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);
  1948. STARPU_ASSERT(token == nloops*size);
  1949. @}
  1950. @end smallexample
  1951. @end cartouche
  1952. @page
  1953. @node MPI Insert Task Utility
  1954. @section MPI Insert Task Utility
  1955. To save the programmer from having to explicit all communications, StarPU
  1956. provides an "MPI Insert Task Utility". The principe is that the application
  1957. decides a distribution of the data over the MPI nodes by allocating it and
  1958. notifying StarPU of that decision, i.e. tell StarPU which MPI node "owns" which
  1959. data. All MPI nodes then process the whole task graph, and StarPU automatically
  1960. determines which node actually execute which task, as well as the required MPI
  1961. transfers.
  1962. @deftypefun int starpu_data_set_rank (starpu_data_handle @var{handle}, int @var{mpi_rank})
  1963. Tell StarPU-MPI which MPI node "owns" a given data, that is, the node which will
  1964. always keep an up-to-date value, and will by default execute tasks which write
  1965. to it.
  1966. @end deftypefun
  1967. @deftypefun int starpu_data_get_rank (starpu_data_handle @var{handle})
  1968. Returns the last value set by @code{starpu_data_set_rank}.
  1969. @end deftypefun
  1970. @deftypefun void starpu_mpi_insert_task (MPI_Comm @var{comm}, starpu_codelet *@var{cl}, ...)
  1971. Create and submit a task corresponding to @var{cl} with the following
  1972. arguments. The argument list must be zero-terminated.
  1973. The arguments following the codelets are the same types as for the
  1974. function @code{starpu_insert_task} defined in @ref{Insert Task
  1975. Utility}. The extra argument @code{STARPU_EXECUTE_ON_NODE} followed by an
  1976. integer allows to specify the MPI node to execute the codelet. It is also
  1977. possible to specify that the node owning a specific data will execute
  1978. the codelet, by using @code{STARPU_EXECUTE_ON_DATA} followed by a data
  1979. handle.
  1980. The internal algorithm is as follows:
  1981. @enumerate
  1982. @item Find out whether we (as an MPI node) are to execute the codelet
  1983. because we own the data to be written to. If different nodes own data
  1984. to be written to, the argument @code{STARPU_EXECUTE_ON_NODE} or
  1985. @code{STARPU_EXECUTE_ON_DATA} has to be used to specify which MPI node will
  1986. execute the task.
  1987. @item Send and receive data as requested. Nodes owning data which need to be
  1988. read by the task are sending them to the MPI node which will execute it. The
  1989. latter receives them.
  1990. @item Execute the codelet. This is done by the MPI node selected in the
  1991. 1st step of the algorithm.
  1992. @item In the case when different MPI nodes own data to be written to, send
  1993. written data back to their owners.
  1994. @end enumerate
  1995. The algorithm also includes a cache mechanism that allows not to send
  1996. data twice to the same MPI node, unless the data has been modified.
  1997. @end deftypefun
  1998. @deftypefun void starpu_mpi_get_data_on_node (MPI_Comm @var{comm}, starpu_data_handle @var{data_handle}, int @var{node})
  1999. @end deftypefun
  2000. @page
  2001. Here an stencil example showing how to use @code{starpu_mpi_insert_task}. One
  2002. first needs to define a distribution function which specifies the
  2003. locality of the data. Note that that distribution information needs to
  2004. be given to StarPU by calling @code{starpu_data_set_rank}.
  2005. @cartouche
  2006. @smallexample
  2007. /* Returns the MPI node number where data is */
  2008. int my_distrib(int x, int y, int nb_nodes) @{
  2009. /* Block distrib */
  2010. return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;
  2011. // /* Other examples useful for other kinds of computations */
  2012. // /* / distrib */
  2013. // return (x+y) % nb_nodes;
  2014. // /* Block cyclic distrib */
  2015. // unsigned side = sqrt(nb_nodes);
  2016. // return x % side + (y % side) * size;
  2017. @}
  2018. @end smallexample
  2019. @end cartouche
  2020. Now the data can be registered within StarPU. Data which are not
  2021. owned but will be needed for computations can be registered through
  2022. the lazy allocation mechanism, i.e. with a @code{home_node} set to -1.
  2023. StarPU will automatically allocate the memory when it is used for the
  2024. first time.
  2025. One can note an optimization here (the @code{else if} test): we only register
  2026. data which will be needed by the tasks that we will execute.
  2027. @cartouche
  2028. @smallexample
  2029. unsigned matrix[X][Y];
  2030. starpu_data_handle data_handles[X][Y];
  2031. for(x = 0; x < X; x++) @{
  2032. for (y = 0; y < Y; y++) @{
  2033. int mpi_rank = my_distrib(x, y, size);
  2034. if (mpi_rank == my_rank)
  2035. /* Owning data */
  2036. starpu_variable_data_register(&data_handles[x][y], 0,
  2037. (uintptr_t)&(matrix[x][y]), sizeof(unsigned));
  2038. else if (my_rank == my_distrib(x+1, y, size) || my_rank == my_distrib(x-1, y, size)
  2039. || my_rank == my_distrib(x, y+1, size) || my_rank == my_distrib(x, y-1, size))
  2040. /* I don't own that index, but will need it for my computations */
  2041. starpu_variable_data_register(&data_handles[x][y], -1,
  2042. (uintptr_t)NULL, sizeof(unsigned));
  2043. else
  2044. /* I know it's useless to allocate anything for this */
  2045. data_handles[x][y] = NULL;
  2046. if (data_handles[x][y])
  2047. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  2048. @}
  2049. @}
  2050. @end smallexample
  2051. @end cartouche
  2052. Now @code{starpu_mpi_insert_task()} can be called for the different
  2053. steps of the application.
  2054. @cartouche
  2055. @smallexample
  2056. for(loop=0 ; loop<niter; loop++)
  2057. for (x = 1; x < X-1; x++)
  2058. for (y = 1; y < Y-1; y++)
  2059. starpu_mpi_insert_task(MPI_COMM_WORLD, &stencil5_cl,
  2060. STARPU_RW, data_handles[x][y],
  2061. STARPU_R, data_handles[x-1][y],
  2062. STARPU_R, data_handles[x+1][y],
  2063. STARPU_R, data_handles[x][y-1],
  2064. STARPU_R, data_handles[x][y+1],
  2065. 0);
  2066. starpu_task_wait_for_all();
  2067. @end smallexample
  2068. @end cartouche
  2069. I.e. all MPI nodes process the whole task graph, but as mentioned above, for
  2070. each task, only the MPI node which owns the data being written to (here,
  2071. @code{data_handles[x][y]}) will actually run the task. The other MPI nodes will
  2072. automatically send the required data.
  2073. @node MPI Collective Operations
  2074. @section MPI Collective Operations
  2075. @deftypefun int starpu_mpi_scatter_detached (starpu_data_handle *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm})
  2076. Scatter data among processes of the communicator based on the ownership of
  2077. the data. For each data of the array @var{data_handles}, the
  2078. process @var{root} sends the data to the process owning this data.
  2079. Processes receiving data must have valid data handles to receive them.
  2080. @end deftypefun
  2081. @deftypefun int starpu_mpi_gather_detached (starpu_data_handle *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm})
  2082. Gather data from the different processes of the communicator onto the
  2083. process @var{root}. Each process owning data handle in the array
  2084. @var{data_handles} will send them to the process @var{root}. The
  2085. process @var{root} must have valid data handles to receive the data.
  2086. @end deftypefun
  2087. @page
  2088. @cartouche
  2089. @smallexample
  2090. if (rank == root)
  2091. @{
  2092. /* Allocate the vector */
  2093. vector = malloc(nblocks * sizeof(float *));
  2094. for(x=0 ; x<nblocks ; x++)
  2095. @{
  2096. starpu_malloc((void **)&vector[x], block_size*sizeof(float));
  2097. @}
  2098. @}
  2099. /* Allocate data handles and register data to StarPU */
  2100. data_handles = malloc(nblocks*sizeof(starpu_data_handle *));
  2101. for(x = 0; x < nblocks ; x++)
  2102. @{
  2103. int mpi_rank = my_distrib(x, nodes);
  2104. if (rank == root) @{
  2105. starpu_vector_data_register(&data_handles[x], 0, (uintptr_t)vector[x],
  2106. blocks_size, sizeof(float));
  2107. @}
  2108. else if ((mpi_rank == rank) || ((rank == mpi_rank+1 || rank == mpi_rank-1))) @{
  2109. /* I own that index, or i will need it for my computations */
  2110. starpu_vector_data_register(&data_handles[x], -1, (uintptr_t)NULL,
  2111. block_size, sizeof(float));
  2112. @}
  2113. else @{
  2114. /* I know it's useless to allocate anything for this */
  2115. data_handles[x] = NULL;
  2116. @}
  2117. if (data_handles[x]) @{
  2118. starpu_data_set_rank(data_handles[x], mpi_rank);
  2119. @}
  2120. @}
  2121. /* Scatter the matrix among the nodes */
  2122. starpu_mpi_scatter_detached(data_handles, nblocks, root, MPI_COMM_WORLD);
  2123. /* Calculation */
  2124. for(x = 0; x < nblocks ; x++) @{
  2125. if (data_handles[x]) @{
  2126. int owner = starpu_data_get_rank(data_handles[x]);
  2127. if (owner == rank) @{
  2128. starpu_insert_task(&cl, STARPU_RW, data_handles[x], 0);
  2129. @}
  2130. @}
  2131. @}
  2132. /* Gather the matrix on main node */
  2133. starpu_mpi_gather_detached(data_handles, nblocks, 0, MPI_COMM_WORLD);
  2134. @end smallexample
  2135. @end cartouche
  2136. @c ---------------------------------------------------------------------
  2137. @c Tips and Tricks
  2138. @c ---------------------------------------------------------------------
  2139. @node Tips and Tricks
  2140. @chapter Tips and Tricks to know about
  2141. @menu
  2142. * Per-worker library initialization:: How to initialize a computation library once for each worker?
  2143. @end menu
  2144. @node Per-worker library initialization
  2145. @section How to initialize a computation library once for each worker?
  2146. Some libraries need to be initialized once for each concurrent instance that
  2147. may run on the machine. For instance, a C++ computation class which is not
  2148. thread-safe by itself, but for which several instanciated objects of that class
  2149. can be used concurrently. This can be used in StarPU by initializing one such
  2150. object per worker. For instance, the libstarpufft example does the following to
  2151. be able to use FFTW.
  2152. Some global array stores the instanciated objects:
  2153. @smallexample
  2154. fftw_plan plan_cpu[STARPU_NMAXWORKERS];
  2155. @end smallexample
  2156. At initialisation time of libstarpu, the objects are initialized:
  2157. @smallexample
  2158. int workerid;
  2159. for (workerid = 0; workerid < starpu_worker_get_count(); workerid++) @{
  2160. switch (starpu_worker_get_type(workerid)) @{
  2161. case STARPU_CPU_WORKER:
  2162. plan_cpu[workerid] = fftw_plan(...);
  2163. break;
  2164. @}
  2165. @}
  2166. @end smallexample
  2167. And in the codelet body, they are used:
  2168. @smallexample
  2169. static void fft(void *descr[], void *_args)
  2170. @{
  2171. int workerid = starpu_worker_get_id();
  2172. fftw_plan plan = plan_cpu[workerid];
  2173. ...
  2174. fftw_execute(plan, ...);
  2175. @}
  2176. @end smallexample
  2177. Another way to go which may be needed is to execute some code from the workers
  2178. themselves thanks to @code{starpu_execute_on_each_worker}. This may be required
  2179. by CUDA to behave properly due to threading issues. For instance, StarPU's
  2180. @code{starpu_helper_cublas_init} looks like the following to call
  2181. @code{cublasInit} from the workers themselves:
  2182. @smallexample
  2183. static void init_cublas_func(void *args STARPU_ATTRIBUTE_UNUSED)
  2184. @{
  2185. cublasStatus cublasst = cublasInit();
  2186. cublasSetKernelStream(starpu_cuda_get_local_stream());
  2187. @}
  2188. void starpu_helper_cublas_init(void)
  2189. @{
  2190. starpu_execute_on_each_worker(init_cublas_func, NULL, STARPU_CUDA);
  2191. @}
  2192. @end smallexample
  2193. @c ---------------------------------------------------------------------
  2194. @c Configuration options
  2195. @c ---------------------------------------------------------------------
  2196. @node Configuring StarPU
  2197. @chapter Configuring StarPU
  2198. @menu
  2199. * Compilation configuration::
  2200. * Execution configuration through environment variables::
  2201. @end menu
  2202. @node Compilation configuration
  2203. @section Compilation configuration
  2204. The following arguments can be given to the @code{configure} script.
  2205. @menu
  2206. * Common configuration::
  2207. * Configuring workers::
  2208. * Advanced configuration::
  2209. @end menu
  2210. @node Common configuration
  2211. @subsection Common configuration
  2212. @menu
  2213. * --enable-debug::
  2214. * --enable-fast::
  2215. * --enable-verbose::
  2216. * --enable-coverage::
  2217. @end menu
  2218. @node --enable-debug
  2219. @subsubsection @code{--enable-debug}
  2220. @table @asis
  2221. @item @emph{Description}:
  2222. Enable debugging messages.
  2223. @end table
  2224. @node --enable-fast
  2225. @subsubsection @code{--enable-fast}
  2226. @table @asis
  2227. @item @emph{Description}:
  2228. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  2229. @end table
  2230. @node --enable-verbose
  2231. @subsubsection @code{--enable-verbose}
  2232. @table @asis
  2233. @item @emph{Description}:
  2234. Augment the verbosity of the debugging messages. This can be disabled
  2235. at runtime by setting the environment variable @code{STARPU_SILENT} to
  2236. any value.
  2237. @smallexample
  2238. % STARPU_SILENT=1 ./vector_scal
  2239. @end smallexample
  2240. @end table
  2241. @node --enable-coverage
  2242. @subsubsection @code{--enable-coverage}
  2243. @table @asis
  2244. @item @emph{Description}:
  2245. Enable flags for the @code{gcov} coverage tool.
  2246. @end table
  2247. @node Configuring workers
  2248. @subsection Configuring workers
  2249. @menu
  2250. * --enable-maxcpus::
  2251. * --disable-cpu::
  2252. * --enable-maxcudadev::
  2253. * --disable-cuda::
  2254. * --with-cuda-dir::
  2255. * --with-cuda-include-dir::
  2256. * --with-cuda-lib-dir::
  2257. * --disable-cuda-memcpy-peer::
  2258. * --enable-maxopencldev::
  2259. * --disable-opencl::
  2260. * --with-opencl-dir::
  2261. * --with-opencl-include-dir::
  2262. * --with-opencl-lib-dir::
  2263. * --enable-gordon::
  2264. * --with-gordon-dir::
  2265. * --enable-maximplementations::
  2266. @end menu
  2267. @node --enable-maxcpus
  2268. @subsubsection @code{--enable-maxcpus=<number>}
  2269. @table @asis
  2270. @item @emph{Description}:
  2271. Defines the maximum number of CPU cores that StarPU will support, then
  2272. available as the @code{STARPU_MAXCPUS} macro.
  2273. @end table
  2274. @node --disable-cpu
  2275. @subsubsection @code{--disable-cpu}
  2276. @table @asis
  2277. @item @emph{Description}:
  2278. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  2279. @end table
  2280. @node --enable-maxcudadev
  2281. @subsubsection @code{--enable-maxcudadev=<number>}
  2282. @table @asis
  2283. @item @emph{Description}:
  2284. Defines the maximum number of CUDA devices that StarPU will support, then
  2285. available as the @code{STARPU_MAXCUDADEVS} macro.
  2286. @end table
  2287. @node --disable-cuda
  2288. @subsubsection @code{--disable-cuda}
  2289. @table @asis
  2290. @item @emph{Description}:
  2291. Disable the use of CUDA, even if a valid CUDA installation was detected.
  2292. @end table
  2293. @node --with-cuda-dir
  2294. @subsubsection @code{--with-cuda-dir=<path>}
  2295. @table @asis
  2296. @item @emph{Description}:
  2297. Specify the directory where CUDA is installed. This directory should notably contain
  2298. @code{include/cuda.h}.
  2299. @end table
  2300. @node --with-cuda-include-dir
  2301. @subsubsection @code{--with-cuda-include-dir=<path>}
  2302. @table @asis
  2303. @item @emph{Description}:
  2304. Specify the directory where CUDA headers are installed. This directory should
  2305. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  2306. value given to @code{--with-cuda-dir}.
  2307. @end table
  2308. @node --with-cuda-lib-dir
  2309. @subsubsection @code{--with-cuda-lib-dir=<path>}
  2310. @table @asis
  2311. @item @emph{Description}:
  2312. Specify the directory where the CUDA library is installed. This directory should
  2313. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  2314. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  2315. @end table
  2316. @node --disable-cuda-memcpy-peer
  2317. @subsubsection @code{--disable-cuda-memcpy-peer}
  2318. @table @asis
  2319. @item @emph{Description}
  2320. Explicitely disables peer transfers when using CUDA 4.0
  2321. @end table
  2322. @node --enable-maxopencldev
  2323. @subsubsection @code{--enable-maxopencldev=<number>}
  2324. @table @asis
  2325. @item @emph{Description}:
  2326. Defines the maximum number of OpenCL devices that StarPU will support, then
  2327. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  2328. @end table
  2329. @node --disable-opencl
  2330. @subsubsection @code{--disable-opencl}
  2331. @table @asis
  2332. @item @emph{Description}:
  2333. Disable the use of OpenCL, even if the SDK is detected.
  2334. @end table
  2335. @node --with-opencl-dir
  2336. @subsubsection @code{--with-opencl-dir=<path>}
  2337. @table @asis
  2338. @item @emph{Description}:
  2339. Specify the location of the OpenCL SDK. This directory should notably contain
  2340. @code{include/CL/cl.h} (or @code{include/OpenCL/cl.h} on Mac OS).
  2341. @end table
  2342. @node --with-opencl-include-dir
  2343. @subsubsection @code{--with-opencl-include-dir=<path>}
  2344. @table @asis
  2345. @item @emph{Description}:
  2346. Specify the location of OpenCL headers. This directory should notably contain
  2347. @code{CL/cl.h} (or @code{OpenCL/cl.h} on Mac OS). This defaults to
  2348. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  2349. @end table
  2350. @node --with-opencl-lib-dir
  2351. @subsubsection @code{--with-opencl-lib-dir=<path>}
  2352. @table @asis
  2353. @item @emph{Description}:
  2354. Specify the location of the OpenCL library. This directory should notably
  2355. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  2356. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  2357. @end table
  2358. @node --enable-gordon
  2359. @subsubsection @code{--enable-gordon}
  2360. @table @asis
  2361. @item @emph{Description}:
  2362. Enable the use of the Gordon runtime for Cell SPUs.
  2363. @c TODO: rather default to enabled when detected
  2364. @end table
  2365. @node --with-gordon-dir
  2366. @subsubsection @code{--with-gordon-dir=<path>}
  2367. @table @asis
  2368. @item @emph{Description}:
  2369. Specify the location of the Gordon SDK.
  2370. @end table
  2371. @node --enable-maximplementations
  2372. @subsubsection @code{--enable-maximplementations=<number>}
  2373. @table @asis
  2374. @item @emph{Description}:
  2375. Defines the number of implementations that can be defined for a single kind of
  2376. device. It is then available as the @code{STARPU_MAXIMPLEMENTATIONS} macro.
  2377. @end table
  2378. @node Advanced configuration
  2379. @subsection Advanced configuration
  2380. @menu
  2381. * --enable-perf-debug::
  2382. * --enable-model-debug::
  2383. * --enable-stats::
  2384. * --enable-maxbuffers::
  2385. * --enable-allocation-cache::
  2386. * --enable-opengl-render::
  2387. * --enable-blas-lib::
  2388. * --with-magma::
  2389. * --with-fxt::
  2390. * --with-perf-model-dir::
  2391. * --with-mpicc::
  2392. * --with-goto-dir::
  2393. * --with-atlas-dir::
  2394. * --with-mkl-cflags::
  2395. * --with-mkl-ldflags::
  2396. @end menu
  2397. @node --enable-perf-debug
  2398. @subsubsection @code{--enable-perf-debug}
  2399. @table @asis
  2400. @item @emph{Description}:
  2401. Enable performance debugging through gprof.
  2402. @end table
  2403. @node --enable-model-debug
  2404. @subsubsection @code{--enable-model-debug}
  2405. @table @asis
  2406. @item @emph{Description}:
  2407. Enable performance model debugging.
  2408. @end table
  2409. @node --enable-stats
  2410. @subsubsection @code{--enable-stats}
  2411. @table @asis
  2412. @item @emph{Description}:
  2413. Enable statistics.
  2414. @end table
  2415. @node --enable-maxbuffers
  2416. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  2417. @table @asis
  2418. @item @emph{Description}:
  2419. Define the maximum number of buffers that tasks will be able to take
  2420. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  2421. @end table
  2422. @node --enable-allocation-cache
  2423. @subsubsection @code{--enable-allocation-cache}
  2424. @table @asis
  2425. @item @emph{Description}:
  2426. Enable the use of a data allocation cache to avoid the cost of it with
  2427. CUDA. Still experimental.
  2428. @end table
  2429. @node --enable-opengl-render
  2430. @subsubsection @code{--enable-opengl-render}
  2431. @table @asis
  2432. @item @emph{Description}:
  2433. Enable the use of OpenGL for the rendering of some examples.
  2434. @c TODO: rather default to enabled when detected
  2435. @end table
  2436. @node --enable-blas-lib
  2437. @subsubsection @code{--enable-blas-lib=<name>}
  2438. @table @asis
  2439. @item @emph{Description}:
  2440. Specify the blas library to be used by some of the examples. The
  2441. library has to be 'atlas' or 'goto'.
  2442. @end table
  2443. @node --with-magma
  2444. @subsubsection @code{--with-magma=<path>}
  2445. @table @asis
  2446. @item @emph{Description}:
  2447. Specify where magma is installed. This directory should notably contain
  2448. @code{include/magmablas.h}.
  2449. @end table
  2450. @node --with-fxt
  2451. @subsubsection @code{--with-fxt=<path>}
  2452. @table @asis
  2453. @item @emph{Description}:
  2454. Specify the location of FxT (for generating traces and rendering them
  2455. using ViTE). This directory should notably contain
  2456. @code{include/fxt/fxt.h}.
  2457. @c TODO add ref to other section
  2458. @end table
  2459. @node --with-perf-model-dir
  2460. @subsubsection @code{--with-perf-model-dir=<dir>}
  2461. @table @asis
  2462. @item @emph{Description}:
  2463. Specify where performance models should be stored (instead of defaulting to the
  2464. current user's home).
  2465. @end table
  2466. @node --with-mpicc
  2467. @subsubsection @code{--with-mpicc=<path to mpicc>}
  2468. @table @asis
  2469. @item @emph{Description}:
  2470. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  2471. @end table
  2472. @node --with-goto-dir
  2473. @subsubsection @code{--with-goto-dir=<dir>}
  2474. @table @asis
  2475. @item @emph{Description}:
  2476. Specify the location of GotoBLAS.
  2477. @end table
  2478. @node --with-atlas-dir
  2479. @subsubsection @code{--with-atlas-dir=<dir>}
  2480. @table @asis
  2481. @item @emph{Description}:
  2482. Specify the location of ATLAS. This directory should notably contain
  2483. @code{include/cblas.h}.
  2484. @end table
  2485. @node --with-mkl-cflags
  2486. @subsubsection @code{--with-mkl-cflags=<cflags>}
  2487. @table @asis
  2488. @item @emph{Description}:
  2489. Specify the compilation flags for the MKL Library.
  2490. @end table
  2491. @node --with-mkl-ldflags
  2492. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  2493. @table @asis
  2494. @item @emph{Description}:
  2495. Specify the linking flags for the MKL Library. Note that the
  2496. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  2497. website provides a script to determine the linking flags.
  2498. @end table
  2499. @c ---------------------------------------------------------------------
  2500. @c Environment variables
  2501. @c ---------------------------------------------------------------------
  2502. @node Execution configuration through environment variables
  2503. @section Execution configuration through environment variables
  2504. @menu
  2505. * Workers:: Configuring workers
  2506. * Scheduling:: Configuring the Scheduling engine
  2507. * Misc:: Miscellaneous and debug
  2508. @end menu
  2509. Note: the values given in @code{starpu_conf} structure passed when
  2510. calling @code{starpu_init} will override the values of the environment
  2511. variables.
  2512. @node Workers
  2513. @subsection Configuring workers
  2514. @menu
  2515. * STARPU_NCPUS:: Number of CPU workers
  2516. * STARPU_NCUDA:: Number of CUDA workers
  2517. * STARPU_NOPENCL:: Number of OpenCL workers
  2518. * STARPU_NGORDON:: Number of SPU workers (Cell)
  2519. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  2520. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  2521. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  2522. @end menu
  2523. @node STARPU_NCPUS
  2524. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  2525. @table @asis
  2526. @item @emph{Description}:
  2527. Specify the number of CPU workers (thus not including workers dedicated to control acceleratores). Note that by default, StarPU will not allocate
  2528. more CPU workers than there are physical CPUs, and that some CPUs are used to control
  2529. the accelerators.
  2530. @end table
  2531. @node STARPU_NCUDA
  2532. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  2533. @table @asis
  2534. @item @emph{Description}:
  2535. Specify the number of CUDA devices that StarPU can use. If
  2536. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  2537. possible to select which CUDA devices should be used by the means of the
  2538. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  2539. create as many CUDA workers as there are CUDA devices.
  2540. @end table
  2541. @node STARPU_NOPENCL
  2542. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  2543. @table @asis
  2544. @item @emph{Description}:
  2545. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  2546. @end table
  2547. @node STARPU_NGORDON
  2548. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  2549. @table @asis
  2550. @item @emph{Description}:
  2551. Specify the number of SPUs that StarPU can use.
  2552. @end table
  2553. @node STARPU_WORKERS_CPUID
  2554. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  2555. @table @asis
  2556. @item @emph{Description}:
  2557. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  2558. specifies on which logical CPU the different workers should be
  2559. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  2560. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  2561. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  2562. determined by the OS, or provided by the @code{hwloc} library in case it is
  2563. available.
  2564. Note that the first workers correspond to the CUDA workers, then come the
  2565. OpenCL and the SPU, and finally the CPU workers. For example if
  2566. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  2567. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  2568. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  2569. the logical CPUs #1 and #3 will be used by the CPU workers.
  2570. If the number of workers is larger than the array given in
  2571. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  2572. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  2573. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  2574. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  2575. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2576. @end table
  2577. @node STARPU_WORKERS_CUDAID
  2578. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  2579. @table @asis
  2580. @item @emph{Description}:
  2581. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  2582. possible to select which CUDA devices should be used by StarPU. On a machine
  2583. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  2584. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  2585. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  2586. the one reported by CUDA).
  2587. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  2588. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2589. @end table
  2590. @node STARPU_WORKERS_OPENCLID
  2591. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  2592. @table @asis
  2593. @item @emph{Description}:
  2594. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  2595. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  2596. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2597. @end table
  2598. @node Scheduling
  2599. @subsection Configuring the Scheduling engine
  2600. @menu
  2601. * STARPU_SCHED:: Scheduling policy
  2602. * STARPU_CALIBRATE:: Calibrate performance models
  2603. * STARPU_PREFETCH:: Use data prefetch
  2604. * STARPU_SCHED_ALPHA:: Computation factor
  2605. * STARPU_SCHED_BETA:: Communication factor
  2606. @end menu
  2607. @node STARPU_SCHED
  2608. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  2609. @table @asis
  2610. @item @emph{Description}:
  2611. This chooses between the different scheduling policies proposed by StarPU: work
  2612. random, stealing, greedy, with performance models, etc.
  2613. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  2614. @end table
  2615. @node STARPU_CALIBRATE
  2616. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  2617. @table @asis
  2618. @item @emph{Description}:
  2619. If this variable is set to 1, the performance models are calibrated during
  2620. the execution. If it is set to 2, the previous values are dropped to restart
  2621. calibration from scratch. Setting this variable to 0 disable calibration, this
  2622. is the default behaviour.
  2623. Note: this currently only applies to @code{dm}, @code{dmda} and @code{heft} scheduling policies.
  2624. @end table
  2625. @node STARPU_PREFETCH
  2626. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  2627. @table @asis
  2628. @item @emph{Description}:
  2629. This variable indicates whether data prefetching should be enabled (0 means
  2630. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  2631. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  2632. advance, so that data is already present on the GPU when the task starts. As a
  2633. result, computation and data transfers are overlapped.
  2634. Note that prefetching is enabled by default in StarPU.
  2635. @end table
  2636. @node STARPU_SCHED_ALPHA
  2637. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  2638. @table @asis
  2639. @item @emph{Description}:
  2640. To estimate the cost of a task StarPU takes into account the estimated
  2641. computation time (obtained thanks to performance models). The alpha factor is
  2642. the coefficient to be applied to it before adding it to the communication part.
  2643. @end table
  2644. @node STARPU_SCHED_BETA
  2645. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  2646. @table @asis
  2647. @item @emph{Description}:
  2648. To estimate the cost of a task StarPU takes into account the estimated
  2649. data transfer time (obtained thanks to performance models). The beta factor is
  2650. the coefficient to be applied to it before adding it to the computation part.
  2651. @end table
  2652. @node Misc
  2653. @subsection Miscellaneous and debug
  2654. @menu
  2655. * STARPU_SILENT:: Disable verbose mode
  2656. * STARPU_LOGFILENAME:: Select debug file name
  2657. * STARPU_FXT_PREFIX:: FxT trace location
  2658. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  2659. * STARPU_GENERATE_TRACE:: Generate a Paje trace when StarPU is shut down
  2660. @end menu
  2661. @node STARPU_SILENT
  2662. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  2663. @table @asis
  2664. @item @emph{Description}:
  2665. This variable allows to disable verbose mode at runtime when StarPU
  2666. has been configured with the option @code{--enable-verbose}.
  2667. @end table
  2668. @node STARPU_LOGFILENAME
  2669. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  2670. @table @asis
  2671. @item @emph{Description}:
  2672. This variable specifies in which file the debugging output should be saved to.
  2673. @end table
  2674. @node STARPU_FXT_PREFIX
  2675. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  2676. @table @asis
  2677. @item @emph{Description}
  2678. This variable specifies in which directory to save the trace generated if FxT is enabled. It needs to have a trailing '/' character.
  2679. @end table
  2680. @node STARPU_LIMIT_GPU_MEM
  2681. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  2682. @table @asis
  2683. @item @emph{Description}
  2684. This variable specifies the maximum number of megabytes that should be
  2685. available to the application on each GPUs. In case this value is smaller than
  2686. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  2687. on the device. This variable is intended to be used for experimental purposes
  2688. as it emulates devices that have a limited amount of memory.
  2689. @end table
  2690. @node STARPU_GENERATE_TRACE
  2691. @subsubsection @code{STARPU_GENERATE_TRACE} -- Generate a Paje trace when StarPU is shut down
  2692. @table @asis
  2693. @item @emph{Description}
  2694. When set to 1, this variable indicates that StarPU should automatically
  2695. generate a Paje trace when starpu_shutdown is called.
  2696. @end table
  2697. @c ---------------------------------------------------------------------
  2698. @c StarPU API
  2699. @c ---------------------------------------------------------------------
  2700. @node StarPU API
  2701. @chapter StarPU API
  2702. @menu
  2703. * Initialization and Termination:: Initialization and Termination methods
  2704. * Workers' Properties:: Methods to enumerate workers' properties
  2705. * Data Library:: Methods to manipulate data
  2706. * Data Interfaces::
  2707. * Data Partition::
  2708. * Codelets and Tasks:: Methods to construct tasks
  2709. * Explicit Dependencies:: Explicit Dependencies
  2710. * Implicit Data Dependencies:: Implicit Data Dependencies
  2711. * Performance Model API::
  2712. * Profiling API:: Profiling API
  2713. * CUDA extensions:: CUDA extensions
  2714. * OpenCL extensions:: OpenCL extensions
  2715. * Cell extensions:: Cell extensions
  2716. * Miscellaneous helpers::
  2717. @end menu
  2718. @node Initialization and Termination
  2719. @section Initialization and Termination
  2720. @menu
  2721. * starpu_init:: Initialize StarPU
  2722. * struct starpu_conf:: StarPU runtime configuration
  2723. * starpu_conf_init:: Initialize starpu_conf structure
  2724. * starpu_shutdown:: Terminate StarPU
  2725. @end menu
  2726. @node starpu_init
  2727. @subsection @code{starpu_init} -- Initialize StarPU
  2728. @table @asis
  2729. @item @emph{Description}:
  2730. This is StarPU initialization method, which must be called prior to any other
  2731. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  2732. policy, number of cores, ...) by passing a non-null argument. Default
  2733. configuration is used if the passed argument is @code{NULL}.
  2734. @item @emph{Return value}:
  2735. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  2736. indicates that no worker was available (so that StarPU was not initialized).
  2737. @item @emph{Prototype}:
  2738. @code{int starpu_init(struct starpu_conf *conf);}
  2739. @end table
  2740. @node struct starpu_conf
  2741. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  2742. @table @asis
  2743. @item @emph{Description}:
  2744. This structure is passed to the @code{starpu_init} function in order
  2745. to configure StarPU.
  2746. When the default value is used, StarPU automatically selects the number
  2747. of processing units and takes the default scheduling policy. This parameter
  2748. overwrites the equivalent environment variables.
  2749. @item @emph{Fields}:
  2750. @table @asis
  2751. @item @code{sched_policy_name} (default = NULL):
  2752. This is the name of the scheduling policy. This can also be specified with the
  2753. @code{STARPU_SCHED} environment variable.
  2754. @item @code{sched_policy} (default = NULL):
  2755. This is the definition of the scheduling policy. This field is ignored
  2756. if @code{sched_policy_name} is set.
  2757. @item @code{ncpus} (default = -1):
  2758. This is the number of CPU cores that StarPU can use. This can also be
  2759. specified with the @code{STARPU_NCPUS} environment variable.
  2760. @item @code{ncuda} (default = -1):
  2761. This is the number of CUDA devices that StarPU can use. This can also be
  2762. specified with the @code{STARPU_NCUDA} environment variable.
  2763. @item @code{nopencl} (default = -1):
  2764. This is the number of OpenCL devices that StarPU can use. This can also be
  2765. specified with the @code{STARPU_NOPENCL} environment variable.
  2766. @item @code{nspus} (default = -1):
  2767. This is the number of Cell SPUs that StarPU can use. This can also be
  2768. specified with the @code{STARPU_NGORDON} environment variable.
  2769. @item @code{use_explicit_workers_bindid} (default = 0)
  2770. If this flag is set, the @code{workers_bindid} array indicates where the
  2771. different workers are bound, otherwise StarPU automatically selects where to
  2772. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  2773. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  2774. ignored if the @code{use_explicit_workers_bindid} flag is set.
  2775. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  2776. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  2777. where to bind the different workers. The i-th entry of the
  2778. @code{workers_bindid} indicates the logical identifier of the processor which
  2779. should execute the i-th worker. Note that the logical ordering of the CPUs is
  2780. either determined by the OS, or provided by the @code{hwloc} library in case it
  2781. is available.
  2782. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2783. ignored.
  2784. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2785. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2786. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2787. CUDA devices in a round-robin fashion.
  2788. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2789. ignored.
  2790. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2791. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2792. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2793. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2794. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2795. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2796. OpenCL devices in a round-robin fashion.
  2797. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2798. @item @code{calibrate} (default = 0):
  2799. If this flag is set, StarPU will calibrate the performance models when
  2800. executing tasks. If this value is equal to -1, the default value is used. The
  2801. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2802. variable when it is set.
  2803. @end table
  2804. @item @code{single_combined_worker} (default = 0):
  2805. By default, StarPU creates various combined workers according to the machine
  2806. structure. Some parallel libraries (e.g. most OpenMP implementations) however do
  2807. not support concurrent calls to parallel code. In such case, setting this flag
  2808. makes StarPU only create one combined worker, containing all
  2809. the CPU workers. The default value is overwritten by the
  2810. @code{STARPU_SINGLE_COMBINED_WORKER} environment variable when it is set.
  2811. @end table
  2812. @node starpu_conf_init
  2813. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2814. @table @asis
  2815. This function initializes the @code{starpu_conf} structure passed as argument
  2816. with the default values. In case some configuration parameters are already
  2817. specified through environment variables, @code{starpu_conf_init} initializes
  2818. the fields of the structure according to the environment variables. For
  2819. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2820. @code{.ncuda} field of the structure passed as argument.
  2821. @item @emph{Return value}:
  2822. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2823. indicates that the argument was NULL.
  2824. @item @emph{Prototype}:
  2825. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2826. @end table
  2827. @node starpu_shutdown
  2828. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2829. @deftypefun void starpu_shutdown (void)
  2830. This is StarPU termination method. It must be called at the end of the
  2831. application: statistics and other post-mortem debugging information are not
  2832. guaranteed to be available until this method has been called.
  2833. @end deftypefun
  2834. @node Workers' Properties
  2835. @section Workers' Properties
  2836. @menu
  2837. * starpu_worker_get_count:: Get the number of processing units
  2838. * starpu_worker_get_count_by_type:: Get the number of processing units of a given type
  2839. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2840. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2841. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2842. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2843. * starpu_worker_get_id:: Get the identifier of the current worker
  2844. * starpu_worker_get_ids_by_type:: Get the list of identifiers of workers with a given type
  2845. * starpu_worker_get_devid:: Get the device identifier of a worker
  2846. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2847. * starpu_worker_get_name:: Get the name of a worker
  2848. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2849. @end menu
  2850. @node starpu_worker_get_count
  2851. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2852. @deftypefun unsigned starpu_worker_get_count (void)
  2853. This function returns the number of workers (i.e. processing units executing
  2854. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2855. @end deftypefun
  2856. @node starpu_worker_get_count_by_type
  2857. @subsection @code{starpu_worker_get_count_by_type} -- Get the number of processing units of a given type
  2858. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  2859. Returns the number of workers of the type indicated by the argument. A positive
  2860. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  2861. the type is not valid otherwise.
  2862. @end deftypefun
  2863. @node starpu_cpu_worker_get_count
  2864. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2865. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  2866. This function returns the number of CPUs controlled by StarPU. The returned
  2867. value should be at most @code{STARPU_MAXCPUS}.
  2868. @end deftypefun
  2869. @node starpu_cuda_worker_get_count
  2870. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2871. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  2872. This function returns the number of CUDA devices controlled by StarPU. The returned
  2873. value should be at most @code{STARPU_MAXCUDADEVS}.
  2874. @end deftypefun
  2875. @node starpu_opencl_worker_get_count
  2876. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2877. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  2878. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2879. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2880. @end deftypefun
  2881. @node starpu_spu_worker_get_count
  2882. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2883. @deftypefun unsigned starpu_spu_worker_get_count (void)
  2884. This function returns the number of Cell SPUs controlled by StarPU.
  2885. @end deftypefun
  2886. @node starpu_worker_get_id
  2887. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2888. @deftypefun int starpu_worker_get_id (void)
  2889. This function returns the identifier of the worker associated to the calling
  2890. thread. The returned value is either -1 if the current context is not a StarPU
  2891. worker (i.e. when called from the application outside a task or a callback), or
  2892. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2893. @end deftypefun
  2894. @node starpu_worker_get_ids_by_type
  2895. @subsection @code{starpu_worker_get_ids_by_type} -- Get the list of identifiers of workers with a given type
  2896. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  2897. Fill the workerids array with the identifiers of the workers that have the type
  2898. indicated in the first argument. The maxsize argument indicates the size of the
  2899. workids array. The returned value gives the number of identifiers that were put
  2900. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  2901. workers with the appropriate type: in that case, the array is filled with the
  2902. maxsize first elements. To avoid such overflows, the value of maxsize can be
  2903. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  2904. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  2905. @end deftypefun
  2906. @node starpu_worker_get_devid
  2907. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2908. @deftypefun int starpu_worker_get_devid (int @var{id})
  2909. This functions returns the device id of the worker associated to an identifier
  2910. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2911. CUDA worker, this device identifier is the logical device identifier exposed by
  2912. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2913. identifier of a CPU worker is the logical identifier of the core on which the
  2914. worker was bound; this identifier is either provided by the OS or by the
  2915. @code{hwloc} library in case it is available.
  2916. @end deftypefun
  2917. @node starpu_worker_get_type
  2918. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2919. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  2920. This function returns the type of worker associated to an identifier (as
  2921. returned by the @code{starpu_worker_get_id} function). The returned value
  2922. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2923. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2924. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2925. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2926. identifier is unspecified.
  2927. @end deftypefun
  2928. @node starpu_worker_get_name
  2929. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2930. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  2931. StarPU associates a unique human readable string to each processing unit. This
  2932. function copies at most the @var{maxlen} first bytes of the unique string
  2933. associated to a worker identified by its identifier @var{id} into the
  2934. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  2935. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  2936. function on an invalid identifier results in an unspecified behaviour.
  2937. @end deftypefun
  2938. @node starpu_worker_get_memory_node
  2939. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2940. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  2941. This function returns the identifier of the memory node associated to the
  2942. worker identified by @var{workerid}.
  2943. @end deftypefun
  2944. @node Data Library
  2945. @section Data Library
  2946. This section describes the data management facilities provided by StarPU.
  2947. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2948. design their own data interfaces if required.
  2949. @menu
  2950. * starpu_malloc:: Allocate data and pin it
  2951. * starpu_access_mode:: Data access mode
  2952. * unsigned memory_node:: Memory node
  2953. * starpu_data_handle:: StarPU opaque data handle
  2954. * void *interface:: StarPU data interface
  2955. * starpu_data_register:: Register a piece of data to StarPU
  2956. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2957. * starpu_data_unregister_no_coherency:: Unregister a piece of data from StarPU without coherency
  2958. * starpu_data_invalidate:: Invalidate all data replicates
  2959. * starpu_data_acquire:: Access registered data from the application
  2960. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2961. * STARPU_DATA_ACQUIRE_CB:: Access registered data from the application asynchronously, macro
  2962. * starpu_data_release:: Release registered data from the application
  2963. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2964. * starpu_data_prefetch_on_node:: Prefetch data to a given node
  2965. @end menu
  2966. @node starpu_malloc
  2967. @subsection @code{starpu_malloc} -- Allocate data and pin it
  2968. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  2969. This function allocates data of the given size in main memory. It will also try to pin it in
  2970. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  2971. thus permit data transfer and computation overlapping. The allocated buffer must
  2972. be freed thanks to the @code{starpu_free} function.
  2973. @end deftypefun
  2974. @node starpu_access_mode
  2975. @subsection @code{starpu_access_mode} -- Data access mode
  2976. This datatype describes a data access mode. The different available modes are:
  2977. @table @asis
  2978. @table @asis
  2979. @item @code{STARPU_R} read-only mode.
  2980. @item @code{STARPU_W} write-only mode.
  2981. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2982. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2983. @item @code{STARPU_REDUX} reduction mode. TODO: document, as well as @code{starpu_data_set_reduction_methods}
  2984. @end table
  2985. @end table
  2986. @node unsigned memory_node
  2987. @subsection @code{unsigned memory_node} -- Memory node
  2988. @table @asis
  2989. @item @emph{Description}:
  2990. Every worker is associated to a memory node which is a logical abstraction of
  2991. the address space from which the processing unit gets its data. For instance,
  2992. the memory node associated to the different CPU workers represents main memory
  2993. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2994. Every memory node is identified by a logical index which is accessible from the
  2995. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2996. to StarPU, the specified memory node indicates where the piece of data
  2997. initially resides (we also call this memory node the home node of a piece of
  2998. data).
  2999. @end table
  3000. @node starpu_data_handle
  3001. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  3002. @table @asis
  3003. @item @emph{Description}:
  3004. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  3005. data. Once a piece of data has been registered to StarPU, it is associated to a
  3006. @code{starpu_data_handle} which keeps track of the state of the piece of data
  3007. over the entire machine, so that we can maintain data consistency and locate
  3008. data replicates for instance.
  3009. @end table
  3010. @node void *interface
  3011. @subsection @code{void *interface} -- StarPU data interface
  3012. @table @asis
  3013. @item @emph{Description}:
  3014. Data management is done at a high-level in StarPU: rather than accessing a mere
  3015. list of contiguous buffers, the tasks may manipulate data that are described by
  3016. a high-level construct which we call data interface.
  3017. An example of data interface is the "vector" interface which describes a
  3018. contiguous data array on a spefic memory node. This interface is a simple
  3019. structure containing the number of elements in the array, the size of the
  3020. elements, and the address of the array in the appropriate address space (this
  3021. address may be invalid if there is no valid copy of the array in the memory
  3022. node). More informations on the data interfaces provided by StarPU are
  3023. given in @ref{Data Interfaces}.
  3024. When a piece of data managed by StarPU is used by a task, the task
  3025. implementation is given a pointer to an interface describing a valid copy of
  3026. the data that is accessible from the current processing unit.
  3027. @end table
  3028. @node starpu_data_register
  3029. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  3030. @deftypefun void starpu_data_register (starpu_data_handle *@var{handleptr}, uint32_t @var{home_node}, void *@var{interface}, {struct starpu_data_interface_ops_t} *@var{ops})
  3031. Register a piece of data into the handle located at the @var{handleptr}
  3032. address. The @var{interface} buffer contains the initial description of the
  3033. data in the home node. The @var{ops} argument is a pointer to a structure
  3034. describing the different methods used to manipulate this type of interface. See
  3035. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  3036. If @code{home_node} is -1, StarPU will automatically
  3037. allocate the memory when it is used for the
  3038. first time in write-only mode. Once such data handle has been automatically
  3039. allocated, it is possible to access it using any access mode.
  3040. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  3041. matrix) which can be registered by the means of helper functions (e.g.
  3042. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  3043. @end deftypefun
  3044. @node starpu_data_unregister
  3045. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  3046. @deftypefun void starpu_data_unregister (starpu_data_handle @var{handle})
  3047. This function unregisters a data handle from StarPU. If the data was
  3048. automatically allocated by StarPU because the home node was -1, all
  3049. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  3050. is put back into the home node in the buffer that was initially registered.
  3051. Using a data handle that has been unregistered from StarPU results in an
  3052. undefined behaviour.
  3053. @end deftypefun
  3054. @node starpu_data_unregister_no_coherency
  3055. @subsection @code{starpu_data_unregister_no_coherency} -- Unregister a piece of data from StarPU
  3056. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle @var{handle})
  3057. This is the same as starpu_data_unregister, except that StarPU does not put back
  3058. a valid copy into the home node, in the buffer that was initially registered.
  3059. @end deftypefun
  3060. @node starpu_data_invalidate
  3061. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  3062. @deftypefun void starpu_data_invalidate (starpu_data_handle @var{handle})
  3063. Destroy all replicates of the data handle. After data invalidation, the first
  3064. access to the handle must be performed in write-only mode. Accessing an
  3065. invalidated data in read-mode results in undefined behaviour.
  3066. @end deftypefun
  3067. @c TODO create a specific sections about user interaction with the DSM ?
  3068. @node starpu_data_acquire
  3069. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  3070. @deftypefun int starpu_data_acquire (starpu_data_handle @var{handle}, starpu_access_mode @var{mode})
  3071. The application must call this function prior to accessing registered data from
  3072. main memory outside tasks. StarPU ensures that the application will get an
  3073. up-to-date copy of the data in main memory located where the data was
  3074. originally registered, and that all concurrent accesses (e.g. from tasks) will
  3075. be consistent with the access mode specified in the @var{mode} argument.
  3076. @code{starpu_data_release} must be called once the application does not need to
  3077. access the piece of data anymore. Note that implicit data
  3078. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  3079. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  3080. the data, unless that they have not been disabled explictly by calling
  3081. @code{starpu_data_set_default_sequential_consistency_flag} or
  3082. @code{starpu_data_set_sequential_consistency_flag}.
  3083. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  3084. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  3085. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  3086. @end deftypefun
  3087. @node starpu_data_acquire_cb
  3088. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  3089. @deftypefun int starpu_data_acquire_cb (starpu_data_handle @var{handle}, starpu_access_mode @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  3090. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  3091. @code{starpu_data_release}. When the data specified in the first argument is
  3092. available in the appropriate access mode, the callback function is executed.
  3093. The application may access the requested data during the execution of this
  3094. callback. The callback function must call @code{starpu_data_release} once the
  3095. application does not need to access the piece of data anymore.
  3096. Note that implicit data dependencies are also enforced by
  3097. @code{starpu_data_acquire_cb} in case they are enabled.
  3098. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  3099. be called from task callbacks. Upon successful completion, this function
  3100. returns 0.
  3101. @end deftypefun
  3102. @node STARPU_DATA_ACQUIRE_CB
  3103. @subsection @code{STARPU_DATA_ACQUIRE_CB} -- Access registered data from the application asynchronously, macro
  3104. @deftypefun STARPU_DATA_ACQUIRE_CB (starpu_data_handle @var{handle}, starpu_access_mode @var{mode}, code)
  3105. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  3106. except that the code to be executed in a callback is directly provided as a
  3107. macro parameter, and the data handle is automatically released after it. This
  3108. permit to easily execute code which depends on the value of some registered
  3109. data. This is non-blocking too and may be called from task callbacks.
  3110. @end deftypefun
  3111. @node starpu_data_release
  3112. @subsection @code{starpu_data_release} -- Release registered data from the application
  3113. @deftypefun void starpu_data_release (starpu_data_handle @var{handle})
  3114. This function releases the piece of data acquired by the application either by
  3115. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  3116. @end deftypefun
  3117. @node starpu_data_set_wt_mask
  3118. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  3119. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle @var{handle}, uint32_t @var{wt_mask})
  3120. This function sets the write-through mask of a given data, i.e. a bitmask of
  3121. nodes where the data should be always replicated after modification.
  3122. @end deftypefun
  3123. @node starpu_data_prefetch_on_node
  3124. @subsection @code{starpu_data_prefetch_on_node} -- Prefetch data to a given node
  3125. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle @var{handle}, unsigned @var{node}, unsigned @var{async})
  3126. Issue a prefetch request for a given data to a given node, i.e.
  3127. requests that the data be replicated to the given node, so that it is available
  3128. there for tasks. If the @var{async} parameter is 0, the call will block until
  3129. the transfer is achieved, else the call will return as soon as the request is
  3130. scheduled (which may however have to wait for a task completion).
  3131. @end deftypefun
  3132. @node Data Interfaces
  3133. @section Data Interfaces
  3134. There are several ways to register a memory region so that it can be
  3135. managed by StarPU. The functions below allow the registration of
  3136. vectors, 2D matrices, 3D matrices, BCSR and CSR sparse matrices, as well
  3137. as data that can be represented in different ways.
  3138. @deftypefun void starpu_variable_data_register ({starpu_data_handle *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  3139. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  3140. typically a scalar, and initialize @var{handle} to represent this data
  3141. item.
  3142. @smallexample
  3143. float var;
  3144. starpu_data_handle var_handle;
  3145. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  3146. @end smallexample
  3147. @end deftypefun
  3148. @deftypefun void starpu_vector_data_register ({starpu_data_handle *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{count}, size_t @var{size})
  3149. Register the @var{count} @var{size}-byte elements pointed to by
  3150. @var{ptr} and initialize @var{handle} to represent it.
  3151. @example
  3152. float vector[NX];
  3153. starpu_data_handle vector_handle;
  3154. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  3155. sizeof(vector[0]));
  3156. @end example
  3157. @end deftypefun
  3158. @deftypefun void starpu_matrix_data_register ({starpu_data_handle *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{size})
  3159. Register the @var{nx}x@var{ny} 2D matrix of @var{size}-byte elements
  3160. pointed by @var{ptr} and initialize @var{handle} to represent it.
  3161. @var{ld} specifies the number of extra elements present at the end of
  3162. each row; a non-zero @var{ld} adds padding, which can be useful for
  3163. alignment purposes.
  3164. @example
  3165. float *matrix;
  3166. starpu_data_handle matrix_handle;
  3167. matrix = (float*)malloc(width * height * sizeof(float));
  3168. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  3169. width, width, height, sizeof(float));
  3170. @end example
  3171. @end deftypefun
  3172. @deftypefun void starpu_block_data_register ({starpu_data_handle *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{size})
  3173. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{size}-byte
  3174. elements pointed by @var{ptr} and initialize @var{handle} to represent
  3175. it. Again, @var{ldy} and @var{ldz} specify the number of extra elements
  3176. present at the end of each row or column.
  3177. @example
  3178. float *block;
  3179. starpu_data_handle block_handle;
  3180. block = (float*)malloc(nx*ny*nz*sizeof(float));
  3181. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  3182. nx, nx*ny, nx, ny, nz, sizeof(float));
  3183. @end example
  3184. @end deftypefun
  3185. @deftypefun void starpu_bcsr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  3186. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  3187. Compressed Sparse Row Representation) sparse matrix interface.
  3188. TODO
  3189. @end deftypefun
  3190. @deftypefun void starpu_csr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  3191. This variant of @code{starpu_data_register} uses the CSR (Compressed
  3192. Sparse Row Representation) sparse matrix interface.
  3193. TODO
  3194. @end deftypefun
  3195. @deftypefun void starpu_multiformat_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, void *@var{ptr}, uint32_t @var{nobjects}, struct starpu_multiformat_data_interface_ops *@var{format_ops});
  3196. Register a piece of data that can be represented in different ways, depending upon
  3197. the processing unit that manipulates it. It allows the programmer, for instance, to
  3198. use an array of structures when working on a CPU, and a structure of arrays when
  3199. working on a GPU.
  3200. @var{nobjects} is the number of elements in the data. @var{format_ops} describes
  3201. the format itself: @code{cpu_elemsize} is the size of each element on CPUs,
  3202. @code{opencl_elemsize} is the size of each element on OpenCL devices,
  3203. @code{cuda_elemsize} is the size of each element on CUDA devices.
  3204. @code{cpu_to_opencl_cl}, @code{opencl_to_cpu_cl}, @code{cpu_to_cuda_cl}, and
  3205. @code{cuda_to_cpu_cl} are pointers to codelets which convert between the various
  3206. formats.
  3207. @example
  3208. #define NX 1024
  3209. struct point array_of_structs[NX];
  3210. starpu_data_handle handle;
  3211. /*
  3212. * The conversion of a piece of data is itself a task, though it is created,
  3213. * submitted and destroyed by StarPU internals and not by the user. Therefore,
  3214. * we have to define two codelets.
  3215. * Note that for now the conversion from the CPU format to the GPU format has to
  3216. * be executed on the GPU, and the conversion from the GPU to the CPU has to be
  3217. * executed on the CPU.
  3218. */
  3219. #ifdef STARPU_USE_OPENCL
  3220. void cpu_to_opencl_opencl_func(void *buffers[], void *args);
  3221. starpu_codelet cpu_to_opencl_cl = @{
  3222. .where = STARPU_OPENCL,
  3223. .opencl_func = cpu_to_opencl_opencl_func,
  3224. .nbuffers = 1
  3225. @};
  3226. void opencl_to_cpu_func(void *buffers[], void *args);
  3227. starpu_codelet opencl_to_cpu_cl = @{
  3228. .where = STARPU_CPU,
  3229. .cpu_func = opencl_to_cpu_func,
  3230. .nbuffers = 1
  3231. @};
  3232. #endif
  3233. struct starpu_multiformat_data_interface_ops format_ops = @{
  3234. #ifdef STARPU_USE_OPENCL
  3235. .opencl_elemsize = 2 * sizeof(float),
  3236. .cpu_to_opencl_cl = &cpu_to_opencl_cl,
  3237. .opencl_to_cpu_cl = &opencl_to_cpu_cl,
  3238. #endif
  3239. .cpu_elemsize = 2 * sizeof(float),
  3240. ...
  3241. @};
  3242. starpu_multiformat_data_register(handle, 0, &array_of_structs, NX, &format_ops);
  3243. @end example
  3244. @end deftypefun
  3245. @node Data Partition
  3246. @section Data Partition
  3247. @menu
  3248. * struct starpu_data_filter:: StarPU filter structure
  3249. * starpu_data_partition:: Partition Data
  3250. * starpu_data_unpartition:: Unpartition Data
  3251. * starpu_data_get_nb_children::
  3252. * starpu_data_get_sub_data::
  3253. * Predefined filter functions::
  3254. @end menu
  3255. @node struct starpu_data_filter
  3256. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  3257. @table @asis
  3258. @item @emph{Description}:
  3259. The filter structure describes a data partitioning operation, to be given to the
  3260. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  3261. @item @emph{Fields}:
  3262. @table @asis
  3263. @item @code{filter_func}:
  3264. This function fills the @code{child_interface} structure with interface
  3265. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  3266. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  3267. @item @code{nchildren}:
  3268. This is the number of parts to partition the data into.
  3269. @item @code{get_nchildren}:
  3270. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  3271. children depends on the actual data (e.g. the number of blocks in a sparse
  3272. matrix).
  3273. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  3274. @item @code{get_child_ops}:
  3275. In case the resulting children use a different data interface, this function
  3276. returns which interface is used by child number @code{id}.
  3277. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  3278. @item @code{filter_arg}:
  3279. Some filters take an addition parameter, but this is usually unused.
  3280. @item @code{filter_arg_ptr}:
  3281. Some filters take an additional array parameter like the sizes of the parts, but
  3282. this is usually unused.
  3283. @end table
  3284. @end table
  3285. @node starpu_data_partition
  3286. @subsection starpu_data_partition -- Partition Data
  3287. @table @asis
  3288. @item @emph{Description}:
  3289. This requests partitioning one StarPU data @code{initial_handle} into several
  3290. subdata according to the filter @code{f}
  3291. @item @emph{Prototype}:
  3292. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  3293. @item @emph{Example}:
  3294. @cartouche
  3295. @smallexample
  3296. struct starpu_data_filter f = @{
  3297. .filter_func = starpu_vertical_block_filter_func,
  3298. .nchildren = nslicesx,
  3299. .get_nchildren = NULL,
  3300. .get_child_ops = NULL
  3301. @};
  3302. starpu_data_partition(A_handle, &f);
  3303. @end smallexample
  3304. @end cartouche
  3305. @end table
  3306. @node starpu_data_unpartition
  3307. @subsection starpu_data_unpartition -- Unpartition data
  3308. @table @asis
  3309. @item @emph{Description}:
  3310. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  3311. collected back into one big piece in the @code{gathering_node} (usually 0).
  3312. @item @emph{Prototype}:
  3313. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  3314. @item @emph{Example}:
  3315. @cartouche
  3316. @smallexample
  3317. starpu_data_unpartition(A_handle, 0);
  3318. @end smallexample
  3319. @end cartouche
  3320. @end table
  3321. @node starpu_data_get_nb_children
  3322. @subsection starpu_data_get_nb_children
  3323. @table @asis
  3324. @item @emph{Description}:
  3325. This function returns the number of children.
  3326. @item @emph{Return value}:
  3327. The number of children.
  3328. @item @emph{Prototype}:
  3329. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  3330. @end table
  3331. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  3332. @node starpu_data_get_sub_data
  3333. @subsection starpu_data_get_sub_data
  3334. @table @asis
  3335. @item @emph{Description}:
  3336. After partitioning a StarPU data by applying a filter,
  3337. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  3338. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  3339. is the number of filters to traverse (in case several filters have been applied,
  3340. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  3341. parameters are the indexes.
  3342. @item @emph{Return value}:
  3343. A handle to the subdata.
  3344. @item @emph{Prototype}:
  3345. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  3346. @item @emph{Example}:
  3347. @cartouche
  3348. @smallexample
  3349. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  3350. @end smallexample
  3351. @end cartouche
  3352. @end table
  3353. @node Predefined filter functions
  3354. @subsection Predefined filter functions
  3355. @menu
  3356. * Partitioning BCSR Data::
  3357. * Partitioning BLAS interface::
  3358. * Partitioning Vector Data::
  3359. * Partitioning Block Data::
  3360. @end menu
  3361. This section gives a partial list of the predefined partitioning functions.
  3362. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  3363. list can be found in @code{starpu_data_filters.h} .
  3364. @node Partitioning BCSR Data
  3365. @subsubsection Partitioning BCSR Data
  3366. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3367. TODO
  3368. @end deftypefun
  3369. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3370. TODO
  3371. @end deftypefun
  3372. @node Partitioning BLAS interface
  3373. @subsubsection Partitioning BLAS interface
  3374. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3375. This partitions a dense Matrix into horizontal blocks.
  3376. @end deftypefun
  3377. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3378. This partitions a dense Matrix into vertical blocks.
  3379. @end deftypefun
  3380. @node Partitioning Vector Data
  3381. @subsubsection Partitioning Vector Data
  3382. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3383. This partitions a vector into blocks of the same size.
  3384. @end deftypefun
  3385. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3386. This partitions a vector into blocks of sizes given in the @var{filter_arg_ptr}
  3387. field of @var{f}, supposed to point on a @code{uint32_t*} array.
  3388. @end deftypefun
  3389. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3390. This partitions a vector into two blocks, the first block size being given in
  3391. the @var{filter_arg} field of @var{f}.
  3392. @end deftypefun
  3393. @node Partitioning Block Data
  3394. @subsubsection Partitioning Block Data
  3395. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3396. This partitions a 3D matrix along the X axis.
  3397. @end deftypefun
  3398. @node Codelets and Tasks
  3399. @section Codelets and Tasks
  3400. This section describes the interface to manipulate codelets and tasks.
  3401. @deftp {Data Type} {struct starpu_codelet}
  3402. The codelet structure describes a kernel that is possibly implemented on various
  3403. targets. For compatibility, make sure to initialize the whole structure to zero.
  3404. @table @asis
  3405. @item @code{where}
  3406. Indicates which types of processing units are able to execute the codelet.
  3407. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  3408. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  3409. indicates that it is only available on Cell SPUs.
  3410. @item @code{cpu_func} (optional)
  3411. Is a function pointer to the CPU implementation of the codelet. Its prototype
  3412. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  3413. argument being the array of data managed by the data management library, and
  3414. the second argument is a pointer to the argument passed from the @code{cl_arg}
  3415. field of the @code{starpu_task} structure.
  3416. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  3417. the @code{where} field, it must be non-null otherwise. When multiple CPU
  3418. implementations are used, this field must be set to
  3419. @code{STARPU_MULTIPLE_CPU_IMPLEMENTATIONS}.
  3420. @item @code{cpu_funcs} (optional)
  3421. Is an array of function pointers to the CPU implementations of the codelet. This
  3422. field is ignored if the @code{cpu_func} field is set to anything else than
  3423. @code{STARPU_MULTIPLE_CPU_IMPLEMENTATIONS}. Otherwise, it should contain at
  3424. least one function pointer, and at most @code{STARPU_MAXIMPLEMENTATIONS}.
  3425. @item @code{cuda_func} (optional)
  3426. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  3427. must be a host-function written in the CUDA runtime API}. Its prototype must
  3428. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  3429. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  3430. field, it must be non-null otherwise. When multiple CUDA implementations are
  3431. used, this field must be set to @code{STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS}.
  3432. @item @code{cuda_funcs} (optional)
  3433. Is an array of function pointers to the CUDA implementations of the codelet.
  3434. This field is ignored if the @code{cuda_func} field is set to anything else than
  3435. @code{STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS}. Otherwise, it should contain at
  3436. least one function pointer, and at most @code{STARPU_MAXIMPLEMENTATIONS}.
  3437. @item @code{opencl_func} (optional)
  3438. Is a function pointer to the OpenCL implementation of the codelet. Its
  3439. prototype must be:
  3440. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  3441. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  3442. @code{where} field, it must be non-null otherwise. When multiple OpenCL
  3443. implementations are used, this field must be set to
  3444. @code{STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS}.
  3445. @item @code{opencl_funcs} (optional)
  3446. Is an array of function pointers to the OpenCL implementations of the codelet.
  3447. This field is ignored if the @code{opencl_func} field is set to anything else
  3448. than @code{STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS}. Otherwise, it should contain
  3449. at least one function pointer, and at most @code{STARPU_MAXIMPLEMENTATIONS}.
  3450. @item @code{gordon_func} (optional)
  3451. This is the index of the Cell SPU implementation within the Gordon library.
  3452. See Gordon documentation for more details on how to register a kernel and
  3453. retrieve its index.
  3454. @item @code{nbuffers}
  3455. Specifies the number of arguments taken by the codelet. These arguments are
  3456. managed by the DSM and are accessed from the @code{void *buffers[]}
  3457. array. The constant argument passed with the @code{cl_arg} field of the
  3458. @code{starpu_task} structure is not counted in this number. This value should
  3459. not be above @code{STARPU_NMAXBUFS}.
  3460. @item @code{model} (optional)
  3461. This is a pointer to the task duration performance model associated to this
  3462. codelet. This optional field is ignored when set to @code{NULL}.
  3463. TODO
  3464. @item @code{power_model} (optional)
  3465. This is a pointer to the task power consumption performance model associated
  3466. to this codelet. This optional field is ignored when set to @code{NULL}.
  3467. In the case of parallel codelets, this has to account for all processing units
  3468. involved in the parallel execution.
  3469. TODO
  3470. @end table
  3471. @end deftp
  3472. @deftp {Data Type} {struct starpu_task}
  3473. The @code{starpu_task} structure describes a task that can be offloaded on the various
  3474. processing units managed by StarPU. It instantiates a codelet. It can either be
  3475. allocated dynamically with the @code{starpu_task_create} method, or declared
  3476. statically. In the latter case, the programmer has to zero the
  3477. @code{starpu_task} structure and to fill the different fields properly. The
  3478. indicated default values correspond to the configuration of a task allocated
  3479. with @code{starpu_task_create}.
  3480. @table @asis
  3481. @item @code{cl}
  3482. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  3483. describes where the kernel should be executed, and supplies the appropriate
  3484. implementations. When set to @code{NULL}, no code is executed during the tasks,
  3485. such empty tasks can be useful for synchronization purposes.
  3486. @item @code{buffers}
  3487. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  3488. different pieces of data accessed by the task, and how they should be accessed.
  3489. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  3490. @code{handle} field specifies the handle of the piece of data, and the
  3491. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  3492. of entries in this array must be specified in the @code{nbuffers} field of the
  3493. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  3494. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  3495. option when configuring StarPU.
  3496. @item @code{cl_arg} (optional; default: @code{NULL})
  3497. This pointer is passed to the codelet through the second argument
  3498. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  3499. In the specific case of the Cell processor, see the @code{cl_arg_size}
  3500. argument.
  3501. @item @code{cl_arg_size} (optional, Cell-specific)
  3502. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  3503. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  3504. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  3505. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  3506. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  3507. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  3508. codelets, where the @code{cl_arg} pointer is given as such.
  3509. @item @code{callback_func} (optional) (default: @code{NULL})
  3510. This is a function pointer of prototype @code{void (*f)(void *)} which
  3511. specifies a possible callback. If this pointer is non-null, the callback
  3512. function is executed @emph{on the host} after the execution of the task. The
  3513. callback is passed the value contained in the @code{callback_arg} field. No
  3514. callback is executed if the field is set to @code{NULL}.
  3515. @item @code{callback_arg} (optional) (default: @code{NULL})
  3516. This is the pointer passed to the callback function. This field is ignored if
  3517. the @code{callback_func} is set to @code{NULL}.
  3518. @item @code{use_tag} (optional) (default: @code{0})
  3519. If set, this flag indicates that the task should be associated with the tag
  3520. contained in the @code{tag_id} field. Tag allow the application to synchronize
  3521. with the task and to express task dependencies easily.
  3522. @item @code{tag_id}
  3523. This fields contains the tag associated to the task if the @code{use_tag} field
  3524. was set, it is ignored otherwise.
  3525. @item @code{synchronous}
  3526. If this flag is set, the @code{starpu_task_submit} function is blocking and
  3527. returns only when the task has been executed (or if no worker is able to
  3528. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  3529. @item @code{priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  3530. This field indicates a level of priority for the task. This is an integer value
  3531. that must be set between the return values of the
  3532. @code{starpu_sched_get_min_priority} function for the least important tasks,
  3533. and that of the @code{starpu_sched_get_max_priority} for the most important
  3534. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  3535. are provided for convenience and respectively returns value of
  3536. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  3537. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  3538. order to allow static task initialization. Scheduling strategies that take
  3539. priorities into account can use this parameter to take better scheduling
  3540. decisions, but the scheduling policy may also ignore it.
  3541. @item @code{execute_on_a_specific_worker} (default: @code{0})
  3542. If this flag is set, StarPU will bypass the scheduler and directly affect this
  3543. task to the worker specified by the @code{workerid} field.
  3544. @item @code{workerid} (optional)
  3545. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  3546. which is the identifier of the worker that should process this task (as
  3547. returned by @code{starpu_worker_get_id}). This field is ignored if
  3548. @code{execute_on_a_specific_worker} field is set to 0.
  3549. @item @code{detach} (optional) (default: @code{1})
  3550. If this flag is set, it is not possible to synchronize with the task
  3551. by the means of @code{starpu_task_wait} later on. Internal data structures
  3552. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  3553. flag is not set.
  3554. @item @code{destroy} (optional) (default: @code{1})
  3555. If this flag is set, the task structure will automatically be freed, either
  3556. after the execution of the callback if the task is detached, or during
  3557. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  3558. allocated data structures will not be freed until @code{starpu_task_destroy} is
  3559. called explicitly. Setting this flag for a statically allocated task structure
  3560. will result in undefined behaviour.
  3561. @item @code{predicted} (output field)
  3562. Predicted duration of the task. This field is only set if the scheduling
  3563. strategy used performance models.
  3564. @end table
  3565. @end deftp
  3566. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  3567. Initialize @var{task} with default values. This function is implicitly
  3568. called by @code{starpu_task_create}. By default, tasks initialized with
  3569. @code{starpu_task_init} must be deinitialized explicitly with
  3570. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  3571. constant @code{STARPU_TASK_INITIALIZER}.
  3572. @end deftypefun
  3573. @deftypefun {struct starpu_task *} starpu_task_create (void)
  3574. Allocate a task structure and initialize it with default values. Tasks
  3575. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  3576. task is terminated. If the destroy flag is explicitly unset, the resources used
  3577. by the task are freed by calling
  3578. @code{starpu_task_destroy}.
  3579. @end deftypefun
  3580. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  3581. Release all the structures automatically allocated to execute @var{task}. This is
  3582. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  3583. freed. This should be used for statically allocated tasks for instance.
  3584. @end deftypefun
  3585. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  3586. Free the resource allocated during @code{starpu_task_create} and
  3587. associated with @var{task}. This function can be called automatically
  3588. after the execution of a task by setting the @code{destroy} flag of the
  3589. @code{starpu_task} structure (default behaviour). Calling this function
  3590. on a statically allocated task results in an undefined behaviour.
  3591. @end deftypefun
  3592. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  3593. This function blocks until @var{task} has been executed. It is not possible to
  3594. synchronize with a task more than once. It is not possible to wait for
  3595. synchronous or detached tasks.
  3596. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  3597. indicates that the specified task was either synchronous or detached.
  3598. @end deftypefun
  3599. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  3600. This function submits @var{task} to StarPU. Calling this function does
  3601. not mean that the task will be executed immediately as there can be data or task
  3602. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  3603. scheduling this task with respect to such dependencies.
  3604. This function returns immediately if the @code{synchronous} field of the
  3605. @code{starpu_task} structure was set to 0, and block until the termination of
  3606. the task otherwise. It is also possible to synchronize the application with
  3607. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  3608. function for instance.
  3609. In case of success, this function returns 0, a return value of @code{-ENODEV}
  3610. means that there is no worker able to process this task (e.g. there is no GPU
  3611. available and this task is only implemented for CUDA devices).
  3612. @end deftypefun
  3613. @deftypefun int starpu_task_wait_for_all (void)
  3614. This function blocks until all the tasks that were submitted are terminated.
  3615. @end deftypefun
  3616. @deftypefun {struct starpu_task *} starpu_get_current_task (void)
  3617. This function returns the task currently executed by the worker, or
  3618. NULL if it is called either from a thread that is not a task or simply
  3619. because there is no task being executed at the moment.
  3620. @end deftypefun
  3621. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet_t} *@var{cl})
  3622. Output on @code{stderr} some statistics on the codelet @var{cl}.
  3623. @end deftypefun
  3624. @c Callbacks : what can we put in callbacks ?
  3625. @node Explicit Dependencies
  3626. @section Explicit Dependencies
  3627. @menu
  3628. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  3629. * starpu_tag_t:: Task logical identifier
  3630. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  3631. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  3632. * starpu_tag_wait:: Block until a Tag is terminated
  3633. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  3634. * starpu_tag_remove:: Destroy a Tag
  3635. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  3636. @end menu
  3637. @node starpu_task_declare_deps_array
  3638. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  3639. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  3640. Declare task dependencies between a @var{task} and an array of tasks of length
  3641. @var{ndeps}. This function must be called prior to the submission of the task,
  3642. but it may called after the submission or the execution of the tasks in the
  3643. array provided the tasks are still valid (ie. they were not automatically
  3644. destroyed). Calling this function on a task that was already submitted or with
  3645. an entry of @var{task_array} that is not a valid task anymore results in an
  3646. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  3647. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  3648. same task, in this case, the dependencies are added. It is possible to have
  3649. redundancy in the task dependencies.
  3650. @end deftypefun
  3651. @node starpu_tag_t
  3652. @subsection @code{starpu_tag_t} -- Task logical identifier
  3653. @table @asis
  3654. @item @emph{Description}:
  3655. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  3656. dependencies between tasks by the means of those tags. To do so, fill the
  3657. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  3658. be arbitrary) and set the @code{use_tag} field to 1.
  3659. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  3660. not be started until the tasks which holds the declared dependency tags are
  3661. completed.
  3662. @end table
  3663. @node starpu_tag_declare_deps
  3664. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  3665. @table @asis
  3666. @item @emph{Description}:
  3667. Specify the dependencies of the task identified by tag @code{id}. The first
  3668. argument specifies the tag which is configured, the second argument gives the
  3669. number of tag(s) on which @code{id} depends. The following arguments are the
  3670. tags which have to be terminated to unlock the task.
  3671. This function must be called before the associated task is submitted to StarPU
  3672. with @code{starpu_task_submit}.
  3673. @item @emph{Remark}
  3674. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  3675. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  3676. typically need to be explicitly casted. Using the
  3677. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  3678. @item @emph{Prototype}:
  3679. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  3680. @item @emph{Example}:
  3681. @cartouche
  3682. @example
  3683. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3684. starpu_tag_declare_deps((starpu_tag_t)0x1,
  3685. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  3686. @end example
  3687. @end cartouche
  3688. @end table
  3689. @node starpu_tag_declare_deps_array
  3690. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3691. @table @asis
  3692. @item @emph{Description}:
  3693. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3694. does not take a variable number of arguments but an array of tags of size
  3695. @code{ndeps}.
  3696. @item @emph{Prototype}:
  3697. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3698. @item @emph{Example}:
  3699. @cartouche
  3700. @example
  3701. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3702. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3703. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3704. @end example
  3705. @end cartouche
  3706. @end table
  3707. @node starpu_tag_wait
  3708. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3709. @deftypefun void starpu_tag_wait (starpu_tag_t @var{id})
  3710. This function blocks until the task associated to tag @var{id} has been
  3711. executed. This is a blocking call which must therefore not be called within
  3712. tasks or callbacks, but only from the application directly. It is possible to
  3713. synchronize with the same tag multiple times, as long as the
  3714. @code{starpu_tag_remove} function is not called. Note that it is still
  3715. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3716. data structure was freed (e.g. if the @code{destroy} flag of the
  3717. @code{starpu_task} was enabled).
  3718. @end deftypefun
  3719. @node starpu_tag_wait_array
  3720. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3721. @deftypefun void starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  3722. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3723. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  3724. terminated.
  3725. @end deftypefun
  3726. @node starpu_tag_remove
  3727. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3728. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  3729. This function releases the resources associated to tag @var{id}. It can be
  3730. called once the corresponding task has been executed and when there is
  3731. no other tag that depend on this tag anymore.
  3732. @end deftypefun
  3733. @node starpu_tag_notify_from_apps
  3734. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3735. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  3736. This function explicitly unlocks tag @var{id}. It may be useful in the
  3737. case of applications which execute part of their computation outside StarPU
  3738. tasks (e.g. third-party libraries). It is also provided as a
  3739. convenient tool for the programmer, for instance to entirely construct the task
  3740. DAG before actually giving StarPU the opportunity to execute the tasks.
  3741. @end deftypefun
  3742. @node Implicit Data Dependencies
  3743. @section Implicit Data Dependencies
  3744. @menu
  3745. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3746. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3747. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3748. @end menu
  3749. In this section, we describe how StarPU makes it possible to insert implicit
  3750. task dependencies in order to enforce sequential data consistency. When this
  3751. data consistency is enabled on a specific data handle, any data access will
  3752. appear as sequentially consistent from the application. For instance, if the
  3753. application submits two tasks that access the same piece of data in read-only
  3754. mode, and then a third task that access it in write mode, dependencies will be
  3755. added between the two first tasks and the third one. Implicit data dependencies
  3756. are also inserted in the case of data accesses from the application.
  3757. @node starpu_data_set_default_sequential_consistency_flag
  3758. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3759. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  3760. Set the default sequential consistency flag. If a non-zero value is passed, a
  3761. sequential data consistency will be enforced for all handles registered after
  3762. this function call, otherwise it is disabled. By default, StarPU enables
  3763. sequential data consistency. It is also possible to select the data consistency
  3764. mode of a specific data handle with the
  3765. @code{starpu_data_set_sequential_consistency_flag} function.
  3766. @end deftypefun
  3767. @node starpu_data_get_default_sequential_consistency_flag
  3768. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3769. @deftypefun unsigned starpu_data_set_default_sequential_consistency_flag (void)
  3770. This function returns the current default sequential consistency flag.
  3771. @end deftypefun
  3772. @node starpu_data_set_sequential_consistency_flag
  3773. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3774. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle @var{handle}, unsigned @var{flag})
  3775. Select the data consistency mode associated to a data handle. The consistency
  3776. mode set using this function has the priority over the default mode which can
  3777. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3778. @end deftypefun
  3779. @node Performance Model API
  3780. @section Performance Model API
  3781. @menu
  3782. * starpu_load_history_debug::
  3783. * starpu_perfmodel_debugfilepath::
  3784. * starpu_perfmodel_get_arch_name::
  3785. * starpu_force_bus_sampling::
  3786. @end menu
  3787. @node starpu_load_history_debug
  3788. @subsection @code{starpu_load_history_debug}
  3789. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel_t} *@var{model})
  3790. TODO
  3791. @end deftypefun
  3792. @node starpu_perfmodel_debugfilepath
  3793. @subsection @code{starpu_perfmodel_debugfilepath}
  3794. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel_t} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen})
  3795. TODO
  3796. @end deftypefun
  3797. @node starpu_perfmodel_get_arch_name
  3798. @subsection @code{starpu_perfmodel_get_arch_name}
  3799. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen})
  3800. TODO
  3801. @end deftypefun
  3802. @node starpu_force_bus_sampling
  3803. @subsection @code{starpu_force_bus_sampling}
  3804. @deftypefun void starpu_force_bus_sampling (void)
  3805. This forces sampling the bus performance model again.
  3806. @end deftypefun
  3807. @node Profiling API
  3808. @section Profiling API
  3809. @menu
  3810. * starpu_profiling_status_set:: starpu_profiling_status_set
  3811. * starpu_profiling_status_get:: starpu_profiling_status_get
  3812. * struct starpu_task_profiling_info:: task profiling information
  3813. * struct starpu_worker_profiling_info:: worker profiling information
  3814. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3815. * struct starpu_bus_profiling_info:: bus profiling information
  3816. * starpu_bus_get_count::
  3817. * starpu_bus_get_id::
  3818. * starpu_bus_get_src::
  3819. * starpu_bus_get_dst::
  3820. * starpu_timing_timespec_delay_us::
  3821. * starpu_timing_timespec_to_us::
  3822. * starpu_bus_profiling_helper_display_summary::
  3823. * starpu_worker_profiling_helper_display_summary::
  3824. @end menu
  3825. @node starpu_profiling_status_set
  3826. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3827. @table @asis
  3828. @item @emph{Description}:
  3829. Thie function sets the profiling status. Profiling is activated by passing
  3830. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3831. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3832. resets all profiling measurements. When profiling is enabled, the
  3833. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3834. to a valid @code{struct starpu_task_profiling_info} structure containing
  3835. information about the execution of the task.
  3836. @item @emph{Return value}:
  3837. Negative return values indicate an error, otherwise the previous status is
  3838. returned.
  3839. @item @emph{Prototype}:
  3840. @code{int starpu_profiling_status_set(int status);}
  3841. @end table
  3842. @node starpu_profiling_status_get
  3843. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3844. @deftypefun int starpu_profiling_status_get (void)
  3845. Return the current profiling status or a negative value in case there was an error.
  3846. @end deftypefun
  3847. @node struct starpu_task_profiling_info
  3848. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3849. @table @asis
  3850. @item @emph{Description}:
  3851. This structure contains information about the execution of a task. It is
  3852. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3853. structure if profiling was enabled.
  3854. @item @emph{Fields}:
  3855. @table @asis
  3856. @item @code{submit_time}:
  3857. Date of task submission (relative to the initialization of StarPU).
  3858. @item @code{start_time}:
  3859. Date of task execution beginning (relative to the initialization of StarPU).
  3860. @item @code{end_time}:
  3861. Date of task execution termination (relative to the initialization of StarPU).
  3862. @item @code{workerid}:
  3863. Identifier of the worker which has executed the task.
  3864. @end table
  3865. @end table
  3866. @node struct starpu_worker_profiling_info
  3867. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3868. @table @asis
  3869. @item @emph{Description}:
  3870. This structure contains the profiling information associated to a worker.
  3871. @item @emph{Fields}:
  3872. @table @asis
  3873. @item @code{start_time}:
  3874. Starting date for the reported profiling measurements.
  3875. @item @code{total_time}:
  3876. Duration of the profiling measurement interval.
  3877. @item @code{executing_time}:
  3878. Time spent by the worker to execute tasks during the profiling measurement interval.
  3879. @item @code{sleeping_time}:
  3880. Time spent idling by the worker during the profiling measurement interval.
  3881. @item @code{executed_tasks}:
  3882. Number of tasks executed by the worker during the profiling measurement interval.
  3883. @end table
  3884. @end table
  3885. @node starpu_worker_get_profiling_info
  3886. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3887. @table @asis
  3888. @item @emph{Description}:
  3889. Get the profiling info associated to the worker identified by @code{workerid},
  3890. and reset the profiling measurements. If the @code{worker_info} argument is
  3891. NULL, only reset the counters associated to worker @code{workerid}.
  3892. @item @emph{Return value}:
  3893. Upon successful completion, this function returns 0. Otherwise, a negative
  3894. value is returned.
  3895. @item @emph{Prototype}:
  3896. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3897. @end table
  3898. @node struct starpu_bus_profiling_info
  3899. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3900. @table @asis
  3901. @item @emph{Description}:
  3902. TODO
  3903. @item @emph{Fields}:
  3904. @table @asis
  3905. @item @code{start_time}:
  3906. TODO
  3907. @item @code{total_time}:
  3908. TODO
  3909. @item @code{transferred_bytes}:
  3910. TODO
  3911. @item @code{transfer_count}:
  3912. TODO
  3913. @end table
  3914. @end table
  3915. @node starpu_bus_get_count
  3916. @subsection @code{starpu_bus_get_count}
  3917. @deftypefun int starpu_bus_get_count (void)
  3918. TODO
  3919. @end deftypefun
  3920. @node starpu_bus_get_id
  3921. @subsection @code{starpu_bus_get_id}
  3922. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  3923. TODO
  3924. @end deftypefun
  3925. @node starpu_bus_get_src
  3926. @subsection @code{starpu_bus_get_src}
  3927. @deftypefun int starpu_bus_get_src (int @var{busid})
  3928. TODO
  3929. @end deftypefun
  3930. @node starpu_bus_get_dst
  3931. @subsection @code{starpu_bus_get_dst}
  3932. @deftypefun int starpu_bus_get_dst (int @var{busid})
  3933. TODO
  3934. @end deftypefun
  3935. @node starpu_timing_timespec_delay_us
  3936. @subsection @code{starpu_timing_timespec_delay_us}
  3937. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  3938. TODO
  3939. @end deftypefun
  3940. @node starpu_timing_timespec_to_us
  3941. @subsection @code{starpu_timing_timespec_to_us}
  3942. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  3943. TODO
  3944. @end deftypefun
  3945. @node starpu_bus_profiling_helper_display_summary
  3946. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3947. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  3948. TODO
  3949. @end deftypefun
  3950. @node starpu_worker_profiling_helper_display_summary
  3951. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3952. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  3953. TODO
  3954. @end deftypefun
  3955. @node CUDA extensions
  3956. @section CUDA extensions
  3957. @c void starpu_malloc(float **A, size_t dim);
  3958. @menu
  3959. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3960. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3961. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3962. @end menu
  3963. @node starpu_cuda_get_local_stream
  3964. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3965. @deftypefun {cudaStream_t *} starpu_cuda_get_local_stream (void)
  3966. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3967. function is only provided for convenience so that programmers can easily use
  3968. asynchronous operations within codelets without having to create a stream by
  3969. hand. Note that the application is not forced to use the stream provided by
  3970. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3971. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3972. the likelihood of having all transfers overlapped.
  3973. @end deftypefun
  3974. @node starpu_helper_cublas_init
  3975. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3976. @deftypefun void starpu_helper_cublas_init (void)
  3977. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3978. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3979. controlled by StarPU. This call blocks until CUBLAS has been properly
  3980. initialized on every device.
  3981. @end deftypefun
  3982. @node starpu_helper_cublas_shutdown
  3983. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3984. @deftypefun void starpu_helper_cublas_shutdown (void)
  3985. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3986. @end deftypefun
  3987. @node OpenCL extensions
  3988. @section OpenCL extensions
  3989. @menu
  3990. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3991. * Loading OpenCL kernels:: Loading OpenCL kernels
  3992. * OpenCL statistics:: Collecting statistics from OpenCL
  3993. @end menu
  3994. @node Compiling OpenCL kernels
  3995. @subsection Compiling OpenCL kernels
  3996. Source codes for OpenCL kernels can be stored in a file or in a
  3997. string. StarPU provides functions to build the program executable for
  3998. each available OpenCL device as a @code{cl_program} object. This
  3999. program executable can then be loaded within a specific queue as
  4000. explained in the next section. These are only helpers, Applications
  4001. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  4002. use (e.g. different programs on the different OpenCL devices, for
  4003. relocation purpose for instance).
  4004. @menu
  4005. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  4006. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  4007. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  4008. @end menu
  4009. @node starpu_opencl_load_opencl_from_file
  4010. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  4011. @deftypefun int starpu_opencl_load_opencl_from_file (char *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  4012. TODO
  4013. @end deftypefun
  4014. @node starpu_opencl_load_opencl_from_string
  4015. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  4016. @deftypefun int starpu_opencl_load_opencl_from_string (char *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  4017. TODO
  4018. @end deftypefun
  4019. @node starpu_opencl_unload_opencl
  4020. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  4021. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  4022. TODO
  4023. @end deftypefun
  4024. @node Loading OpenCL kernels
  4025. @subsection Loading OpenCL kernels
  4026. @menu
  4027. * starpu_opencl_load_kernel:: Loading a kernel
  4028. * starpu_opencl_relase_kernel:: Releasing a kernel
  4029. @end menu
  4030. @node starpu_opencl_load_kernel
  4031. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  4032. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, char *@var{kernel_name}, int @var{devid})
  4033. TODO
  4034. @end deftypefun
  4035. @node starpu_opencl_relase_kernel
  4036. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  4037. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  4038. TODO
  4039. @end deftypefun
  4040. @node OpenCL statistics
  4041. @subsection OpenCL statistics
  4042. @menu
  4043. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  4044. @end menu
  4045. @node starpu_opencl_collect_stats
  4046. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  4047. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  4048. After termination of the kernels, the OpenCL codelet should call this function
  4049. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  4050. collect statistics about the kernel execution (used cycles, consumed power).
  4051. @end deftypefun
  4052. @node Cell extensions
  4053. @section Cell extensions
  4054. nothing yet.
  4055. @node Miscellaneous helpers
  4056. @section Miscellaneous helpers
  4057. @menu
  4058. * starpu_data_cpy:: Copy a data handle into another data handle
  4059. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  4060. @end menu
  4061. @node starpu_data_cpy
  4062. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  4063. @deftypefun int starpu_data_cpy (starpu_data_handle @var{dst_handle}, starpu_data_handle @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  4064. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  4065. The @var{asynchronous} parameter indicates whether the function should
  4066. block or not. In the case of an asynchronous call, it is possible to
  4067. synchronize with the termination of this operation either by the means of
  4068. implicit dependencies (if enabled) or by calling
  4069. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  4070. this callback function is executed after the handle has been copied, and it is
  4071. given the @var{callback_arg} pointer as argument.
  4072. @end deftypefun
  4073. @node starpu_execute_on_each_worker
  4074. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  4075. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  4076. When calling this method, the offloaded function specified by the first argument is
  4077. executed by every StarPU worker that may execute the function.
  4078. The second argument is passed to the offloaded function.
  4079. The last argument specifies on which types of processing units the function
  4080. should be executed. Similarly to the @var{where} field of the
  4081. @code{starpu_codelet} structure, it is possible to specify that the function
  4082. should be executed on every CUDA device and every CPU by passing
  4083. @code{STARPU_CPU|STARPU_CUDA}.
  4084. This function blocks until the function has been executed on every appropriate
  4085. processing units, so that it may not be called from a callback function for
  4086. instance.
  4087. @end deftypefun
  4088. @c ---------------------------------------------------------------------
  4089. @c Advanced Topics
  4090. @c ---------------------------------------------------------------------
  4091. @node Advanced Topics
  4092. @chapter Advanced Topics
  4093. @menu
  4094. * Defining a new data interface::
  4095. * Defining a new scheduling policy::
  4096. @end menu
  4097. @node Defining a new data interface
  4098. @section Defining a new data interface
  4099. @menu
  4100. * struct starpu_data_interface_ops_t:: Per-interface methods
  4101. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  4102. * An example of data interface:: An example of data interface
  4103. @end menu
  4104. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  4105. @node struct starpu_data_interface_ops_t
  4106. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  4107. @table @asis
  4108. @item @emph{Description}:
  4109. TODO describe all the different fields
  4110. @end table
  4111. @node struct starpu_data_copy_methods
  4112. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  4113. @table @asis
  4114. @item @emph{Description}:
  4115. TODO describe all the different fields
  4116. @end table
  4117. @node An example of data interface
  4118. @subsection An example of data interface
  4119. @table @asis
  4120. TODO
  4121. See @code{src/datawizard/interfaces/vector_interface.c} for now.
  4122. @end table
  4123. @node Defining a new scheduling policy
  4124. @section Defining a new scheduling policy
  4125. TODO
  4126. A full example showing how to define a new scheduling policy is available in
  4127. the StarPU sources in the directory @code{examples/scheduler/}.
  4128. @menu
  4129. * struct starpu_sched_policy_s::
  4130. * starpu_worker_set_sched_condition::
  4131. * starpu_sched_set_min_priority:: Set the minimum priority level
  4132. * starpu_sched_set_max_priority:: Set the maximum priority level
  4133. * starpu_push_local_task:: Assign a task to a worker
  4134. * Source code::
  4135. @end menu
  4136. @node struct starpu_sched_policy_s
  4137. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  4138. @table @asis
  4139. @item @emph{Description}:
  4140. This structure contains all the methods that implement a scheduling policy. An
  4141. application may specify which scheduling strategy in the @code{sched_policy}
  4142. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  4143. function.
  4144. @item @emph{Fields}:
  4145. @table @asis
  4146. @item @code{init_sched}:
  4147. Initialize the scheduling policy.
  4148. @item @code{deinit_sched}:
  4149. Cleanup the scheduling policy.
  4150. @item @code{push_task}:
  4151. Insert a task into the scheduler.
  4152. @item @code{push_prio_task}:
  4153. Insert a priority task into the scheduler.
  4154. @item @code{push_prio_notify}:
  4155. Notify the scheduler that a task was pushed on the worker. This method is
  4156. called when a task that was explicitely assigned to a worker is scheduled. This
  4157. method therefore permits to keep the state of of the scheduler coherent even
  4158. when StarPU bypasses the scheduling strategy.
  4159. @item @code{pop_task}:
  4160. Get a task from the scheduler. The mutex associated to the worker is already
  4161. taken when this method is called. If this method is defined as @code{NULL}, the
  4162. worker will only execute tasks from its local queue. In this case, the
  4163. @code{push_task} method should use the @code{starpu_push_local_task} method to
  4164. assign tasks to the different workers.
  4165. @item @code{pop_every_task}:
  4166. Remove all available tasks from the scheduler (tasks are chained by the means
  4167. of the prev and next fields of the starpu_task structure). The mutex associated
  4168. to the worker is already taken when this method is called.
  4169. @item @code{post_exec_hook} (optionnal):
  4170. This method is called every time a task has been executed.
  4171. @item @code{policy_name}:
  4172. Name of the policy (optionnal).
  4173. @item @code{policy_description}:
  4174. Description of the policy (optionnal).
  4175. @end table
  4176. @end table
  4177. @node starpu_worker_set_sched_condition
  4178. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  4179. @deftypefun void starpu_worker_set_sched_condition (int @var{workerid}, pthread_cond_t *@var{sched_cond}, pthread_mutex_t *@var{sched_mutex})
  4180. When there is no available task for a worker, StarPU blocks this worker on a
  4181. condition variable. This function specifies which condition variable (and the
  4182. associated mutex) should be used to block (and to wake up) a worker. Note that
  4183. multiple workers may use the same condition variable. For instance, in the case
  4184. of a scheduling strategy with a single task queue, the same condition variable
  4185. would be used to block and wake up all workers.
  4186. The initialization method of a scheduling strategy (@code{init_sched}) must
  4187. call this function once per worker.
  4188. @end deftypefun
  4189. @node starpu_sched_set_min_priority
  4190. @subsection @code{starpu_sched_set_min_priority}
  4191. @deftypefun void starpu_sched_set_min_priority (int @var{min_prio})
  4192. Defines the minimum priority level supported by the scheduling policy. The
  4193. default minimum priority level is the same as the default priority level which
  4194. is 0 by convention. The application may access that value by calling the
  4195. @code{starpu_sched_get_min_priority} function. This function should only be
  4196. called from the initialization method of the scheduling policy, and should not
  4197. be used directly from the application.
  4198. @end deftypefun
  4199. @node starpu_sched_set_max_priority
  4200. @subsection @code{starpu_sched_set_max_priority}
  4201. @deftypefun void starpu_sched_set_min_priority (int @var{max_prio})
  4202. Defines the maximum priority level supported by the scheduling policy. The
  4203. default maximum priority level is 1. The application may access that value by
  4204. calling the @code{starpu_sched_get_max_priority} function. This function should
  4205. only be called from the initialization method of the scheduling policy, and
  4206. should not be used directly from the application.
  4207. @end deftypefun
  4208. @node starpu_push_local_task
  4209. @subsection @code{starpu_push_local_task}
  4210. @deftypefun int starpu_push_local_task (int @var{workerid}, {struct starpu_task} *@var{task}, int @var{back})
  4211. The scheduling policy may put tasks directly into a worker's local queue so
  4212. that it is not always necessary to create its own queue when the local queue
  4213. is sufficient. If "back" not null, the task is put at the back of the queue
  4214. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  4215. a FIFO ordering.
  4216. @end deftypefun
  4217. @node Source code
  4218. @subsection Source code
  4219. @cartouche
  4220. @smallexample
  4221. static struct starpu_sched_policy_s dummy_sched_policy = @{
  4222. .init_sched = init_dummy_sched,
  4223. .deinit_sched = deinit_dummy_sched,
  4224. .push_task = push_task_dummy,
  4225. .push_prio_task = NULL,
  4226. .pop_task = pop_task_dummy,
  4227. .post_exec_hook = NULL,
  4228. .pop_every_task = NULL,
  4229. .policy_name = "dummy",
  4230. .policy_description = "dummy scheduling strategy"
  4231. @};
  4232. @end smallexample
  4233. @end cartouche
  4234. @c ---------------------------------------------------------------------
  4235. @c C Extensions
  4236. @c ---------------------------------------------------------------------
  4237. @include c-extensions.texi
  4238. @c ---------------------------------------------------------------------
  4239. @c Appendices
  4240. @c ---------------------------------------------------------------------
  4241. @c ---------------------------------------------------------------------
  4242. @c Full source code for the 'Scaling a Vector' example
  4243. @c ---------------------------------------------------------------------
  4244. @node Full source code for the 'Scaling a Vector' example
  4245. @appendix Full source code for the 'Scaling a Vector' example
  4246. @menu
  4247. * Main application::
  4248. * CPU Kernel::
  4249. * CUDA Kernel::
  4250. * OpenCL Kernel::
  4251. @end menu
  4252. @node Main application
  4253. @section Main application
  4254. @include vector_scal_c.texi
  4255. @node CPU Kernel
  4256. @section CPU Kernel
  4257. @include vector_scal_cpu.texi
  4258. @node CUDA Kernel
  4259. @section CUDA Kernel
  4260. @include vector_scal_cuda.texi
  4261. @node OpenCL Kernel
  4262. @section OpenCL Kernel
  4263. @menu
  4264. * Invoking the kernel::
  4265. * Source of the kernel::
  4266. @end menu
  4267. @node Invoking the kernel
  4268. @subsection Invoking the kernel
  4269. @include vector_scal_opencl.texi
  4270. @node Source of the kernel
  4271. @subsection Source of the kernel
  4272. @include vector_scal_opencl_codelet.texi
  4273. @node GNU Free Documentation License
  4274. @appendix GNU Free Documentation License
  4275. @include fdl-1.3.texi
  4276. @c
  4277. @c Indices.
  4278. @c
  4279. @node Function Index
  4280. @unnumbered Function Index
  4281. @printindex fn
  4282. @bye