cholesky_tag.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2008-2017 Université de Bordeaux
  4. * Copyright (C) 2012,2013 Inria
  5. * Copyright (C) 2010-2013,2015,2017 CNRS
  6. * Copyright (C) 2013 Thibaut Lambert
  7. * Copyright (C) 2010 Mehdi Juhoor
  8. *
  9. * StarPU is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU Lesser General Public License as published by
  11. * the Free Software Foundation; either version 2.1 of the License, or (at
  12. * your option) any later version.
  13. *
  14. * StarPU is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  17. *
  18. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  19. */
  20. /*
  21. * This version of the Cholesky factorization uses explicit dependency
  22. * declaration through dependency tags.
  23. * It also uses data partitioning to split the matrix into submatrices
  24. */
  25. #include "cholesky.h"
  26. #include <starpu_perfmodel.h>
  27. #if defined(STARPU_USE_CUDA) && defined(STARPU_HAVE_MAGMA)
  28. #include "magma.h"
  29. #endif
  30. /*
  31. * Some useful functions
  32. */
  33. static struct starpu_task *create_task(starpu_tag_t id)
  34. {
  35. struct starpu_task *task = starpu_task_create();
  36. task->cl_arg = NULL;
  37. task->use_tag = 1;
  38. task->tag_id = id;
  39. return task;
  40. }
  41. /*
  42. * Create the codelets
  43. */
  44. static struct starpu_task * create_task_11(starpu_data_handle_t dataA, unsigned k)
  45. {
  46. /* FPRINTF(stdout, "task 11 k = %d TAG = %llx\n", k, (TAG11(k))); */
  47. struct starpu_task *task = create_task(TAG11(k));
  48. task->cl = &cl11;
  49. /* which sub-data is manipulated ? */
  50. task->handles[0] = starpu_data_get_sub_data(dataA, 2, k, k);
  51. /* this is an important task */
  52. if (!noprio_p)
  53. task->priority = STARPU_MAX_PRIO;
  54. /* enforce dependencies ... */
  55. if (k > 0)
  56. {
  57. starpu_tag_declare_deps(TAG11(k), 1, TAG22(k-1, k, k));
  58. }
  59. int n = starpu_matrix_get_nx(task->handles[0]);
  60. task->flops = FLOPS_SPOTRF(n);
  61. return task;
  62. }
  63. static void create_task_21(starpu_data_handle_t dataA, unsigned k, unsigned j)
  64. {
  65. struct starpu_task *task = create_task(TAG21(k, j));
  66. task->cl = &cl21;
  67. /* which sub-data is manipulated ? */
  68. task->handles[0] = starpu_data_get_sub_data(dataA, 2, k, k);
  69. task->handles[1] = starpu_data_get_sub_data(dataA, 2, k, j);
  70. if (!noprio_p && (j == k+1))
  71. {
  72. task->priority = STARPU_MAX_PRIO;
  73. }
  74. /* enforce dependencies ... */
  75. if (k > 0)
  76. {
  77. starpu_tag_declare_deps(TAG21(k, j), 2, TAG11(k), TAG22(k-1, k, j));
  78. }
  79. else
  80. {
  81. starpu_tag_declare_deps(TAG21(k, j), 1, TAG11(k));
  82. }
  83. int n = starpu_matrix_get_nx(task->handles[0]);
  84. task->flops = FLOPS_STRSM(n, n);
  85. int ret = starpu_task_submit(task);
  86. if (STARPU_UNLIKELY(ret == -ENODEV))
  87. {
  88. FPRINTF(stderr, "No worker may execute this task\n");
  89. exit(0);
  90. }
  91. }
  92. static void create_task_22(starpu_data_handle_t dataA, unsigned k, unsigned i, unsigned j)
  93. {
  94. /* FPRINTF(stdout, "task 22 k,i,j = %d,%d,%d TAG = %llx\n", k,i,j, TAG22(k,i,j)); */
  95. struct starpu_task *task = create_task(TAG22(k, i, j));
  96. task->cl = &cl22;
  97. /* which sub-data is manipulated ? */
  98. task->handles[0] = starpu_data_get_sub_data(dataA, 2, k, i);
  99. task->handles[1] = starpu_data_get_sub_data(dataA, 2, k, j);
  100. task->handles[2] = starpu_data_get_sub_data(dataA, 2, i, j);
  101. if (!noprio_p && (i == k + 1) && (j == k +1) )
  102. {
  103. task->priority = STARPU_MAX_PRIO;
  104. }
  105. /* enforce dependencies ... */
  106. if (k > 0)
  107. {
  108. starpu_tag_declare_deps(TAG22(k, i, j), 3, TAG22(k-1, i, j), TAG21(k, i), TAG21(k, j));
  109. }
  110. else
  111. {
  112. starpu_tag_declare_deps(TAG22(k, i, j), 2, TAG21(k, i), TAG21(k, j));
  113. }
  114. int n = starpu_matrix_get_nx(task->handles[0]);
  115. task->flops = FLOPS_SGEMM(n, n, n);
  116. int ret = starpu_task_submit(task);
  117. if (STARPU_UNLIKELY(ret == -ENODEV))
  118. {
  119. FPRINTF(stderr, "No worker may execute this task\n");
  120. exit(0);
  121. }
  122. }
  123. /*
  124. * code to bootstrap the factorization
  125. * and construct the DAG
  126. */
  127. static void _cholesky(starpu_data_handle_t dataA, unsigned nblocks)
  128. {
  129. double start;
  130. double end;
  131. struct starpu_task *entry_task = NULL;
  132. /* create all the DAG nodes */
  133. unsigned i,j,k;
  134. start = starpu_timing_now();
  135. for (k = 0; k < nblocks; k++)
  136. {
  137. starpu_iteration_push(k);
  138. struct starpu_task *task = create_task_11(dataA, k);
  139. /* we defer the launch of the first task */
  140. if (k == 0)
  141. {
  142. entry_task = task;
  143. }
  144. else
  145. {
  146. int ret = starpu_task_submit(task);
  147. if (STARPU_UNLIKELY(ret == -ENODEV))
  148. {
  149. FPRINTF(stderr, "No worker may execute this task\n");
  150. exit(0);
  151. }
  152. }
  153. for (j = k+1; j<nblocks; j++)
  154. {
  155. create_task_21(dataA, k, j);
  156. for (i = k+1; i<nblocks; i++)
  157. {
  158. if (i <= j)
  159. create_task_22(dataA, k, i, j);
  160. }
  161. }
  162. starpu_iteration_pop();
  163. }
  164. /* schedule the codelet */
  165. int ret = starpu_task_submit(entry_task);
  166. if (STARPU_UNLIKELY(ret == -ENODEV))
  167. {
  168. FPRINTF(stderr, "No worker may execute this task\n");
  169. exit(0);
  170. }
  171. /* stall the application until the end of computations */
  172. starpu_tag_wait(TAG11(nblocks-1));
  173. starpu_data_unpartition(dataA, STARPU_MAIN_RAM);
  174. end = starpu_timing_now();
  175. double timing = end - start;
  176. unsigned n = starpu_matrix_get_nx(dataA);
  177. double flop = (1.0f*n*n*n)/3.0f;
  178. PRINTF("# size\tms\tGFlops\n");
  179. PRINTF("%u\t%.0f\t%.1f\n", n, timing/1000, (flop/timing/1000.0f));
  180. }
  181. static int initialize_system(int argc, char **argv, float **A, unsigned pinned)
  182. {
  183. int ret;
  184. int flags = STARPU_MALLOC_SIMULATION_FOLDED;
  185. #ifdef STARPU_HAVE_MAGMA
  186. magma_init();
  187. #endif
  188. ret = starpu_init(NULL);
  189. if (ret == -ENODEV)
  190. return 77;
  191. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  192. init_sizes();
  193. parse_args(argc, argv);
  194. #ifdef STARPU_USE_CUDA
  195. initialize_chol_model(&chol_model_11,"chol_model_11",cpu_chol_task_11_cost,cuda_chol_task_11_cost);
  196. initialize_chol_model(&chol_model_21,"chol_model_21",cpu_chol_task_21_cost,cuda_chol_task_21_cost);
  197. initialize_chol_model(&chol_model_22,"chol_model_22",cpu_chol_task_22_cost,cuda_chol_task_22_cost);
  198. #else
  199. initialize_chol_model(&chol_model_11,"chol_model_11",cpu_chol_task_11_cost,NULL);
  200. initialize_chol_model(&chol_model_21,"chol_model_21",cpu_chol_task_21_cost,NULL);
  201. initialize_chol_model(&chol_model_22,"chol_model_22",cpu_chol_task_22_cost,NULL);
  202. #endif
  203. starpu_cublas_init();
  204. if (pinned)
  205. flags |= STARPU_MALLOC_PINNED;
  206. starpu_malloc_flags((void **)A, size_p*size_p*sizeof(float), flags);
  207. return 0;
  208. }
  209. static void cholesky(float *matA, unsigned size, unsigned ld, unsigned nblocks)
  210. {
  211. starpu_data_handle_t dataA;
  212. /* monitor and partition the A matrix into blocks :
  213. * one block is now determined by 2 unsigned (i,j) */
  214. starpu_matrix_data_register(&dataA, STARPU_MAIN_RAM, (uintptr_t)matA, ld, size, size, sizeof(float));
  215. starpu_data_set_sequential_consistency_flag(dataA, 0);
  216. struct starpu_data_filter f =
  217. {
  218. .filter_func = starpu_matrix_filter_vertical_block,
  219. .nchildren = nblocks
  220. };
  221. struct starpu_data_filter f2 =
  222. {
  223. .filter_func = starpu_matrix_filter_block,
  224. .nchildren = nblocks
  225. };
  226. starpu_data_map_filters(dataA, 2, &f, &f2);
  227. _cholesky(dataA, nblocks);
  228. starpu_data_unregister(dataA);
  229. }
  230. static void shutdown_system(float **matA, unsigned dim, unsigned pinned)
  231. {
  232. int flags = STARPU_MALLOC_SIMULATION_FOLDED;
  233. if (pinned)
  234. flags |= STARPU_MALLOC_PINNED;
  235. starpu_free_flags(*matA, dim*dim*sizeof(float), flags);
  236. starpu_cublas_shutdown();
  237. starpu_shutdown();
  238. }
  239. int main(int argc, char **argv)
  240. {
  241. /* create a simple definite positive symetric matrix example
  242. *
  243. * Hilbert matrix : h(i,j) = 1/(i+j+1)
  244. * */
  245. float *mat = NULL;
  246. int ret = initialize_system(argc, argv, &mat, pinned_p);
  247. if (ret) return ret;
  248. #ifndef STARPU_SIMGRID
  249. unsigned i,j;
  250. for (i = 0; i < size_p; i++)
  251. {
  252. for (j = 0; j < size_p; j++)
  253. {
  254. mat[j +i*size_p] = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size_p:0.0f);
  255. /* mat[j +i*size_p] = ((i == j)?1.0f*size_p:0.0f); */
  256. }
  257. }
  258. #endif
  259. #ifdef CHECK_OUTPUT
  260. FPRINTF(stdout, "Input :\n");
  261. for (j = 0; j < size_p; j++)
  262. {
  263. for (i = 0; i < size_p; i++)
  264. {
  265. if (i <= j)
  266. {
  267. FPRINTF(stdout, "%2.2f\t", mat[j +i*size_p]);
  268. }
  269. else
  270. {
  271. FPRINTF(stdout, ".\t");
  272. }
  273. }
  274. FPRINTF(stdout, "\n");
  275. }
  276. #endif
  277. cholesky(mat, size_p, size_p, nblocks_p);
  278. #ifdef CHECK_OUTPUT
  279. FPRINTF(stdout, "Results :\n");
  280. for (j = 0; j < size_p; j++)
  281. {
  282. for (i = 0; i < size_p; i++)
  283. {
  284. if (i <= j)
  285. {
  286. FPRINTF(stdout, "%2.2f\t", mat[j +i*size_p]);
  287. }
  288. else
  289. {
  290. FPRINTF(stdout, ".\t");
  291. mat[j+i*size_p] = 0.0f; /* debug */
  292. }
  293. }
  294. FPRINTF(stdout, "\n");
  295. }
  296. FPRINTF(stderr, "compute explicit LLt ...\n");
  297. float *test_mat = malloc(size_p*size_p*sizeof(float));
  298. STARPU_ASSERT(test_mat);
  299. STARPU_SSYRK("L", "N", size_p, size_p, 1.0f,
  300. mat, size_p, 0.0f, test_mat, size_p);
  301. FPRINTF(stderr, "comparing results ...\n");
  302. for (j = 0; j < size_p; j++)
  303. {
  304. for (i = 0; i < size_p; i++)
  305. {
  306. if (i <= j)
  307. {
  308. FPRINTF(stdout, "%2.2f\t", test_mat[j +i*size_p]);
  309. }
  310. else
  311. {
  312. FPRINTF(stdout, ".\t");
  313. }
  314. }
  315. FPRINTF(stdout, "\n");
  316. }
  317. free(test_mat);
  318. #endif
  319. shutdown_system(&mat, size_p, pinned_p);
  320. return 0;
  321. }