| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 | /* dppsv.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dppsv_(char *uplo, integer *n, integer *nrhs, doublereal 	*ap, doublereal *b, integer *ldb, integer *info){    /* System generated locals */    integer b_dim1, b_offset, i__1;    /* Local variables */    extern logical _starpu_lsame_(char *, char *);    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *), _starpu_dpptrf_(	    char *, integer *, doublereal *, integer *), _starpu_dpptrs_(char 	    *, integer *, integer *, doublereal *, doublereal *, integer *, 	    integer *);/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DPPSV computes the solution to a real system of linear equations *//*     A * X = B, *//*  where A is an N-by-N symmetric positive definite matrix stored in *//*  packed format and X and B are N-by-NRHS matrices. *//*  The Cholesky decomposition is used to factor A as *//*     A = U**T* U,  if UPLO = 'U', or *//*     A = L * L**T,  if UPLO = 'L', *//*  where U is an upper triangular matrix and L is a lower triangular *//*  matrix.  The factored form of A is then used to solve the system of *//*  equations A * X = B. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A is stored; *//*          = 'L':  Lower triangle of A is stored. *//*  N       (input) INTEGER *//*          The number of linear equations, i.e., the order of the *//*          matrix A.  N >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrix B.  NRHS >= 0. *//*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) *//*          On entry, the upper or lower triangle of the symmetric matrix *//*          A, packed columnwise in a linear array.  The j-th column of A *//*          is stored in the array AP as follows: *//*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; *//*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. *//*          See below for further details. *//*          On exit, if INFO = 0, the factor U or L from the Cholesky *//*          factorization A = U**T*U or A = L*L**T, in the same storage *//*          format as A. *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the N-by-NRHS right hand side matrix B. *//*          On exit, if INFO = 0, the N-by-NRHS solution matrix X. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, the leading minor of order i of A is not *//*                positive definite, so the factorization could not be *//*                completed, and the solution has not been computed. *//*  Further Details *//*  =============== *//*  The packed storage scheme is illustrated by the following example *//*  when N = 4, UPLO = 'U': *//*  Two-dimensional storage of the symmetric matrix A: *//*     a11 a12 a13 a14 *//*         a22 a23 a24 *//*             a33 a34     (aij = conjg(aji)) *//*                 a44 *//*  Packed storage of the upper triangle of A: *//*  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] *//*  ===================================================================== *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --ap;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    /* Function Body */    *info = 0;    if (! _starpu_lsame_(uplo, "U") && ! _starpu_lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*nrhs < 0) {	*info = -3;    } else if (*ldb < max(1,*n)) {	*info = -6;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DPPSV ", &i__1);	return 0;    }/*     Compute the Cholesky factorization A = U'*U or A = L*L'. */    _starpu_dpptrf_(uplo, n, &ap[1], info);    if (*info == 0) {/*        Solve the system A*X = B, overwriting B with X. */	_starpu_dpptrs_(uplo, n, nrhs, &ap[1], &b[b_offset], ldb, info);    }    return 0;/*     End of DPPSV */} /* _starpu_dppsv_ */
 |