| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331 | 
							- /* _starpu_dla_syrpvgrw.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- doublereal _starpu_dla_syrpvgrw__(char *uplo, integer *n, integer *info, doublereal *
 
- 	a, integer *lda, doublereal *af, integer *ldaf, integer *ipiv, 
 
- 	doublereal *work, ftnlen uplo_len)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2;
 
-     doublereal ret_val, d__1, d__2, d__3;
 
-     /* Local variables */
 
-     integer i__, j, k, kp;
 
-     doublereal tmp, amax, umax;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer ncols;
 
-     logical upper;
 
-     doublereal rpvgrw;
 
- /*     -- LAPACK routine (version 3.2.1)                                 -- */
 
- /*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
 
- /*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
 
- /*     -- April 2009                                                   -- */
 
- /*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
 
- /*     -- Univ. of California Berkeley and NAG Ltd.                    -- */
 
- /*     .. */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLA_SYRPVGRW computes the reciprocal pivot growth factor */
 
- /*  norm(A)/norm(U). The "max absolute element" norm is used. If this is */
 
- /*  much less than 1, the stability of the LU factorization of the */
 
- /*  (equilibrated) matrix A could be poor. This also means that the */
 
- /*  solution X, estimated condition numbers, and error bounds could be */
 
- /*  unreliable. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*     UPLO    (input) CHARACTER*1 */
 
- /*       = 'U':  Upper triangle of A is stored; */
 
- /*       = 'L':  Lower triangle of A is stored. */
 
- /*     N       (input) INTEGER */
 
- /*     The number of linear equations, i.e., the order of the */
 
- /*     matrix A.  N >= 0. */
 
- /*     INFO    (input) INTEGER */
 
- /*     The value of INFO returned from DSYTRF, .i.e., the pivot in */
 
- /*     column INFO is exactly 0. */
 
- /*     NCOLS   (input) INTEGER */
 
- /*     The number of columns of the matrix A. NCOLS >= 0. */
 
- /*     A       (input) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*     On entry, the N-by-N matrix A. */
 
- /*     LDA     (input) INTEGER */
 
- /*     The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*     AF      (input) DOUBLE PRECISION array, dimension (LDAF,N) */
 
- /*     The block diagonal matrix D and the multipliers used to */
 
- /*     obtain the factor U or L as computed by DSYTRF. */
 
- /*     LDAF    (input) INTEGER */
 
- /*     The leading dimension of the array AF.  LDAF >= max(1,N). */
 
- /*     IPIV    (input) INTEGER array, dimension (N) */
 
- /*     Details of the interchanges and the block structure of D */
 
- /*     as determined by DSYTRF. */
 
- /*     WORK    (input) DOUBLE PRECISION array, dimension (2*N) */
 
- /*  ===================================================================== */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     af_dim1 = *ldaf;
 
-     af_offset = 1 + af_dim1;
 
-     af -= af_offset;
 
-     --ipiv;
 
-     --work;
 
-     /* Function Body */
 
-     upper = _starpu_lsame_("Upper", uplo);
 
-     if (*info == 0) {
 
- 	if (upper) {
 
- 	    ncols = 1;
 
- 	} else {
 
- 	    ncols = *n;
 
- 	}
 
-     } else {
 
- 	ncols = *info;
 
-     }
 
-     rpvgrw = 1.;
 
-     i__1 = *n << 1;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	work[i__] = 0.;
 
-     }
 
- /*     Find the max magnitude entry of each column of A.  Compute the max */
 
- /*     for all N columns so we can apply the pivot permutation while */
 
- /*     looping below.  Assume a full factorization is the common case. */
 
-     if (upper) {
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__2 = j;
 
- 	    for (i__ = 1; i__ <= i__2; ++i__) {
 
- /* Computing MAX */
 
- 		d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1)), d__3 = work[*
 
- 			n + i__];
 
- 		work[*n + i__] = max(d__2,d__3);
 
- /* Computing MAX */
 
- 		d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1)), d__3 = work[*
 
- 			n + j];
 
- 		work[*n + j] = max(d__2,d__3);
 
- 	    }
 
- 	}
 
-     } else {
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__2 = *n;
 
- 	    for (i__ = j; i__ <= i__2; ++i__) {
 
- /* Computing MAX */
 
- 		d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1)), d__3 = work[*
 
- 			n + i__];
 
- 		work[*n + i__] = max(d__2,d__3);
 
- /* Computing MAX */
 
- 		d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1)), d__3 = work[*
 
- 			n + j];
 
- 		work[*n + j] = max(d__2,d__3);
 
- 	    }
 
- 	}
 
-     }
 
- /*     Now find the max magnitude entry of each column of U or L.  Also */
 
- /*     permute the magnitudes of A above so they're in the same order as */
 
- /*     the factor. */
 
- /*     The iteration orders and permutations were copied from dsytrs. */
 
- /*     Calls to SSWAP would be severe overkill. */
 
-     if (upper) {
 
- 	k = *n;
 
- 	while(k < ncols && k > 0) {
 
- 	    if (ipiv[k] > 0) {
 
- /*              1x1 pivot */
 
- 		kp = ipiv[k];
 
- 		if (kp != k) {
 
- 		    tmp = work[*n + k];
 
- 		    work[*n + k] = work[*n + kp];
 
- 		    work[*n + kp] = tmp;
 
- 		}
 
- 		i__1 = k;
 
- 		for (i__ = 1; i__ <= i__1; ++i__) {
 
- /* Computing MAX */
 
- 		    d__2 = (d__1 = af[i__ + k * af_dim1], abs(d__1)), d__3 = 
 
- 			    work[k];
 
- 		    work[k] = max(d__2,d__3);
 
- 		}
 
- 		--k;
 
- 	    } else {
 
- /*              2x2 pivot */
 
- 		kp = -ipiv[k];
 
- 		tmp = work[*n + k - 1];
 
- 		work[*n + k - 1] = work[*n + kp];
 
- 		work[*n + kp] = tmp;
 
- 		i__1 = k - 1;
 
- 		for (i__ = 1; i__ <= i__1; ++i__) {
 
- /* Computing MAX */
 
- 		    d__2 = (d__1 = af[i__ + k * af_dim1], abs(d__1)), d__3 = 
 
- 			    work[k];
 
- 		    work[k] = max(d__2,d__3);
 
- /* Computing MAX */
 
- 		    d__2 = (d__1 = af[i__ + (k - 1) * af_dim1], abs(d__1)), 
 
- 			    d__3 = work[k - 1];
 
- 		    work[k - 1] = max(d__2,d__3);
 
- 		}
 
- /* Computing MAX */
 
- 		d__2 = (d__1 = af[k + k * af_dim1], abs(d__1)), d__3 = work[k]
 
- 			;
 
- 		work[k] = max(d__2,d__3);
 
- 		k += -2;
 
- 	    }
 
- 	}
 
- 	k = ncols;
 
- 	while(k <= *n) {
 
- 	    if (ipiv[k] > 0) {
 
- 		kp = ipiv[k];
 
- 		if (kp != k) {
 
- 		    tmp = work[*n + k];
 
- 		    work[*n + k] = work[*n + kp];
 
- 		    work[*n + kp] = tmp;
 
- 		}
 
- 		++k;
 
- 	    } else {
 
- 		kp = -ipiv[k];
 
- 		tmp = work[*n + k];
 
- 		work[*n + k] = work[*n + kp];
 
- 		work[*n + kp] = tmp;
 
- 		k += 2;
 
- 	    }
 
- 	}
 
-     } else {
 
- 	k = 1;
 
- 	while(k <= ncols) {
 
- 	    if (ipiv[k] > 0) {
 
- /*              1x1 pivot */
 
- 		kp = ipiv[k];
 
- 		if (kp != k) {
 
- 		    tmp = work[*n + k];
 
- 		    work[*n + k] = work[*n + kp];
 
- 		    work[*n + kp] = tmp;
 
- 		}
 
- 		i__1 = *n;
 
- 		for (i__ = k; i__ <= i__1; ++i__) {
 
- /* Computing MAX */
 
- 		    d__2 = (d__1 = af[i__ + k * af_dim1], abs(d__1)), d__3 = 
 
- 			    work[k];
 
- 		    work[k] = max(d__2,d__3);
 
- 		}
 
- 		++k;
 
- 	    } else {
 
- /*              2x2 pivot */
 
- 		kp = -ipiv[k];
 
- 		tmp = work[*n + k + 1];
 
- 		work[*n + k + 1] = work[*n + kp];
 
- 		work[*n + kp] = tmp;
 
- 		i__1 = *n;
 
- 		for (i__ = k + 1; i__ <= i__1; ++i__) {
 
- /* Computing MAX */
 
- 		    d__2 = (d__1 = af[i__ + k * af_dim1], abs(d__1)), d__3 = 
 
- 			    work[k];
 
- 		    work[k] = max(d__2,d__3);
 
- /* Computing MAX */
 
- 		    d__2 = (d__1 = af[i__ + (k + 1) * af_dim1], abs(d__1)), 
 
- 			    d__3 = work[k + 1];
 
- 		    work[k + 1] = max(d__2,d__3);
 
- 		}
 
- /* Computing MAX */
 
- 		d__2 = (d__1 = af[k + k * af_dim1], abs(d__1)), d__3 = work[k]
 
- 			;
 
- 		work[k] = max(d__2,d__3);
 
- 		k += 2;
 
- 	    }
 
- 	}
 
- 	k = ncols;
 
- 	while(k >= 1) {
 
- 	    if (ipiv[k] > 0) {
 
- 		kp = ipiv[k];
 
- 		if (kp != k) {
 
- 		    tmp = work[*n + k];
 
- 		    work[*n + k] = work[*n + kp];
 
- 		    work[*n + kp] = tmp;
 
- 		}
 
- 		--k;
 
- 	    } else {
 
- 		kp = -ipiv[k];
 
- 		tmp = work[*n + k];
 
- 		work[*n + k] = work[*n + kp];
 
- 		work[*n + kp] = tmp;
 
- 		k += -2;
 
- 	    }
 
- 	}
 
-     }
 
- /*     Compute the *inverse* of the max element growth factor.  Dividing */
 
- /*     by zero would imply the largest entry of the factor's column is */
 
- /*     zero.  Than can happen when either the column of A is zero or */
 
- /*     massive pivots made the factor underflow to zero.  Neither counts */
 
- /*     as growth in itself, so simply ignore terms with zero */
 
- /*     denominators. */
 
-     if (upper) {
 
- 	i__1 = *n;
 
- 	for (i__ = ncols; i__ <= i__1; ++i__) {
 
- 	    umax = work[i__];
 
- 	    amax = work[*n + i__];
 
- 	    if (umax != 0.) {
 
- /* Computing MIN */
 
- 		d__1 = amax / umax;
 
- 		rpvgrw = min(d__1,rpvgrw);
 
- 	    }
 
- 	}
 
-     } else {
 
- 	i__1 = ncols;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    umax = work[i__];
 
- 	    amax = work[*n + i__];
 
- 	    if (umax != 0.) {
 
- /* Computing MIN */
 
- 		d__1 = amax / umax;
 
- 		rpvgrw = min(d__1,rpvgrw);
 
- 	    }
 
- 	}
 
-     }
 
-     ret_val = rpvgrw;
 
-     return ret_val;
 
- } /* _starpu_dla_syrpvgrw__ */
 
 
  |