| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316 | /* dgtsv.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dgtsv_(integer *n, integer *nrhs, doublereal *dl, 	doublereal *d__, doublereal *du, doublereal *b, integer *ldb, integer 	*info){    /* System generated locals */    integer b_dim1, b_offset, i__1, i__2;    doublereal d__1, d__2;    /* Local variables */    integer i__, j;    doublereal fact, temp;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGTSV  solves the equation *//*     A*X = B, *//*  where A is an n by n tridiagonal matrix, by Gaussian elimination with *//*  partial pivoting. *//*  Note that the equation  A'*X = B  may be solved by interchanging the *//*  order of the arguments DU and DL. *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrix B.  NRHS >= 0. *//*  DL      (input/output) DOUBLE PRECISION array, dimension (N-1) *//*          On entry, DL must contain the (n-1) sub-diagonal elements of *//*          A. *//*          On exit, DL is overwritten by the (n-2) elements of the *//*          second super-diagonal of the upper triangular matrix U from *//*          the LU factorization of A, in DL(1), ..., DL(n-2). *//*  D       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, D must contain the diagonal elements of A. *//*          On exit, D is overwritten by the n diagonal elements of U. *//*  DU      (input/output) DOUBLE PRECISION array, dimension (N-1) *//*          On entry, DU must contain the (n-1) super-diagonal elements *//*          of A. *//*          On exit, DU is overwritten by the (n-1) elements of the first *//*          super-diagonal of U. *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the N by NRHS matrix of right hand side matrix B. *//*          On exit, if INFO = 0, the N by NRHS solution matrix X. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -i, the i-th argument had an illegal value *//*          > 0: if INFO = i, U(i,i) is exactly zero, and the solution *//*               has not been computed.  The factorization has not been *//*               completed unless i = N. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --dl;    --d__;    --du;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    /* Function Body */    *info = 0;    if (*n < 0) {	*info = -1;    } else if (*nrhs < 0) {	*info = -2;    } else if (*ldb < max(1,*n)) {	*info = -7;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGTSV ", &i__1);	return 0;    }    if (*n == 0) {	return 0;    }    if (*nrhs == 1) {	i__1 = *n - 2;	for (i__ = 1; i__ <= i__1; ++i__) {	    if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {/*              No row interchange required */		if (d__[i__] != 0.) {		    fact = dl[i__] / d__[i__];		    d__[i__ + 1] -= fact * du[i__];		    b[i__ + 1 + b_dim1] -= fact * b[i__ + b_dim1];		} else {		    *info = i__;		    return 0;		}		dl[i__] = 0.;	    } else {/*              Interchange rows I and I+1 */		fact = d__[i__] / dl[i__];		d__[i__] = dl[i__];		temp = d__[i__ + 1];		d__[i__ + 1] = du[i__] - fact * temp;		dl[i__] = du[i__ + 1];		du[i__ + 1] = -fact * dl[i__];		du[i__] = temp;		temp = b[i__ + b_dim1];		b[i__ + b_dim1] = b[i__ + 1 + b_dim1];		b[i__ + 1 + b_dim1] = temp - fact * b[i__ + 1 + b_dim1];	    }/* L10: */	}	if (*n > 1) {	    i__ = *n - 1;	    if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {		if (d__[i__] != 0.) {		    fact = dl[i__] / d__[i__];		    d__[i__ + 1] -= fact * du[i__];		    b[i__ + 1 + b_dim1] -= fact * b[i__ + b_dim1];		} else {		    *info = i__;		    return 0;		}	    } else {		fact = d__[i__] / dl[i__];		d__[i__] = dl[i__];		temp = d__[i__ + 1];		d__[i__ + 1] = du[i__] - fact * temp;		du[i__] = temp;		temp = b[i__ + b_dim1];		b[i__ + b_dim1] = b[i__ + 1 + b_dim1];		b[i__ + 1 + b_dim1] = temp - fact * b[i__ + 1 + b_dim1];	    }	}	if (d__[*n] == 0.) {	    *info = *n;	    return 0;	}    } else {	i__1 = *n - 2;	for (i__ = 1; i__ <= i__1; ++i__) {	    if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {/*              No row interchange required */		if (d__[i__] != 0.) {		    fact = dl[i__] / d__[i__];		    d__[i__ + 1] -= fact * du[i__];		    i__2 = *nrhs;		    for (j = 1; j <= i__2; ++j) {			b[i__ + 1 + j * b_dim1] -= fact * b[i__ + j * b_dim1];/* L20: */		    }		} else {		    *info = i__;		    return 0;		}		dl[i__] = 0.;	    } else {/*              Interchange rows I and I+1 */		fact = d__[i__] / dl[i__];		d__[i__] = dl[i__];		temp = d__[i__ + 1];		d__[i__ + 1] = du[i__] - fact * temp;		dl[i__] = du[i__ + 1];		du[i__ + 1] = -fact * dl[i__];		du[i__] = temp;		i__2 = *nrhs;		for (j = 1; j <= i__2; ++j) {		    temp = b[i__ + j * b_dim1];		    b[i__ + j * b_dim1] = b[i__ + 1 + j * b_dim1];		    b[i__ + 1 + j * b_dim1] = temp - fact * b[i__ + 1 + j * 			    b_dim1];/* L30: */		}	    }/* L40: */	}	if (*n > 1) {	    i__ = *n - 1;	    if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {		if (d__[i__] != 0.) {		    fact = dl[i__] / d__[i__];		    d__[i__ + 1] -= fact * du[i__];		    i__1 = *nrhs;		    for (j = 1; j <= i__1; ++j) {			b[i__ + 1 + j * b_dim1] -= fact * b[i__ + j * b_dim1];/* L50: */		    }		} else {		    *info = i__;		    return 0;		}	    } else {		fact = d__[i__] / dl[i__];		d__[i__] = dl[i__];		temp = d__[i__ + 1];		d__[i__ + 1] = du[i__] - fact * temp;		du[i__] = temp;		i__1 = *nrhs;		for (j = 1; j <= i__1; ++j) {		    temp = b[i__ + j * b_dim1];		    b[i__ + j * b_dim1] = b[i__ + 1 + j * b_dim1];		    b[i__ + 1 + j * b_dim1] = temp - fact * b[i__ + 1 + j * 			    b_dim1];/* L60: */		}	    }	}	if (d__[*n] == 0.) {	    *info = *n;	    return 0;	}    }/*     Back solve with the matrix U from the factorization. */    if (*nrhs <= 2) {	j = 1;L70:	b[*n + j * b_dim1] /= d__[*n];	if (*n > 1) {	    b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n - 1] * b[		    *n + j * b_dim1]) / d__[*n - 1];	}	for (i__ = *n - 2; i__ >= 1; --i__) {	    b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[i__ + 1 		    + j * b_dim1] - dl[i__] * b[i__ + 2 + j * b_dim1]) / d__[		    i__];/* L80: */	}	if (j < *nrhs) {	    ++j;	    goto L70;	}    } else {	i__1 = *nrhs;	for (j = 1; j <= i__1; ++j) {	    b[*n + j * b_dim1] /= d__[*n];	    if (*n > 1) {		b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n - 1] 			* b[*n + j * b_dim1]) / d__[*n - 1];	    }	    for (i__ = *n - 2; i__ >= 1; --i__) {		b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[i__ 			+ 1 + j * b_dim1] - dl[i__] * b[i__ + 2 + j * b_dim1])			 / d__[i__];/* L90: */	    }/* L100: */	}    }    return 0;/*     End of DGTSV */} /* _starpu_dgtsv_ */
 |