xlu_pivot.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009, 2010 Université de Bordeaux 1
  4. * Copyright (C) 2010 Centre National de la Recherche Scientifique
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. #include "xlu.h"
  18. #include "xlu_kernels.h"
  19. #define TAG11(k) ((starpu_tag_t)( (1ULL<<60) | (unsigned long long)(k)))
  20. #define TAG12(k,i) ((starpu_tag_t)(((2ULL<<60) | (((unsigned long long)(k))<<32) \
  21. | (unsigned long long)(i))))
  22. #define TAG21(k,j) ((starpu_tag_t)(((3ULL<<60) | (((unsigned long long)(k))<<32) \
  23. | (unsigned long long)(j))))
  24. #define TAG22(k,i,j) ((starpu_tag_t)(((4ULL<<60) | ((unsigned long long)(k)<<32) \
  25. | ((unsigned long long)(i)<<16) \
  26. | (unsigned long long)(j))))
  27. #define PIVOT(k,i) ((starpu_tag_t)(((5ULL<<60) | (((unsigned long long)(k))<<32) \
  28. | (unsigned long long)(i))))
  29. static unsigned no_prio = 0;
  30. /*
  31. * Construct the DAG
  32. */
  33. static struct starpu_task *create_task(starpu_tag_t id)
  34. {
  35. struct starpu_task *task = starpu_task_create();
  36. task->cl_arg = NULL;
  37. task->use_tag = 1;
  38. task->tag_id = id;
  39. return task;
  40. }
  41. static void create_task_pivot(starpu_data_handle *dataAp, unsigned lu_nblocks,
  42. struct piv_s *piv_description,
  43. unsigned k, unsigned i,
  44. starpu_data_handle (* get_block)(starpu_data_handle *, unsigned, unsigned, unsigned),
  45. struct starpu_sched_ctx *sched_ctx)
  46. {
  47. struct starpu_task *task = create_task(PIVOT(k, i));
  48. task->cl = &cl_pivot;
  49. /* which sub-data is manipulated ? */
  50. task->buffers[0].handle = get_block(dataAp, lu_nblocks, k, i);
  51. task->buffers[0].mode = STARPU_RW;
  52. task->cl_arg = &piv_description[k];
  53. /* this is an important task */
  54. if (!no_prio && (i == k+1))
  55. task->priority = STARPU_MAX_PRIO;
  56. /* enforce dependencies ... */
  57. if (k == 0) {
  58. starpu_tag_declare_deps(PIVOT(k, i), 1, TAG11(k));
  59. }
  60. else
  61. {
  62. if (i > k) {
  63. starpu_tag_declare_deps(PIVOT(k, i), 2, TAG11(k), TAG22(k-1, i, k));
  64. }
  65. else {
  66. starpu_tag_t *tags = malloc((lu_nblocks - k)*sizeof(starpu_tag_t));
  67. tags[0] = TAG11(k);
  68. unsigned ind, ind2;
  69. for (ind = k + 1, ind2 = 0; ind < lu_nblocks; ind++, ind2++)
  70. {
  71. tags[1 + ind2] = TAG22(k-1, ind, k);
  72. }
  73. /* perhaps we could do better ... :/ */
  74. starpu_tag_declare_deps_array(PIVOT(k, i), (lu_nblocks-k), tags);
  75. }
  76. }
  77. starpu_task_submit_to_ctx(task, sched_ctx);
  78. }
  79. static struct starpu_task *create_task_11_pivot(starpu_data_handle *dataAp, unsigned lu_nblocks,
  80. unsigned k, struct piv_s *piv_description,
  81. starpu_data_handle (* get_block)(starpu_data_handle *, unsigned, unsigned, unsigned))
  82. {
  83. struct starpu_task *task = create_task(TAG11(k));
  84. task->cl = &cl11_pivot;
  85. task->cl_arg = &piv_description[k];
  86. /* which sub-data is manipulated ? */
  87. task->buffers[0].handle = get_block(dataAp, lu_nblocks, k, k);
  88. task->buffers[0].mode = STARPU_RW;
  89. /* this is an important task */
  90. if (!no_prio)
  91. task->priority = STARPU_MAX_PRIO;
  92. /* enforce dependencies ... */
  93. if (k > 0) {
  94. starpu_tag_declare_deps(TAG11(k), 1, TAG22(k-1, k, k));
  95. }
  96. return task;
  97. }
  98. static void create_task_12(starpu_data_handle *dataAp, unsigned lu_nblocks, unsigned k, unsigned j,
  99. starpu_data_handle (* get_block)(starpu_data_handle *, unsigned, unsigned, unsigned),
  100. struct starpu_sched_ctx *sched_ctx)
  101. {
  102. // printf("task 12 k,i = %d,%d TAG = %llx\n", k,i, TAG12(k,i));
  103. struct starpu_task *task = create_task(TAG12(k, j));
  104. task->cl = &cl12;
  105. task->cl_arg = (void *)(task->tag_id);
  106. /* which sub-data is manipulated ? */
  107. task->buffers[0].handle = get_block(dataAp, lu_nblocks, k, k);
  108. task->buffers[0].mode = STARPU_R;
  109. task->buffers[1].handle = get_block(dataAp, lu_nblocks, j, k);
  110. task->buffers[1].mode = STARPU_RW;
  111. if (!no_prio && (j == k+1)) {
  112. task->priority = STARPU_MAX_PRIO;
  113. }
  114. /* enforce dependencies ... */
  115. #if 0
  116. starpu_tag_declare_deps(TAG12(k, i), 1, PIVOT(k, i));
  117. #endif
  118. if (k > 0) {
  119. starpu_tag_declare_deps(TAG12(k, j), 2, TAG11(k), TAG22(k-1, k, j));
  120. }
  121. else {
  122. starpu_tag_declare_deps(TAG12(k, j), 1, TAG11(k));
  123. }
  124. starpu_task_submit_to_ctx(task, sched_ctx);
  125. }
  126. static void create_task_21(starpu_data_handle *dataAp, unsigned lu_nblocks, unsigned k, unsigned i,
  127. starpu_data_handle (* get_block)(starpu_data_handle *, unsigned, unsigned, unsigned),
  128. struct starpu_sched_ctx *sched_ctx)
  129. {
  130. struct starpu_task *task = create_task(TAG21(k, i));
  131. task->cl = &cl21;
  132. /* which sub-data is manipulated ? */
  133. task->buffers[0].handle = get_block(dataAp, lu_nblocks, k, k);
  134. task->buffers[0].mode = STARPU_R;
  135. task->buffers[1].handle = get_block(dataAp, lu_nblocks, k, i);
  136. task->buffers[1].mode = STARPU_RW;
  137. if (!no_prio && (i == k+1)) {
  138. task->priority = STARPU_MAX_PRIO;
  139. }
  140. task->cl_arg = (void *)(task->tag_id);
  141. /* enforce dependencies ... */
  142. starpu_tag_declare_deps(TAG21(k, i), 1, PIVOT(k, i));
  143. starpu_task_submit_to_ctx(task, sched_ctx);
  144. }
  145. static void create_task_22(starpu_data_handle *dataAp, unsigned lu_nblocks, unsigned k, unsigned i, unsigned j,
  146. starpu_data_handle (* get_block)(starpu_data_handle *, unsigned, unsigned, unsigned),
  147. struct starpu_sched_ctx *sched_ctx)
  148. {
  149. // printf("task 22 k,i,j = %d,%d,%d TAG = %llx\n", k,i,j, TAG22(k,i,j));
  150. struct starpu_task *task = create_task(TAG22(k, i, j));
  151. task->cl = &cl22;
  152. task->cl_arg = (void *)(task->tag_id);
  153. /* which sub-data is manipulated ? */
  154. task->buffers[0].handle = get_block(dataAp, lu_nblocks, k, i); /* produced by TAG21(k, i) */
  155. task->buffers[0].mode = STARPU_R;
  156. task->buffers[1].handle = get_block(dataAp, lu_nblocks, j, k); /* produced by TAG12(k, j) */
  157. task->buffers[1].mode = STARPU_R;
  158. task->buffers[2].handle = get_block(dataAp, lu_nblocks, j, i); /* produced by TAG22(k-1, i, j) */
  159. task->buffers[2].mode = STARPU_RW;
  160. if (!no_prio && (i == k + 1) && (j == k +1) ) {
  161. task->priority = STARPU_MAX_PRIO;
  162. }
  163. /* enforce dependencies ... */
  164. if (k > 0) {
  165. starpu_tag_declare_deps(TAG22(k, i, j), 3, TAG22(k-1, i, j), TAG12(k, j), TAG21(k, i));
  166. }
  167. else {
  168. starpu_tag_declare_deps(TAG22(k, i, j), 2, TAG12(k, j), TAG21(k, i));
  169. }
  170. starpu_task_submit_to_ctx(task, sched_ctx);
  171. }
  172. /*
  173. * code to bootstrap the factorization
  174. */
  175. static double dw_codelet_facto_pivot(starpu_data_handle *dataAp,
  176. struct piv_s *piv_description,
  177. unsigned lu_nblocks,
  178. starpu_data_handle (* get_block)(starpu_data_handle *, unsigned, unsigned, unsigned),
  179. struct starpu_sched_ctx *sched_ctx)
  180. {
  181. struct timeval start;
  182. struct timeval end;
  183. struct starpu_task *entry_task = NULL;
  184. /* create all the DAG nodes */
  185. unsigned i,j,k;
  186. for (k = 0; k < lu_nblocks; k++)
  187. {
  188. struct starpu_task *task = create_task_11_pivot(dataAp, lu_nblocks, k, piv_description, get_block);
  189. /* we defer the launch of the first task */
  190. if (k == 0) {
  191. entry_task = task;
  192. }
  193. else {
  194. starpu_task_submit_to_ctx(task, sched_ctx);
  195. }
  196. for (i = 0; i < lu_nblocks; i++)
  197. {
  198. if (i != k)
  199. create_task_pivot(dataAp, lu_nblocks, piv_description, k, i, get_block, sched_ctx);
  200. }
  201. for (i = k+1; i<lu_nblocks; i++)
  202. {
  203. create_task_12(dataAp, lu_nblocks, k, i, get_block, sched_ctx);
  204. create_task_21(dataAp, lu_nblocks, k, i, get_block, sched_ctx);
  205. }
  206. for (i = k+1; i<lu_nblocks; i++)
  207. {
  208. for (j = k+1; j<lu_nblocks; j++)
  209. {
  210. create_task_22(dataAp, lu_nblocks, k, i, j, get_block, sched_ctx);
  211. }
  212. }
  213. }
  214. /* we wait the last task (TAG11(lu_nblocks - 1)) and all the pivot tasks */
  215. starpu_tag_t *tags = malloc(lu_nblocks*lu_nblocks*sizeof(starpu_tag_t));
  216. unsigned ndeps = 0;
  217. tags[ndeps++] = TAG11(lu_nblocks - 1);
  218. for (j = 0; j < lu_nblocks; j++)
  219. {
  220. for (i = 0; i < j; i++)
  221. {
  222. tags[ndeps++] = PIVOT(j, i);
  223. }
  224. }
  225. /* schedule the codelet */
  226. gettimeofday(&start, NULL);
  227. int ret = starpu_task_submit_to_ctx(entry_task, sched_ctx);
  228. if (STARPU_UNLIKELY(ret == -ENODEV))
  229. {
  230. fprintf(stderr, "No worker may execute this task\n");
  231. exit(-1);
  232. }
  233. /* stall the application until the end of computations */
  234. starpu_tag_wait_array(ndeps, tags);
  235. printf("lu pivot finish waiting for %d blocks \n", lu_nblocks);
  236. // starpu_task_wait_for_all();
  237. gettimeofday(&end, NULL);
  238. double timing = (double)((end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec));
  239. return timing;
  240. }
  241. starpu_data_handle get_block_with_striding(starpu_data_handle *dataAp,
  242. unsigned lu_nblocks __attribute__((unused)), unsigned j, unsigned i)
  243. {
  244. /* we use filters */
  245. return starpu_data_get_sub_data(*dataAp, 2, j, i);
  246. }
  247. double STARPU_LU(lu_decomposition_pivot)(TYPE *matA, unsigned *ipiv, unsigned size, unsigned ld, unsigned lu_nblocks, struct starpu_sched_ctx *sched_ctx)
  248. {
  249. starpu_data_handle dataA;
  250. /* monitor and partition the A matrix into blocks :
  251. * one block is now determined by 2 unsigned (i,j) */
  252. starpu_matrix_data_register(&dataA, 0, (uintptr_t)matA, ld, size, size, sizeof(TYPE));
  253. /* We already enforce deps by hand */
  254. starpu_data_set_sequential_consistency_flag(dataA, 0);
  255. struct starpu_data_filter f;
  256. f.filter_func = starpu_vertical_block_filter_func;
  257. f.nchildren = lu_nblocks;
  258. struct starpu_data_filter f2;
  259. f2.filter_func = starpu_block_filter_func;
  260. f2.nchildren = lu_nblocks;
  261. starpu_data_map_filters(dataA, 2, &f, &f2);
  262. unsigned i;
  263. for (i = 0; i < size; i++)
  264. ipiv[i] = i;
  265. struct piv_s *piv_description = malloc(lu_nblocks*sizeof(struct piv_s));
  266. unsigned block;
  267. for (block = 0; block < lu_nblocks; block++)
  268. {
  269. piv_description[block].piv = ipiv;
  270. piv_description[block].first = block * (size / lu_nblocks);
  271. piv_description[block].last = (block + 1) * (size / lu_nblocks);
  272. }
  273. #if 0
  274. unsigned j;
  275. for (j = 0; j < lu_nblocks; j++)
  276. for (i = 0; i < lu_nblocks; i++)
  277. {
  278. printf("BLOCK %d %d %p\n", i, j, &matA[i*(size/lu_nblocks) + j * (size/lu_nblocks)*ld]);
  279. }
  280. #endif
  281. double timing;
  282. timing = dw_codelet_facto_pivot(&dataA, piv_description, lu_nblocks, get_block_with_striding, sched_ctx);
  283. fprintf(stderr, "Computation took (in ms)\n");
  284. fprintf(stderr, "%2.2f\n", timing/1000);
  285. unsigned n = starpu_matrix_get_nx(dataA);
  286. double flop = (2.0f*n*n*n)/3.0f;
  287. double gflops = flop/timing/1000.0f;
  288. /* gather all the data */
  289. starpu_data_unpartition(dataA, 0);
  290. return gflops;
  291. }
  292. starpu_data_handle get_block_with_no_striding(starpu_data_handle *dataAp, unsigned lu_nblocks, unsigned j, unsigned i)
  293. {
  294. /* dataAp is an array of data handle */
  295. return dataAp[i+j*lu_nblocks];
  296. }
  297. double STARPU_LU(lu_decomposition_pivot_no_stride)(TYPE **matA, unsigned *ipiv, unsigned size, unsigned ld, unsigned lu_nblocks, struct starpu_sched_ctx *sched_ctx)
  298. {
  299. starpu_data_handle *dataAp = malloc(lu_nblocks*lu_nblocks*sizeof(starpu_data_handle));
  300. /* monitor and partition the A matrix into blocks :
  301. * one block is now determined by 2 unsigned (i,j) */
  302. unsigned bi, bj;
  303. for (bj = 0; bj < lu_nblocks; bj++)
  304. for (bi = 0; bi < lu_nblocks; bi++)
  305. {
  306. starpu_matrix_data_register(&dataAp[bi+lu_nblocks*bj], 0,
  307. (uintptr_t)matA[bi+lu_nblocks*bj], size/lu_nblocks,
  308. size/lu_nblocks, size/lu_nblocks, sizeof(TYPE));
  309. /* We already enforce deps by hand */
  310. starpu_data_set_sequential_consistency_flag(dataAp[bi+lu_nblocks*bj], 0);
  311. }
  312. unsigned i;
  313. for (i = 0; i < size; i++)
  314. ipiv[i] = i;
  315. struct piv_s *piv_description = malloc(lu_nblocks*sizeof(struct piv_s));
  316. unsigned block;
  317. for (block = 0; block < lu_nblocks; block++)
  318. {
  319. piv_description[block].piv = ipiv;
  320. piv_description[block].first = block * (size / lu_nblocks);
  321. piv_description[block].last = (block + 1) * (size / lu_nblocks);
  322. }
  323. double timing;
  324. timing = dw_codelet_facto_pivot(dataAp, piv_description, lu_nblocks, get_block_with_no_striding, sched_ctx);
  325. unsigned n = starpu_matrix_get_nx(dataAp[0])*lu_nblocks;
  326. double flop = (2.0f*n*n*n)/3.0f;
  327. double gflops = flop/timing/1000.0f;
  328. for (bj = 0; bj < lu_nblocks; bj++)
  329. for (bi = 0; bi < lu_nblocks; bi++)
  330. {
  331. starpu_data_unregister(dataAp[bi+lu_nblocks*bj]);
  332. }
  333. return gflops;
  334. }