| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612 | 
							- /* dposvxx.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int _starpu_dposvxx_(char *fact, char *uplo, integer *n, integer *
 
- 	nrhs, doublereal *a, integer *lda, doublereal *af, integer *ldaf, 
 
- 	char *equed, doublereal *s, doublereal *b, integer *ldb, doublereal *
 
- 	x, integer *ldx, doublereal *rcond, doublereal *rpvgrw, doublereal *
 
- 	berr, integer *n_err_bnds__, doublereal *err_bnds_norm__, doublereal *
 
- 	err_bnds_comp__, integer *nparams, doublereal *params, doublereal *
 
- 	work, integer *iwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 
 
- 	    x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 
 
- 	    err_bnds_comp_dim1, err_bnds_comp_offset, i__1;
 
-     doublereal d__1, d__2;
 
-     /* Local variables */
 
-     integer j;
 
-     doublereal amax, smin, smax;
 
-     extern doublereal _starpu_dla_porpvgrw__(char *, integer *, doublereal *, integer 
 
- 	    *, doublereal *, integer *, doublereal *, ftnlen);
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     doublereal scond;
 
-     logical equil, rcequ;
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     logical nofact;
 
-     extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), 
 
- 	    _starpu_xerbla_(char *, integer *);
 
-     doublereal bignum;
 
-     integer infequ;
 
-     extern /* Subroutine */ int _starpu_dlaqsy_(char *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, char *), _starpu_dpotrf_(char *, integer *, doublereal *, integer 
 
- 	    *, integer *);
 
-     doublereal smlnum;
 
-     extern /* Subroutine */ int _starpu_dpotrs_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *), _starpu_dlascl2_(integer *, integer *, doublereal *, doublereal *
 
- , integer *), _starpu_dpoequb_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, integer *), _starpu_dporfsx_(
 
- 	    char *, char *, integer *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	     integer *, integer *);
 
- /*     -- LAPACK driver routine (version 3.2)                          -- */
 
- /*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
 
- /*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
 
- /*     -- November 2008                                                -- */
 
- /*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
 
- /*     -- Univ. of California Berkeley and NAG Ltd.                    -- */
 
- /*     .. */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*     Purpose */
 
- /*     ======= */
 
- /*     DPOSVXX uses the Cholesky factorization A = U**T*U or A = L*L**T */
 
- /*     to compute the solution to a double precision system of linear equations */
 
- /*     A * X = B, where A is an N-by-N symmetric positive definite matrix */
 
- /*     and X and B are N-by-NRHS matrices. */
 
- /*     If requested, both normwise and maximum componentwise error bounds */
 
- /*     are returned. DPOSVXX will return a solution with a tiny */
 
- /*     guaranteed error (O(eps) where eps is the working machine */
 
- /*     precision) unless the matrix is very ill-conditioned, in which */
 
- /*     case a warning is returned. Relevant condition numbers also are */
 
- /*     calculated and returned. */
 
- /*     DPOSVXX accepts user-provided factorizations and equilibration */
 
- /*     factors; see the definitions of the FACT and EQUED options. */
 
- /*     Solving with refinement and using a factorization from a previous */
 
- /*     DPOSVXX call will also produce a solution with either O(eps) */
 
- /*     errors or warnings, but we cannot make that claim for general */
 
- /*     user-provided factorizations and equilibration factors if they */
 
- /*     differ from what DPOSVXX would itself produce. */
 
- /*     Description */
 
- /*     =========== */
 
- /*     The following steps are performed: */
 
- /*     1. If FACT = 'E', double precision scaling factors are computed to equilibrate */
 
- /*     the system: */
 
- /*       diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B */
 
- /*     Whether or not the system will be equilibrated depends on the */
 
- /*     scaling of the matrix A, but if equilibration is used, A is */
 
- /*     overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */
 
- /*     2. If FACT = 'N' or 'E', the Cholesky decomposition is used to */
 
- /*     factor the matrix A (after equilibration if FACT = 'E') as */
 
- /*        A = U**T* U,  if UPLO = 'U', or */
 
- /*        A = L * L**T,  if UPLO = 'L', */
 
- /*     where U is an upper triangular matrix and L is a lower triangular */
 
- /*     matrix. */
 
- /*     3. If the leading i-by-i principal minor is not positive definite, */
 
- /*     then the routine returns with INFO = i. Otherwise, the factored */
 
- /*     form of A is used to estimate the condition number of the matrix */
 
- /*     A (see argument RCOND).  If the reciprocal of the condition number */
 
- /*     is less than machine precision, the routine still goes on to solve */
 
- /*     for X and compute error bounds as described below. */
 
- /*     4. The system of equations is solved for X using the factored form */
 
- /*     of A. */
 
- /*     5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero), */
 
- /*     the routine will use iterative refinement to try to get a small */
 
- /*     error and error bounds.  Refinement calculates the residual to at */
 
- /*     least twice the working precision. */
 
- /*     6. If equilibration was used, the matrix X is premultiplied by */
 
- /*     diag(S) so that it solves the original system before */
 
- /*     equilibration. */
 
- /*     Arguments */
 
- /*     ========= */
 
- /*     Some optional parameters are bundled in the PARAMS array.  These */
 
- /*     settings determine how refinement is performed, but often the */
 
- /*     defaults are acceptable.  If the defaults are acceptable, users */
 
- /*     can pass NPARAMS = 0 which prevents the source code from accessing */
 
- /*     the PARAMS argument. */
 
- /*     FACT    (input) CHARACTER*1 */
 
- /*     Specifies whether or not the factored form of the matrix A is */
 
- /*     supplied on entry, and if not, whether the matrix A should be */
 
- /*     equilibrated before it is factored. */
 
- /*       = 'F':  On entry, AF contains the factored form of A. */
 
- /*               If EQUED is not 'N', the matrix A has been */
 
- /*               equilibrated with scaling factors given by S. */
 
- /*               A and AF are not modified. */
 
- /*       = 'N':  The matrix A will be copied to AF and factored. */
 
- /*       = 'E':  The matrix A will be equilibrated if necessary, then */
 
- /*               copied to AF and factored. */
 
- /*     UPLO    (input) CHARACTER*1 */
 
- /*       = 'U':  Upper triangle of A is stored; */
 
- /*       = 'L':  Lower triangle of A is stored. */
 
- /*     N       (input) INTEGER */
 
- /*     The number of linear equations, i.e., the order of the */
 
- /*     matrix A.  N >= 0. */
 
- /*     NRHS    (input) INTEGER */
 
- /*     The number of right hand sides, i.e., the number of columns */
 
- /*     of the matrices B and X.  NRHS >= 0. */
 
- /*     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*     On entry, the symmetric matrix A, except if FACT = 'F' and EQUED = */
 
- /*     'Y', then A must contain the equilibrated matrix */
 
- /*     diag(S)*A*diag(S).  If UPLO = 'U', the leading N-by-N upper */
 
- /*     triangular part of A contains the upper triangular part of the */
 
- /*     matrix A, and the strictly lower triangular part of A is not */
 
- /*     referenced.  If UPLO = 'L', the leading N-by-N lower triangular */
 
- /*     part of A contains the lower triangular part of the matrix A, and */
 
- /*     the strictly upper triangular part of A is not referenced.  A is */
 
- /*     not modified if FACT = 'F' or 'N', or if FACT = 'E' and EQUED = */
 
- /*     'N' on exit. */
 
- /*     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */
 
- /*     diag(S)*A*diag(S). */
 
- /*     LDA     (input) INTEGER */
 
- /*     The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*     AF      (input or output) DOUBLE PRECISION array, dimension (LDAF,N) */
 
- /*     If FACT = 'F', then AF is an input argument and on entry */
 
- /*     contains the triangular factor U or L from the Cholesky */
 
- /*     factorization A = U**T*U or A = L*L**T, in the same storage */
 
- /*     format as A.  If EQUED .ne. 'N', then AF is the factored */
 
- /*     form of the equilibrated matrix diag(S)*A*diag(S). */
 
- /*     If FACT = 'N', then AF is an output argument and on exit */
 
- /*     returns the triangular factor U or L from the Cholesky */
 
- /*     factorization A = U**T*U or A = L*L**T of the original */
 
- /*     matrix A. */
 
- /*     If FACT = 'E', then AF is an output argument and on exit */
 
- /*     returns the triangular factor U or L from the Cholesky */
 
- /*     factorization A = U**T*U or A = L*L**T of the equilibrated */
 
- /*     matrix A (see the description of A for the form of the */
 
- /*     equilibrated matrix). */
 
- /*     LDAF    (input) INTEGER */
 
- /*     The leading dimension of the array AF.  LDAF >= max(1,N). */
 
- /*     EQUED   (input or output) CHARACTER*1 */
 
- /*     Specifies the form of equilibration that was done. */
 
- /*       = 'N':  No equilibration (always true if FACT = 'N'). */
 
- /*       = 'Y':  Both row and column equilibration, i.e., A has been */
 
- /*               replaced by diag(S) * A * diag(S). */
 
- /*     EQUED is an input argument if FACT = 'F'; otherwise, it is an */
 
- /*     output argument. */
 
- /*     S       (input or output) DOUBLE PRECISION array, dimension (N) */
 
- /*     The row scale factors for A.  If EQUED = 'Y', A is multiplied on */
 
- /*     the left and right by diag(S).  S is an input argument if FACT = */
 
- /*     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED */
 
- /*     = 'Y', each element of S must be positive.  If S is output, each */
 
- /*     element of S is a power of the radix. If S is input, each element */
 
- /*     of S should be a power of the radix to ensure a reliable solution */
 
- /*     and error estimates. Scaling by powers of the radix does not cause */
 
- /*     rounding errors unless the result underflows or overflows. */
 
- /*     Rounding errors during scaling lead to refining with a matrix that */
 
- /*     is not equivalent to the input matrix, producing error estimates */
 
- /*     that may not be reliable. */
 
- /*     B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*     On entry, the N-by-NRHS right hand side matrix B. */
 
- /*     On exit, */
 
- /*     if EQUED = 'N', B is not modified; */
 
- /*     if EQUED = 'Y', B is overwritten by diag(S)*B; */
 
- /*     LDB     (input) INTEGER */
 
- /*     The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*     X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
 
- /*     If INFO = 0, the N-by-NRHS solution matrix X to the original */
 
- /*     system of equations.  Note that A and B are modified on exit if */
 
- /*     EQUED .ne. 'N', and the solution to the equilibrated system is */
 
- /*     inv(diag(S))*X. */
 
- /*     LDX     (input) INTEGER */
 
- /*     The leading dimension of the array X.  LDX >= max(1,N). */
 
- /*     RCOND   (output) DOUBLE PRECISION */
 
- /*     Reciprocal scaled condition number.  This is an estimate of the */
 
- /*     reciprocal Skeel condition number of the matrix A after */
 
- /*     equilibration (if done).  If this is less than the machine */
 
- /*     precision (in particular, if it is zero), the matrix is singular */
 
- /*     to working precision.  Note that the error may still be small even */
 
- /*     if this number is very small and the matrix appears ill- */
 
- /*     conditioned. */
 
- /*     RPVGRW  (output) DOUBLE PRECISION */
 
- /*     Reciprocal pivot growth.  On exit, this contains the reciprocal */
 
- /*     pivot growth factor norm(A)/norm(U). The "max absolute element" */
 
- /*     norm is used.  If this is much less than 1, then the stability of */
 
- /*     the LU factorization of the (equilibrated) matrix A could be poor. */
 
- /*     This also means that the solution X, estimated condition numbers, */
 
- /*     and error bounds could be unreliable. If factorization fails with */
 
- /*     0<INFO<=N, then this contains the reciprocal pivot growth factor */
 
- /*     for the leading INFO columns of A. */
 
- /*     BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
 
- /*     Componentwise relative backward error.  This is the */
 
- /*     componentwise relative backward error of each solution vector X(j) */
 
- /*     (i.e., the smallest relative change in any element of A or B that */
 
- /*     makes X(j) an exact solution). */
 
- /*     N_ERR_BNDS (input) INTEGER */
 
- /*     Number of error bounds to return for each right hand side */
 
- /*     and each type (normwise or componentwise).  See ERR_BNDS_NORM and */
 
- /*     ERR_BNDS_COMP below. */
 
- /*     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
 
- /*     For each right-hand side, this array contains information about */
 
- /*     various error bounds and condition numbers corresponding to the */
 
- /*     normwise relative error, which is defined as follows: */
 
- /*     Normwise relative error in the ith solution vector: */
 
- /*             max_j (abs(XTRUE(j,i) - X(j,i))) */
 
- /*            ------------------------------ */
 
- /*                  max_j abs(X(j,i)) */
 
- /*     The array is indexed by the type of error information as described */
 
- /*     below. There currently are up to three pieces of information */
 
- /*     returned. */
 
- /*     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
 
- /*     right-hand side. */
 
- /*     The second index in ERR_BNDS_NORM(:,err) contains the following */
 
- /*     three fields: */
 
- /*     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
 
- /*              reciprocal condition number is less than the threshold */
 
- /*              sqrt(n) * dlamch('Epsilon'). */
 
- /*     err = 2 "Guaranteed" error bound: The estimated forward error, */
 
- /*              almost certainly within a factor of 10 of the true error */
 
- /*              so long as the next entry is greater than the threshold */
 
- /*              sqrt(n) * dlamch('Epsilon'). This error bound should only */
 
- /*              be trusted if the previous boolean is true. */
 
- /*     err = 3  Reciprocal condition number: Estimated normwise */
 
- /*              reciprocal condition number.  Compared with the threshold */
 
- /*              sqrt(n) * dlamch('Epsilon') to determine if the error */
 
- /*              estimate is "guaranteed". These reciprocal condition */
 
- /*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
 
- /*              appropriately scaled matrix Z. */
 
- /*              Let Z = S*A, where S scales each row by a power of the */
 
- /*              radix so all absolute row sums of Z are approximately 1. */
 
- /*     See Lapack Working Note 165 for further details and extra */
 
- /*     cautions. */
 
- /*     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
 
- /*     For each right-hand side, this array contains information about */
 
- /*     various error bounds and condition numbers corresponding to the */
 
- /*     componentwise relative error, which is defined as follows: */
 
- /*     Componentwise relative error in the ith solution vector: */
 
- /*                    abs(XTRUE(j,i) - X(j,i)) */
 
- /*             max_j ---------------------- */
 
- /*                         abs(X(j,i)) */
 
- /*     The array is indexed by the right-hand side i (on which the */
 
- /*     componentwise relative error depends), and the type of error */
 
- /*     information as described below. There currently are up to three */
 
- /*     pieces of information returned for each right-hand side. If */
 
- /*     componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
 
- /*     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most */
 
- /*     the first (:,N_ERR_BNDS) entries are returned. */
 
- /*     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
 
- /*     right-hand side. */
 
- /*     The second index in ERR_BNDS_COMP(:,err) contains the following */
 
- /*     three fields: */
 
- /*     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
 
- /*              reciprocal condition number is less than the threshold */
 
- /*              sqrt(n) * dlamch('Epsilon'). */
 
- /*     err = 2 "Guaranteed" error bound: The estimated forward error, */
 
- /*              almost certainly within a factor of 10 of the true error */
 
- /*              so long as the next entry is greater than the threshold */
 
- /*              sqrt(n) * dlamch('Epsilon'). This error bound should only */
 
- /*              be trusted if the previous boolean is true. */
 
- /*     err = 3  Reciprocal condition number: Estimated componentwise */
 
- /*              reciprocal condition number.  Compared with the threshold */
 
- /*              sqrt(n) * dlamch('Epsilon') to determine if the error */
 
- /*              estimate is "guaranteed". These reciprocal condition */
 
- /*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
 
- /*              appropriately scaled matrix Z. */
 
- /*              Let Z = S*(A*diag(x)), where x is the solution for the */
 
- /*              current right-hand side and S scales each row of */
 
- /*              A*diag(x) by a power of the radix so all absolute row */
 
- /*              sums of Z are approximately 1. */
 
- /*     See Lapack Working Note 165 for further details and extra */
 
- /*     cautions. */
 
- /*     NPARAMS (input) INTEGER */
 
- /*     Specifies the number of parameters set in PARAMS.  If .LE. 0, the */
 
- /*     PARAMS array is never referenced and default values are used. */
 
- /*     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS */
 
- /*     Specifies algorithm parameters.  If an entry is .LT. 0.0, then */
 
- /*     that entry will be filled with default value used for that */
 
- /*     parameter.  Only positions up to NPARAMS are accessed; defaults */
 
- /*     are used for higher-numbered parameters. */
 
- /*       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */
 
- /*            refinement or not. */
 
- /*         Default: 1.0D+0 */
 
- /*            = 0.0 : No refinement is performed, and no error bounds are */
 
- /*                    computed. */
 
- /*            = 1.0 : Use the extra-precise refinement algorithm. */
 
- /*              (other values are reserved for future use) */
 
- /*       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */
 
- /*            computations allowed for refinement. */
 
- /*         Default: 10 */
 
- /*         Aggressive: Set to 100 to permit convergence using approximate */
 
- /*                     factorizations or factorizations other than LU. If */
 
- /*                     the factorization uses a technique other than */
 
- /*                     Gaussian elimination, the guarantees in */
 
- /*                     err_bnds_norm and err_bnds_comp may no longer be */
 
- /*                     trustworthy. */
 
- /*       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */
 
- /*            will attempt to find a solution with small componentwise */
 
- /*            relative error in the double-precision algorithm.  Positive */
 
- /*            is true, 0.0 is false. */
 
- /*         Default: 1.0 (attempt componentwise convergence) */
 
- /*     WORK    (workspace) DOUBLE PRECISION array, dimension (4*N) */
 
- /*     IWORK   (workspace) INTEGER array, dimension (N) */
 
- /*     INFO    (output) INTEGER */
 
- /*       = 0:  Successful exit. The solution to every right-hand side is */
 
- /*         guaranteed. */
 
- /*       < 0:  If INFO = -i, the i-th argument had an illegal value */
 
- /*       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization */
 
- /*         has been completed, but the factor U is exactly singular, so */
 
- /*         the solution and error bounds could not be computed. RCOND = 0 */
 
- /*         is returned. */
 
- /*       = N+J: The solution corresponding to the Jth right-hand side is */
 
- /*         not guaranteed. The solutions corresponding to other right- */
 
- /*         hand sides K with K > J may not be guaranteed as well, but */
 
- /*         only the first such right-hand side is reported. If a small */
 
- /*         componentwise error is not requested (PARAMS(3) = 0.0) then */
 
- /*         the Jth right-hand side is the first with a normwise error */
 
- /*         bound that is not guaranteed (the smallest J such */
 
- /*         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */
 
- /*         the Jth right-hand side is the first with either a normwise or */
 
- /*         componentwise error bound that is not guaranteed (the smallest */
 
- /*         J such that either ERR_BNDS_NORM(J,1) = 0.0 or */
 
- /*         ERR_BNDS_COMP(J,1) = 0.0). See the definition of */
 
- /*         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */
 
- /*         about all of the right-hand sides check ERR_BNDS_NORM or */
 
- /*         ERR_BNDS_COMP. */
 
- /*     ================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     err_bnds_comp_dim1 = *nrhs;
 
-     err_bnds_comp_offset = 1 + err_bnds_comp_dim1;
 
-     err_bnds_comp__ -= err_bnds_comp_offset;
 
-     err_bnds_norm_dim1 = *nrhs;
 
-     err_bnds_norm_offset = 1 + err_bnds_norm_dim1;
 
-     err_bnds_norm__ -= err_bnds_norm_offset;
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     af_dim1 = *ldaf;
 
-     af_offset = 1 + af_dim1;
 
-     af -= af_offset;
 
-     --s;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     x_dim1 = *ldx;
 
-     x_offset = 1 + x_dim1;
 
-     x -= x_offset;
 
-     --berr;
 
-     --params;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     nofact = _starpu_lsame_(fact, "N");
 
-     equil = _starpu_lsame_(fact, "E");
 
-     smlnum = _starpu_dlamch_("Safe minimum");
 
-     bignum = 1. / smlnum;
 
-     if (nofact || equil) {
 
- 	*(unsigned char *)equed = 'N';
 
- 	rcequ = FALSE_;
 
-     } else {
 
- 	rcequ = _starpu_lsame_(equed, "Y");
 
-     }
 
- /*     Default is failure.  If an input parameter is wrong or */
 
- /*     factorization fails, make everything look horrible.  Only the */
 
- /*     pivot growth is set here, the rest is initialized in DPORFSX. */
 
-     *rpvgrw = 0.;
 
- /*     Test the input parameters.  PARAMS is not tested until DPORFSX. */
 
-     if (! nofact && ! equil && ! _starpu_lsame_(fact, "F")) {
 
- 	*info = -1;
 
-     } else if (! _starpu_lsame_(uplo, "U") && ! _starpu_lsame_(uplo, 
 
- 	    "L")) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -4;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -6;
 
-     } else if (*ldaf < max(1,*n)) {
 
- 	*info = -8;
 
-     } else if (_starpu_lsame_(fact, "F") && ! (rcequ || _starpu_lsame_(
 
- 	    equed, "N"))) {
 
- 	*info = -9;
 
-     } else {
 
- 	if (rcequ) {
 
- 	    smin = bignum;
 
- 	    smax = 0.;
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- /* Computing MIN */
 
- 		d__1 = smin, d__2 = s[j];
 
- 		smin = min(d__1,d__2);
 
- /* Computing MAX */
 
- 		d__1 = smax, d__2 = s[j];
 
- 		smax = max(d__1,d__2);
 
- /* L10: */
 
- 	    }
 
- 	    if (smin <= 0.) {
 
- 		*info = -10;
 
- 	    } else if (*n > 0) {
 
- 		scond = max(smin,smlnum) / min(smax,bignum);
 
- 	    } else {
 
- 		scond = 1.;
 
- 	    }
 
- 	}
 
- 	if (*info == 0) {
 
- 	    if (*ldb < max(1,*n)) {
 
- 		*info = -12;
 
- 	    } else if (*ldx < max(1,*n)) {
 
- 		*info = -14;
 
- 	    }
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DPOSVXX", &i__1);
 
- 	return 0;
 
-     }
 
-     if (equil) {
 
- /*     Compute row and column scalings to equilibrate the matrix A. */
 
- 	_starpu_dpoequb_(n, &a[a_offset], lda, &s[1], &scond, &amax, &infequ);
 
- 	if (infequ == 0) {
 
- /*     Equilibrate the matrix. */
 
- 	    _starpu_dlaqsy_(uplo, n, &a[a_offset], lda, &s[1], &scond, &amax, equed);
 
- 	    rcequ = _starpu_lsame_(equed, "Y");
 
- 	}
 
-     }
 
- /*     Scale the right-hand side. */
 
-     if (rcequ) {
 
- 	_starpu_dlascl2_(n, nrhs, &s[1], &b[b_offset], ldb);
 
-     }
 
-     if (nofact || equil) {
 
- /*        Compute the LU factorization of A. */
 
- 	_starpu_dlacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf);
 
- 	_starpu_dpotrf_(uplo, n, &af[af_offset], ldaf, info);
 
- /*        Return if INFO is non-zero. */
 
- 	if (*info != 0) {
 
- /*           Pivot in column INFO is exactly 0 */
 
- /*           Compute the reciprocal pivot growth factor of the */
 
- /*           leading rank-deficient INFO columns of A. */
 
- 	    *rpvgrw = _starpu_dla_porpvgrw__(uplo, info, &a[a_offset], lda, &af[
 
- 		    af_offset], ldaf, &work[1], (ftnlen)1);
 
- 	    return 0;
 
- 	}
 
-     }
 
- /*     Compute the reciprocal growth factor RPVGRW. */
 
-     *rpvgrw = _starpu_dla_porpvgrw__(uplo, n, &a[a_offset], lda, &af[af_offset], ldaf,
 
- 	     &work[1], (ftnlen)1);
 
- /*     Compute the solution matrix X. */
 
-     _starpu_dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
 
-     _starpu_dpotrs_(uplo, n, nrhs, &af[af_offset], ldaf, &x[x_offset], ldx, info);
 
- /*     Use iterative refinement to improve the computed solution and */
 
- /*     compute error bounds and backward error estimates for it. */
 
-     _starpu_dporfsx_(uplo, equed, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &
 
- 	    s[1], &b[b_offset], ldb, &x[x_offset], ldx, rcond, &berr[1], 
 
- 	    n_err_bnds__, &err_bnds_norm__[err_bnds_norm_offset], &
 
- 	    err_bnds_comp__[err_bnds_comp_offset], nparams, ¶ms[1], &work[
 
- 	    1], &iwork[1], info);
 
- /*     Scale solutions. */
 
-     if (rcequ) {
 
- 	_starpu_dlascl2_(n, nrhs, &s[1], &x[x_offset], ldx);
 
-     }
 
-     return 0;
 
- /*     End of DPOSVXX */
 
- } /* _starpu_dposvxx_ */
 
 
  |