| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356 | 
							- /* dlatrd.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b5 = -1.;
 
- static doublereal c_b6 = 1.;
 
- static integer c__1 = 1;
 
- static doublereal c_b16 = 0.;
 
- /* Subroutine */ int _starpu_dlatrd_(char *uplo, integer *n, integer *nb, doublereal *
 
- 	a, integer *lda, doublereal *e, doublereal *tau, doublereal *w, 
 
- 	integer *ldw)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3;
 
-     /* Local variables */
 
-     integer i__, iw;
 
-     extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *);
 
-     doublereal alpha;
 
-     extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *), _starpu_daxpy_(integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *), 
 
- 	    _starpu_dsymv_(char *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *), _starpu_dlarfg_(integer *, doublereal *, doublereal *, integer *, 
 
- 	     doublereal *);
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLATRD reduces NB rows and columns of a real symmetric matrix A to */
 
- /*  symmetric tridiagonal form by an orthogonal similarity */
 
- /*  transformation Q' * A * Q, and returns the matrices V and W which are */
 
- /*  needed to apply the transformation to the unreduced part of A. */
 
- /*  If UPLO = 'U', DLATRD reduces the last NB rows and columns of a */
 
- /*  matrix, of which the upper triangle is supplied; */
 
- /*  if UPLO = 'L', DLATRD reduces the first NB rows and columns of a */
 
- /*  matrix, of which the lower triangle is supplied. */
 
- /*  This is an auxiliary routine called by DSYTRD. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          Specifies whether the upper or lower triangular part of the */
 
- /*          symmetric matrix A is stored: */
 
- /*          = 'U': Upper triangular */
 
- /*          = 'L': Lower triangular */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A. */
 
- /*  NB      (input) INTEGER */
 
- /*          The number of rows and columns to be reduced. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
 
- /*          n-by-n upper triangular part of A contains the upper */
 
- /*          triangular part of the matrix A, and the strictly lower */
 
- /*          triangular part of A is not referenced.  If UPLO = 'L', the */
 
- /*          leading n-by-n lower triangular part of A contains the lower */
 
- /*          triangular part of the matrix A, and the strictly upper */
 
- /*          triangular part of A is not referenced. */
 
- /*          On exit: */
 
- /*          if UPLO = 'U', the last NB columns have been reduced to */
 
- /*            tridiagonal form, with the diagonal elements overwriting */
 
- /*            the diagonal elements of A; the elements above the diagonal */
 
- /*            with the array TAU, represent the orthogonal matrix Q as a */
 
- /*            product of elementary reflectors; */
 
- /*          if UPLO = 'L', the first NB columns have been reduced to */
 
- /*            tridiagonal form, with the diagonal elements overwriting */
 
- /*            the diagonal elements of A; the elements below the diagonal */
 
- /*            with the array TAU, represent the  orthogonal matrix Q as a */
 
- /*            product of elementary reflectors. */
 
- /*          See Further Details. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= (1,N). */
 
- /*  E       (output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal */
 
- /*          elements of the last NB columns of the reduced matrix; */
 
- /*          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of */
 
- /*          the first NB columns of the reduced matrix. */
 
- /*  TAU     (output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The scalar factors of the elementary reflectors, stored in */
 
- /*          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. */
 
- /*          See Further Details. */
 
- /*  W       (output) DOUBLE PRECISION array, dimension (LDW,NB) */
 
- /*          The n-by-nb matrix W required to update the unreduced part */
 
- /*          of A. */
 
- /*  LDW     (input) INTEGER */
 
- /*          The leading dimension of the array W. LDW >= max(1,N). */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  If UPLO = 'U', the matrix Q is represented as a product of elementary */
 
- /*  reflectors */
 
- /*     Q = H(n) H(n-1) . . . H(n-nb+1). */
 
- /*  Each H(i) has the form */
 
- /*     H(i) = I - tau * v * v' */
 
- /*  where tau is a real scalar, and v is a real vector with */
 
- /*  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), */
 
- /*  and tau in TAU(i-1). */
 
- /*  If UPLO = 'L', the matrix Q is represented as a product of elementary */
 
- /*  reflectors */
 
- /*     Q = H(1) H(2) . . . H(nb). */
 
- /*  Each H(i) has the form */
 
- /*     H(i) = I - tau * v * v' */
 
- /*  where tau is a real scalar, and v is a real vector with */
 
- /*  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), */
 
- /*  and tau in TAU(i). */
 
- /*  The elements of the vectors v together form the n-by-nb matrix V */
 
- /*  which is needed, with W, to apply the transformation to the unreduced */
 
- /*  part of the matrix, using a symmetric rank-2k update of the form: */
 
- /*  A := A - V*W' - W*V'. */
 
- /*  The contents of A on exit are illustrated by the following examples */
 
- /*  with n = 5 and nb = 2: */
 
- /*  if UPLO = 'U':                       if UPLO = 'L': */
 
- /*    (  a   a   a   v4  v5 )              (  d                  ) */
 
- /*    (      a   a   v4  v5 )              (  1   d              ) */
 
- /*    (          a   1   v5 )              (  v1  1   a          ) */
 
- /*    (              d   1  )              (  v1  v2  a   a      ) */
 
- /*    (                  d  )              (  v1  v2  a   a   a  ) */
 
- /*  where d denotes a diagonal element of the reduced matrix, a denotes */
 
- /*  an element of the original matrix that is unchanged, and vi denotes */
 
- /*  an element of the vector defining H(i). */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Quick return if possible */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --e;
 
-     --tau;
 
-     w_dim1 = *ldw;
 
-     w_offset = 1 + w_dim1;
 
-     w -= w_offset;
 
-     /* Function Body */
 
-     if (*n <= 0) {
 
- 	return 0;
 
-     }
 
-     if (_starpu_lsame_(uplo, "U")) {
 
- /*        Reduce last NB columns of upper triangle */
 
- 	i__1 = *n - *nb + 1;
 
- 	for (i__ = *n; i__ >= i__1; --i__) {
 
- 	    iw = i__ - *n + *nb;
 
- 	    if (i__ < *n) {
 
- /*              Update A(1:i,i) */
 
- 		i__2 = *n - i__;
 
- 		_starpu_dgemv_("No transpose", &i__, &i__2, &c_b5, &a[(i__ + 1) * 
 
- 			a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, &
 
- 			c_b6, &a[i__ * a_dim1 + 1], &c__1);
 
- 		i__2 = *n - i__;
 
- 		_starpu_dgemv_("No transpose", &i__, &i__2, &c_b5, &w[(iw + 1) * 
 
- 			w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, &
 
- 			c_b6, &a[i__ * a_dim1 + 1], &c__1);
 
- 	    }
 
- 	    if (i__ > 1) {
 
- /*              Generate elementary reflector H(i) to annihilate */
 
- /*              A(1:i-2,i) */
 
- 		i__2 = i__ - 1;
 
- 		_starpu_dlarfg_(&i__2, &a[i__ - 1 + i__ * a_dim1], &a[i__ * a_dim1 + 
 
- 			1], &c__1, &tau[i__ - 1]);
 
- 		e[i__ - 1] = a[i__ - 1 + i__ * a_dim1];
 
- 		a[i__ - 1 + i__ * a_dim1] = 1.;
 
- /*              Compute W(1:i-1,i) */
 
- 		i__2 = i__ - 1;
 
- 		_starpu_dsymv_("Upper", &i__2, &c_b6, &a[a_offset], lda, &a[i__ * 
 
- 			a_dim1 + 1], &c__1, &c_b16, &w[iw * w_dim1 + 1], &
 
- 			c__1);
 
- 		if (i__ < *n) {
 
- 		    i__2 = i__ - 1;
 
- 		    i__3 = *n - i__;
 
- 		    _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b6, &w[(iw + 1) * 
 
- 			    w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], &c__1, &
 
- 			    c_b16, &w[i__ + 1 + iw * w_dim1], &c__1);
 
- 		    i__2 = i__ - 1;
 
- 		    i__3 = *n - i__;
 
- 		    _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) *
 
- 			     a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], &
 
- 			    c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1);
 
- 		    i__2 = i__ - 1;
 
- 		    i__3 = *n - i__;
 
- 		    _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b6, &a[(i__ + 1) * 
 
- 			    a_dim1 + 1], lda, &a[i__ * a_dim1 + 1], &c__1, &
 
- 			    c_b16, &w[i__ + 1 + iw * w_dim1], &c__1);
 
- 		    i__2 = i__ - 1;
 
- 		    i__3 = *n - i__;
 
- 		    _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[(iw + 1) * 
 
- 			    w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], &
 
- 			    c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1);
 
- 		}
 
- 		i__2 = i__ - 1;
 
- 		_starpu_dscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1);
 
- 		i__2 = i__ - 1;
 
- 		alpha = tau[i__ - 1] * -.5 * _starpu_ddot_(&i__2, &w[iw * w_dim1 + 1], 
 
- 			 &c__1, &a[i__ * a_dim1 + 1], &c__1);
 
- 		i__2 = i__ - 1;
 
- 		_starpu_daxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw * 
 
- 			w_dim1 + 1], &c__1);
 
- 	    }
 
- /* L10: */
 
- 	}
 
-     } else {
 
- /*        Reduce first NB columns of lower triangle */
 
- 	i__1 = *nb;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- /*           Update A(i:n,i) */
 
- 	    i__2 = *n - i__ + 1;
 
- 	    i__3 = i__ - 1;
 
- 	    _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1], lda, 
 
- 		     &w[i__ + w_dim1], ldw, &c_b6, &a[i__ + i__ * a_dim1], &
 
- 		    c__1);
 
- 	    i__2 = *n - i__ + 1;
 
- 	    i__3 = i__ - 1;
 
- 	    _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + w_dim1], ldw, 
 
- 		     &a[i__ + a_dim1], lda, &c_b6, &a[i__ + i__ * a_dim1], &
 
- 		    c__1);
 
- 	    if (i__ < *n) {
 
- /*              Generate elementary reflector H(i) to annihilate */
 
- /*              A(i+2:n,i) */
 
- 		i__2 = *n - i__;
 
- /* Computing MIN */
 
- 		i__3 = i__ + 2;
 
- 		_starpu_dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *n)+ 
 
- 			i__ * a_dim1], &c__1, &tau[i__]);
 
- 		e[i__] = a[i__ + 1 + i__ * a_dim1];
 
- 		a[i__ + 1 + i__ * a_dim1] = 1.;
 
- /*              Compute W(i+1:n,i) */
 
- 		i__2 = *n - i__;
 
- 		_starpu_dsymv_("Lower", &i__2, &c_b6, &a[i__ + 1 + (i__ + 1) * a_dim1]
 
- , lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[
 
- 			i__ + 1 + i__ * w_dim1], &c__1);
 
- 		i__2 = *n - i__;
 
- 		i__3 = i__ - 1;
 
- 		_starpu_dgemv_("Transpose", &i__2, &i__3, &c_b6, &w[i__ + 1 + w_dim1], 
 
- 			 ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[
 
- 			i__ * w_dim1 + 1], &c__1);
 
- 		i__2 = *n - i__;
 
- 		i__3 = i__ - 1;
 
- 		_starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + 
 
- 			a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[
 
- 			i__ + 1 + i__ * w_dim1], &c__1);
 
- 		i__2 = *n - i__;
 
- 		i__3 = i__ - 1;
 
- 		_starpu_dgemv_("Transpose", &i__2, &i__3, &c_b6, &a[i__ + 1 + a_dim1], 
 
- 			 lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[
 
- 			i__ * w_dim1 + 1], &c__1);
 
- 		i__2 = *n - i__;
 
- 		i__3 = i__ - 1;
 
- 		_starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + 1 + 
 
- 			w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[
 
- 			i__ + 1 + i__ * w_dim1], &c__1);
 
- 		i__2 = *n - i__;
 
- 		_starpu_dscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1);
 
- 		i__2 = *n - i__;
 
- 		alpha = tau[i__] * -.5 * _starpu_ddot_(&i__2, &w[i__ + 1 + i__ * 
 
- 			w_dim1], &c__1, &a[i__ + 1 + i__ * a_dim1], &c__1);
 
- 		i__2 = *n - i__;
 
- 		_starpu_daxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[
 
- 			i__ + 1 + i__ * w_dim1], &c__1);
 
- 	    }
 
- /* L20: */
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DLATRD */
 
- } /* _starpu_dlatrd_ */
 
 
  |