| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316 | 
							- /* dlahr2.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b4 = -1.;
 
- static doublereal c_b5 = 1.;
 
- static integer c__1 = 1;
 
- static doublereal c_b38 = 0.;
 
- /* Subroutine */ int _starpu_dlahr2_(integer *n, integer *k, integer *nb, doublereal *
 
- 	a, integer *lda, doublereal *tau, doublereal *t, integer *ldt, 
 
- 	doublereal *y, integer *ldy)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2, 
 
- 	    i__3;
 
-     doublereal d__1;
 
-     /* Local variables */
 
-     integer i__;
 
-     doublereal ei;
 
-     extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *), _starpu_dgemm_(char *, char *, integer *, integer *, integer *
 
- , doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *), _starpu_dgemv_(
 
- 	    char *, integer *, integer *, doublereal *, doublereal *, integer 
 
- 	    *, doublereal *, integer *, doublereal *, doublereal *, integer *), _starpu_dcopy_(integer *, doublereal *, integer *, doublereal *, 
 
- 	     integer *), _starpu_dtrmm_(char *, char *, char *, char *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	    integer *), _starpu_daxpy_(integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *), 
 
- 	    _starpu_dtrmv_(char *, char *, char *, integer *, doublereal *, integer *, 
 
- 	     doublereal *, integer *), _starpu_dlarfg_(
 
- 	    integer *, doublereal *, doublereal *, integer *, doublereal *), 
 
- 	    _starpu_dlacpy_(char *, integer *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAHR2 reduces the first NB columns of A real general n-BY-(n-k+1) */
 
- /*  matrix A so that elements below the k-th subdiagonal are zero. The */
 
- /*  reduction is performed by an orthogonal similarity transformation */
 
- /*  Q' * A * Q. The routine returns the matrices V and T which determine */
 
- /*  Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T. */
 
- /*  This is an auxiliary routine called by DGEHRD. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A. */
 
- /*  K       (input) INTEGER */
 
- /*          The offset for the reduction. Elements below the k-th */
 
- /*          subdiagonal in the first NB columns are reduced to zero. */
 
- /*          K < N. */
 
- /*  NB      (input) INTEGER */
 
- /*          The number of columns to be reduced. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N-K+1) */
 
- /*          On entry, the n-by-(n-k+1) general matrix A. */
 
- /*          On exit, the elements on and above the k-th subdiagonal in */
 
- /*          the first NB columns are overwritten with the corresponding */
 
- /*          elements of the reduced matrix; the elements below the k-th */
 
- /*          subdiagonal, with the array TAU, represent the matrix Q as a */
 
- /*          product of elementary reflectors. The other columns of A are */
 
- /*          unchanged. See Further Details. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*  TAU     (output) DOUBLE PRECISION array, dimension (NB) */
 
- /*          The scalar factors of the elementary reflectors. See Further */
 
- /*          Details. */
 
- /*  T       (output) DOUBLE PRECISION array, dimension (LDT,NB) */
 
- /*          The upper triangular matrix T. */
 
- /*  LDT     (input) INTEGER */
 
- /*          The leading dimension of the array T.  LDT >= NB. */
 
- /*  Y       (output) DOUBLE PRECISION array, dimension (LDY,NB) */
 
- /*          The n-by-nb matrix Y. */
 
- /*  LDY     (input) INTEGER */
 
- /*          The leading dimension of the array Y. LDY >= N. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The matrix Q is represented as a product of nb elementary reflectors */
 
- /*     Q = H(1) H(2) . . . H(nb). */
 
- /*  Each H(i) has the form */
 
- /*     H(i) = I - tau * v * v' */
 
- /*  where tau is a real scalar, and v is a real vector with */
 
- /*  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in */
 
- /*  A(i+k+1:n,i), and tau in TAU(i). */
 
- /*  The elements of the vectors v together form the (n-k+1)-by-nb matrix */
 
- /*  V which is needed, with T and Y, to apply the transformation to the */
 
- /*  unreduced part of the matrix, using an update of the form: */
 
- /*  A := (I - V*T*V') * (A - Y*V'). */
 
- /*  The contents of A on exit are illustrated by the following example */
 
- /*  with n = 7, k = 3 and nb = 2: */
 
- /*     ( a   a   a   a   a ) */
 
- /*     ( a   a   a   a   a ) */
 
- /*     ( a   a   a   a   a ) */
 
- /*     ( h   h   a   a   a ) */
 
- /*     ( v1  h   a   a   a ) */
 
- /*     ( v1  v2  a   a   a ) */
 
- /*     ( v1  v2  a   a   a ) */
 
- /*  where a denotes an element of the original matrix A, h denotes a */
 
- /*  modified element of the upper Hessenberg matrix H, and vi denotes an */
 
- /*  element of the vector defining H(i). */
 
- /*  This file is a slight modification of LAPACK-3.0's DLAHRD */
 
- /*  incorporating improvements proposed by Quintana-Orti and Van de */
 
- /*  Gejin. Note that the entries of A(1:K,2:NB) differ from those */
 
- /*  returned by the original LAPACK routine. This function is */
 
- /*  not backward compatible with LAPACK3.0. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Quick return if possible */
 
-     /* Parameter adjustments */
 
-     --tau;
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     t_dim1 = *ldt;
 
-     t_offset = 1 + t_dim1;
 
-     t -= t_offset;
 
-     y_dim1 = *ldy;
 
-     y_offset = 1 + y_dim1;
 
-     y -= y_offset;
 
-     /* Function Body */
 
-     if (*n <= 1) {
 
- 	return 0;
 
-     }
 
-     i__1 = *nb;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	if (i__ > 1) {
 
- /*           Update A(K+1:N,I) */
 
- /*           Update I-th column of A - Y * V' */
 
- 	    i__2 = *n - *k;
 
- 	    i__3 = i__ - 1;
 
- 	    _starpu_dgemv_("NO TRANSPOSE", &i__2, &i__3, &c_b4, &y[*k + 1 + y_dim1], 
 
- 		    ldy, &a[*k + i__ - 1 + a_dim1], lda, &c_b5, &a[*k + 1 + 
 
- 		    i__ * a_dim1], &c__1);
 
- /*           Apply I - V * T' * V' to this column (call it b) from the */
 
- /*           left, using the last column of T as workspace */
 
- /*           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows) */
 
- /*                    ( V2 )             ( b2 ) */
 
- /*           where V1 is unit lower triangular */
 
- /*           w := V1' * b1 */
 
- 	    i__2 = i__ - 1;
 
- 	    _starpu_dcopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 + 
 
- 		    1], &c__1);
 
- 	    i__2 = i__ - 1;
 
- 	    _starpu_dtrmv_("Lower", "Transpose", "UNIT", &i__2, &a[*k + 1 + a_dim1], 
 
- 		    lda, &t[*nb * t_dim1 + 1], &c__1);
 
- /*           w := w + V2'*b2 */
 
- 	    i__2 = *n - *k - i__ + 1;
 
- 	    i__3 = i__ - 1;
 
- 	    _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1], 
 
- 		    lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b5, &t[*nb * 
 
- 		    t_dim1 + 1], &c__1);
 
- /*           w := T'*w */
 
- 	    i__2 = i__ - 1;
 
- 	    _starpu_dtrmv_("Upper", "Transpose", "NON-UNIT", &i__2, &t[t_offset], ldt, 
 
- 		     &t[*nb * t_dim1 + 1], &c__1);
 
- /*           b2 := b2 - V2*w */
 
- 	    i__2 = *n - *k - i__ + 1;
 
- 	    i__3 = i__ - 1;
 
- 	    _starpu_dgemv_("NO TRANSPOSE", &i__2, &i__3, &c_b4, &a[*k + i__ + a_dim1], 
 
- 		     lda, &t[*nb * t_dim1 + 1], &c__1, &c_b5, &a[*k + i__ + 
 
- 		    i__ * a_dim1], &c__1);
 
- /*           b1 := b1 - V1*w */
 
- 	    i__2 = i__ - 1;
 
- 	    _starpu_dtrmv_("Lower", "NO TRANSPOSE", "UNIT", &i__2, &a[*k + 1 + a_dim1]
 
- , lda, &t[*nb * t_dim1 + 1], &c__1);
 
- 	    i__2 = i__ - 1;
 
- 	    _starpu_daxpy_(&i__2, &c_b4, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__ 
 
- 		    * a_dim1], &c__1);
 
- 	    a[*k + i__ - 1 + (i__ - 1) * a_dim1] = ei;
 
- 	}
 
- /*        Generate the elementary reflector H(I) to annihilate */
 
- /*        A(K+I+1:N,I) */
 
- 	i__2 = *n - *k - i__ + 1;
 
- /* Computing MIN */
 
- 	i__3 = *k + i__ + 1;
 
- 	_starpu_dlarfg_(&i__2, &a[*k + i__ + i__ * a_dim1], &a[min(i__3, *n)+ i__ * 
 
- 		a_dim1], &c__1, &tau[i__]);
 
- 	ei = a[*k + i__ + i__ * a_dim1];
 
- 	a[*k + i__ + i__ * a_dim1] = 1.;
 
- /*        Compute  Y(K+1:N,I) */
 
- 	i__2 = *n - *k;
 
- 	i__3 = *n - *k - i__ + 1;
 
- 	_starpu_dgemv_("NO TRANSPOSE", &i__2, &i__3, &c_b5, &a[*k + 1 + (i__ + 1) * 
 
- 		a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &y[*
 
- 		k + 1 + i__ * y_dim1], &c__1);
 
- 	i__2 = *n - *k - i__ + 1;
 
- 	i__3 = i__ - 1;
 
- 	_starpu_dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1], lda, &
 
- 		a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &t[i__ * t_dim1 + 
 
- 		1], &c__1);
 
- 	i__2 = *n - *k;
 
- 	i__3 = i__ - 1;
 
- 	_starpu_dgemv_("NO TRANSPOSE", &i__2, &i__3, &c_b4, &y[*k + 1 + y_dim1], ldy, 
 
- 		&t[i__ * t_dim1 + 1], &c__1, &c_b5, &y[*k + 1 + i__ * y_dim1], 
 
- 		 &c__1);
 
- 	i__2 = *n - *k;
 
- 	_starpu_dscal_(&i__2, &tau[i__], &y[*k + 1 + i__ * y_dim1], &c__1);
 
- /*        Compute T(1:I,I) */
 
- 	i__2 = i__ - 1;
 
- 	d__1 = -tau[i__];
 
- 	_starpu_dscal_(&i__2, &d__1, &t[i__ * t_dim1 + 1], &c__1);
 
- 	i__2 = i__ - 1;
 
- 	_starpu_dtrmv_("Upper", "No Transpose", "NON-UNIT", &i__2, &t[t_offset], ldt, 
 
- 		&t[i__ * t_dim1 + 1], &c__1)
 
- 		;
 
- 	t[i__ + i__ * t_dim1] = tau[i__];
 
- /* L10: */
 
-     }
 
-     a[*k + *nb + *nb * a_dim1] = ei;
 
- /*     Compute Y(1:K,1:NB) */
 
-     _starpu_dlacpy_("ALL", k, nb, &a[(a_dim1 << 1) + 1], lda, &y[y_offset], ldy);
 
-     _starpu_dtrmm_("RIGHT", "Lower", "NO TRANSPOSE", "UNIT", k, nb, &c_b5, &a[*k + 1 
 
- 	    + a_dim1], lda, &y[y_offset], ldy);
 
-     if (*n > *k + *nb) {
 
- 	i__1 = *n - *k - *nb;
 
- 	_starpu_dgemm_("NO TRANSPOSE", "NO TRANSPOSE", k, nb, &i__1, &c_b5, &a[(*nb + 
 
- 		2) * a_dim1 + 1], lda, &a[*k + 1 + *nb + a_dim1], lda, &c_b5, 
 
- 		&y[y_offset], ldy);
 
-     }
 
-     _starpu_dtrmm_("RIGHT", "Upper", "NO TRANSPOSE", "NON-UNIT", k, nb, &c_b5, &t[
 
- 	    t_offset], ldt, &y[y_offset], ldy);
 
-     return 0;
 
- /*     End of DLAHR2 */
 
- } /* _starpu_dlahr2_ */
 
 
  |