| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288 | 
							- /* dlaeda.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__2 = 2;
 
- static integer c__1 = 1;
 
- static doublereal c_b24 = 1.;
 
- static doublereal c_b26 = 0.;
 
- /* Subroutine */ int _starpu_dlaeda_(integer *n, integer *tlvls, integer *curlvl, 
 
- 	integer *curpbm, integer *prmptr, integer *perm, integer *givptr, 
 
- 	integer *givcol, doublereal *givnum, doublereal *q, integer *qptr, 
 
- 	doublereal *z__, doublereal *ztemp, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1, i__2, i__3;
 
-     /* Builtin functions */
 
-     integer pow_ii(integer *, integer *);
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__, k, mid, ptr;
 
-     extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *);
 
-     integer curr, bsiz1, bsiz2, psiz1, psiz2, zptr1;
 
-     extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *), _starpu_dcopy_(integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), _starpu_xerbla_(char *, 
 
- 	     integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAEDA computes the Z vector corresponding to the merge step in the */
 
- /*  CURLVLth step of the merge process with TLVLS steps for the CURPBMth */
 
- /*  problem. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N      (input) INTEGER */
 
- /*         The dimension of the symmetric tridiagonal matrix.  N >= 0. */
 
- /*  TLVLS  (input) INTEGER */
 
- /*         The total number of merging levels in the overall divide and */
 
- /*         conquer tree. */
 
- /*  CURLVL (input) INTEGER */
 
- /*         The current level in the overall merge routine, */
 
- /*         0 <= curlvl <= tlvls. */
 
- /*  CURPBM (input) INTEGER */
 
- /*         The current problem in the current level in the overall */
 
- /*         merge routine (counting from upper left to lower right). */
 
- /*  PRMPTR (input) INTEGER array, dimension (N lg N) */
 
- /*         Contains a list of pointers which indicate where in PERM a */
 
- /*         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i) */
 
- /*         indicates the size of the permutation and incidentally the */
 
- /*         size of the full, non-deflated problem. */
 
- /*  PERM   (input) INTEGER array, dimension (N lg N) */
 
- /*         Contains the permutations (from deflation and sorting) to be */
 
- /*         applied to each eigenblock. */
 
- /*  GIVPTR (input) INTEGER array, dimension (N lg N) */
 
- /*         Contains a list of pointers which indicate where in GIVCOL a */
 
- /*         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i) */
 
- /*         indicates the number of Givens rotations. */
 
- /*  GIVCOL (input) INTEGER array, dimension (2, N lg N) */
 
- /*         Each pair of numbers indicates a pair of columns to take place */
 
- /*         in a Givens rotation. */
 
- /*  GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N) */
 
- /*         Each number indicates the S value to be used in the */
 
- /*         corresponding Givens rotation. */
 
- /*  Q      (input) DOUBLE PRECISION array, dimension (N**2) */
 
- /*         Contains the square eigenblocks from previous levels, the */
 
- /*         starting positions for blocks are given by QPTR. */
 
- /*  QPTR   (input) INTEGER array, dimension (N+2) */
 
- /*         Contains a list of pointers which indicate where in Q an */
 
- /*         eigenblock is stored.  SQRT( QPTR(i+1) - QPTR(i) ) indicates */
 
- /*         the size of the block. */
 
- /*  Z      (output) DOUBLE PRECISION array, dimension (N) */
 
- /*         On output this vector contains the updating vector (the last */
 
- /*         row of the first sub-eigenvector matrix and the first row of */
 
- /*         the second sub-eigenvector matrix). */
 
- /*  ZTEMP  (workspace) DOUBLE PRECISION array, dimension (N) */
 
- /*  INFO   (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Jeff Rutter, Computer Science Division, University of California */
 
- /*     at Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --ztemp;
 
-     --z__;
 
-     --qptr;
 
-     --q;
 
-     givnum -= 3;
 
-     givcol -= 3;
 
-     --givptr;
 
-     --perm;
 
-     --prmptr;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*n < 0) {
 
- 	*info = -1;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DLAEDA", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Determine location of first number in second half. */
 
-     mid = *n / 2 + 1;
 
- /*     Gather last/first rows of appropriate eigenblocks into center of Z */
 
-     ptr = 1;
 
- /*     Determine location of lowest level subproblem in the full storage */
 
- /*     scheme */
 
-     i__1 = *curlvl - 1;
 
-     curr = ptr + *curpbm * pow_ii(&c__2, curlvl) + pow_ii(&c__2, &i__1) - 1;
 
- /*     Determine size of these matrices.  We add HALF to the value of */
 
- /*     the SQRT in case the machine underestimates one of these square */
 
- /*     roots. */
 
-     bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) + .5);
 
-     bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1])) + 
 
- 	    .5);
 
-     i__1 = mid - bsiz1 - 1;
 
-     for (k = 1; k <= i__1; ++k) {
 
- 	z__[k] = 0.;
 
- /* L10: */
 
-     }
 
-     _starpu_dcopy_(&bsiz1, &q[qptr[curr] + bsiz1 - 1], &bsiz1, &z__[mid - bsiz1], &
 
- 	    c__1);
 
-     _starpu_dcopy_(&bsiz2, &q[qptr[curr + 1]], &bsiz2, &z__[mid], &c__1);
 
-     i__1 = *n;
 
-     for (k = mid + bsiz2; k <= i__1; ++k) {
 
- 	z__[k] = 0.;
 
- /* L20: */
 
-     }
 
- /*     Loop thru remaining levels 1 -> CURLVL applying the Givens */
 
- /*     rotations and permutation and then multiplying the center matrices */
 
- /*     against the current Z. */
 
-     ptr = pow_ii(&c__2, tlvls) + 1;
 
-     i__1 = *curlvl - 1;
 
-     for (k = 1; k <= i__1; ++k) {
 
- 	i__2 = *curlvl - k;
 
- 	i__3 = *curlvl - k - 1;
 
- 	curr = ptr + *curpbm * pow_ii(&c__2, &i__2) + pow_ii(&c__2, &i__3) - 
 
- 		1;
 
- 	psiz1 = prmptr[curr + 1] - prmptr[curr];
 
- 	psiz2 = prmptr[curr + 2] - prmptr[curr + 1];
 
- 	zptr1 = mid - psiz1;
 
- /*       Apply Givens at CURR and CURR+1 */
 
- 	i__2 = givptr[curr + 1] - 1;
 
- 	for (i__ = givptr[curr]; i__ <= i__2; ++i__) {
 
- 	    _starpu_drot_(&c__1, &z__[zptr1 + givcol[(i__ << 1) + 1] - 1], &c__1, &
 
- 		    z__[zptr1 + givcol[(i__ << 1) + 2] - 1], &c__1, &givnum[(
 
- 		    i__ << 1) + 1], &givnum[(i__ << 1) + 2]);
 
- /* L30: */
 
- 	}
 
- 	i__2 = givptr[curr + 2] - 1;
 
- 	for (i__ = givptr[curr + 1]; i__ <= i__2; ++i__) {
 
- 	    _starpu_drot_(&c__1, &z__[mid - 1 + givcol[(i__ << 1) + 1]], &c__1, &z__[
 
- 		    mid - 1 + givcol[(i__ << 1) + 2]], &c__1, &givnum[(i__ << 
 
- 		    1) + 1], &givnum[(i__ << 1) + 2]);
 
- /* L40: */
 
- 	}
 
- 	psiz1 = prmptr[curr + 1] - prmptr[curr];
 
- 	psiz2 = prmptr[curr + 2] - prmptr[curr + 1];
 
- 	i__2 = psiz1 - 1;
 
- 	for (i__ = 0; i__ <= i__2; ++i__) {
 
- 	    ztemp[i__ + 1] = z__[zptr1 + perm[prmptr[curr] + i__] - 1];
 
- /* L50: */
 
- 	}
 
- 	i__2 = psiz2 - 1;
 
- 	for (i__ = 0; i__ <= i__2; ++i__) {
 
- 	    ztemp[psiz1 + i__ + 1] = z__[mid + perm[prmptr[curr + 1] + i__] - 
 
- 		    1];
 
- /* L60: */
 
- 	}
 
- /*        Multiply Blocks at CURR and CURR+1 */
 
- /*        Determine size of these matrices.  We add HALF to the value of */
 
- /*        the SQRT in case the machine underestimates one of these */
 
- /*        square roots. */
 
- 	bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) + 
 
- 		.5);
 
- 	bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1])
 
- 		) + .5);
 
- 	if (bsiz1 > 0) {
 
- 	    _starpu_dgemv_("T", &bsiz1, &bsiz1, &c_b24, &q[qptr[curr]], &bsiz1, &
 
- 		    ztemp[1], &c__1, &c_b26, &z__[zptr1], &c__1);
 
- 	}
 
- 	i__2 = psiz1 - bsiz1;
 
- 	_starpu_dcopy_(&i__2, &ztemp[bsiz1 + 1], &c__1, &z__[zptr1 + bsiz1], &c__1);
 
- 	if (bsiz2 > 0) {
 
- 	    _starpu_dgemv_("T", &bsiz2, &bsiz2, &c_b24, &q[qptr[curr + 1]], &bsiz2, &
 
- 		    ztemp[psiz1 + 1], &c__1, &c_b26, &z__[mid], &c__1);
 
- 	}
 
- 	i__2 = psiz2 - bsiz2;
 
- 	_starpu_dcopy_(&i__2, &ztemp[psiz1 + bsiz2 + 1], &c__1, &z__[mid + bsiz2], &
 
- 		c__1);
 
- 	i__2 = *tlvls - k;
 
- 	ptr += pow_ii(&c__2, &i__2);
 
- /* L70: */
 
-     }
 
-     return 0;
 
- /*     End of DLAEDA */
 
- } /* _starpu_dlaeda_ */
 
 
  |