| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244 | # StarPU --- Runtime system for heterogeneous multicore architectures.## Copyright (C) 2020       Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria## StarPU is free software; you can redistribute it and/or modify# it under the terms of the GNU Lesser General Public License as published by# the Free Software Foundation; either version 2.1 of the License, or (at# your option) any later version.## StarPU is distributed in the hope that it will be useful, but# WITHOUT ANY WARRANTY; without even the implied warranty of# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.## See the GNU Lesser General Public License in COPYING.LGPL for more details.#using Base.LinAlginclude("mult_naive.jl")#   A of size (y,z)#   B of size (z,x)#   C of size (y,x)#              |---------------|#            z |       B       |#              |---------------|#       z              x#     |----|   |---------------|#     |    |   |               |#     |    |   |               |#     | A  | y |       C       |#     |    |   |               |#     |    |   |               |#     |----|   |---------------|#function multiply_with_starpu(A :: Matrix{Float32}, B :: Matrix{Float32}, C :: Matrix{Float32}, nslicesx, nslicesy)    vert = StarpuDataFilter(STARPU_MATRIX_FILTER_VERTICAL_BLOCK, nslicesx)    horiz = StarpuDataFilter(STARPU_MATRIX_FILTER_BLOCK, nslicesy)    @starpu_block let        hA,hB,hC = starpu_data_register(A, B, C)        starpu_data_partition(hB, vert)        starpu_data_partition(hA, horiz)        starpu_data_map_filters(hC, vert, horiz)        @starpu_sync_tasks for taskx in (1 : nslicesx)            for tasky in (1 : nslicesy)                @starpu_async_cl cl(hA[tasky], hB[taskx], hC[taskx, tasky])            end        end    end    return nothingendfunction multiply_with_starpu_cpu(A :: Matrix{Float32}, B :: Matrix{Float32}, C :: Matrix{Float32}, nslicesx, nslicesy)    vert = StarpuDataFilter(STARPU_MATRIX_FILTER_VERTICAL_BLOCK, nslicesx)    horiz = StarpuDataFilter(STARPU_MATRIX_FILTER_BLOCK, nslicesy)    @starpu_block let        hA,hB,hC = starpu_data_register(A, B, C)        starpu_data_partition(hB, vert)        starpu_data_partition(hA, horiz)        starpu_data_map_filters(hC, vert, horiz)        @starpu_sync_tasks for taskx in (1 : nslicesx)            for tasky in (1 : nslicesy)                @starpu_async_cl clcpu(hA[tasky], hB[taskx], hC[taskx, tasky])            end        end    end    return nothingendfunction multiply_with_starpu_gpu(A :: Matrix{Float32}, B :: Matrix{Float32}, C :: Matrix{Float32}, nslicesx, nslicesy)    vert = StarpuDataFilter(STARPU_MATRIX_FILTER_VERTICAL_BLOCK, nslicesx)    horiz = StarpuDataFilter(STARPU_MATRIX_FILTER_BLOCK, nslicesy)    @starpu_block let        hA,hB,hC = starpu_data_register(A, B, C)        starpu_data_partition(hB, vert)        starpu_data_partition(hA, horiz)        starpu_data_map_filters(hC, vert, horiz)        @starpu_sync_tasks for taskx in (1 : nslicesx)            for tasky in (1 : nslicesy)                @starpu_async_cl clgpu(hA[tasky], hB[taskx], hC[taskx, tasky])            end        end    end    return nothingendfunction approximately_equals(    A :: Matrix{Cfloat},    B :: Matrix{Cfloat},    eps = 1e-2)    (height, width) = size(A)    for j in (1 : width)        for i in (1 : height)            if (abs(A[i,j] - B[i,j]) > eps * max(abs(B[i,j]), abs(A[i,j])))                println("A[$i,$j] : $(A[i,j]), B[$i,$j] : $(B[i,j])")                return false            end        end    end    return trueendfunction median_times(nb_tests, xdim, zdim, ydim, nslicesx, nslicesy)    exec_times_st ::Vector{Float64} = [0 for i = 1:nb_tests]    exec_times_cpu ::Vector{Float64} = [0 for i = 1:nb_tests]    exec_times_gpu ::Vector{Float64} = [0 for i = 1:nb_tests]    exec_times_jl ::Vector{Float64} = [0 for i = 1:nb_tests]    A = Array(rand(Cfloat, ydim, zdim))    B = Array(rand(Cfloat, zdim, xdim))    C = zeros(Float32, ydim, xdim)    D  = A * B    for i in (1 : nb_tests)                # tic()        # multiply_with_starpu(A, B, C, nslicesx, nslicesy)        # t = toq()        # if (!approximately_equals(D, C))        #     error("Invalid st result")        # end        # exec_times_st[i] = t        # tic()        # multiply_with_starpu_cpu(A, B, C, nslicesx, nslicesy)        # tcpu = toq()        # if (!approximately_equals(D, C))        #     error("Invalid cpu result")        # end        # exec_times_cpu[i] = tcpu        # tic()        # multiply_with_starpu_gpu(A, B, C, nslicesx, nslicesy)        # tgpu = toq()        # if (!approximately_equals(D, C))        #     error("Invalid gpu result")        # end        # exec_times_gpu[i] = tgpu        al ::Float32 = 1.0        be ::Float32 = 0.0         tic()        # multjl(A, B, C)        BLAS.gemm!('N','N', al, A, B, be, C)        # C = BLAS.gemm!('N', 'N', 1.0, A, B)        tjl = toq()        if (!approximately_equals(D, C))            error("Invalid jl result")        end        exec_times_jl[i] = tjl    end      # sort!(exec_times_st)    # sort!(exec_times_cpu)    # sort!(exec_times_gpu)    sort!(exec_times_jl)      results ::Vector{Float64} = [exec_times_jl[1 + div(nb_tests-1, 2)]]#, exec_times_cpu[1 + div(nb_tests-1, 2)], exec_times_gpu[1 + div(nb_tests-1, 2)], exec_times_jl[1 + div(nb_tests-1, 2)]]    return resultsendfunction display_times(start_dim, step_dim, stop_dim, nb_tests, nslicesx, nslicesy)    # mtc = map( (x->parse(Float64,x)), open("DAT/mult_c.dat") do f    #              readlines(f)    #              end)    # mtext = map( (x->parse(Float64,x)), open("DAT/mult_ext.dat") do f    #              readlines(f)    #              end)    # mtjl = map( (x->parse(Float64,x)), open("DAT/mult_jl.dat") do f    #             readlines(f)    #             end)        # open("../DAT/mult_ext.dat", "w") do f        # open("../DAT/mult_jl.dat", "w") do f    open("../DAT/mult_jl_times.dat", "w") do ft        # open("DAT/mult.dat", "w") do f            # i = 1        for dim in (start_dim : step_dim : stop_dim)            println("Dimension: $dim")            # println("C: $(mtc[i])")            res ::Vector{Float64} = median_times(nb_tests, dim, dim, dim, nslicesx, nslicesy)            println("jl: $(res[1])")            # println("jlcpu: $(res[2])")            # println("jlgpu: $(res[3])")            # println("jl: $(res[4])")            # write(f, "$(dim) $(res[4]/res[1]) $(res[4]/res[2]) $(res[4]/res[3]) $(res[4]/mtc[i])\n")            # write(f, "$dim $(mtjl[i]/res[1]) $(mtjl[i]/mtext[i]) $(mtjl[i]/mtc[i])\n")            # write(ft, "$(res[1]) $(mtc[i]) $(mtext[i]) $(mtjl[i])\n")            write(ft, "$(res[1])\n")            # i = i + 1            # end        end    endend
 |