| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208 | 
							- # StarPU --- Runtime system for heterogeneous multicore architectures.
 
- #
 
- # Copyright (C) 2020       Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
 
- #
 
- # StarPU is free software; you can redistribute it and/or modify
 
- # it under the terms of the GNU Lesser General Public License as published by
 
- # the Free Software Foundation; either version 2.1 of the License, or (at
 
- # your option) any later version.
 
- #
 
- # StarPU is distributed in the hope that it will be useful, but
 
- # WITHOUT ANY WARRANTY; without even the implied warranty of
 
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 
- #
 
- # See the GNU Lesser General Public License in COPYING.LGPL for more details.
 
- #
 
- import Libdl
 
- using StarPU
 
- @target STARPU_CPU+STARPU_CUDA
 
- @codelet function black_scholes(data ::Matrix{Float64}, res ::Matrix{Float64}) :: Float32
 
-     
 
-     widthn ::Int64 = width(data)
 
-         
 
-     # data[1,...] -> S
 
-     # data[2,...] -> K
 
-     # data[3,...] -> r
 
-     # data[4,...] -> T
 
-     # data[4,...] -> sig
 
-     p ::Float64 = 0.2316419
 
-     b1 ::Float64 = 0.31938153
 
-     b2 ::Float64 = -0.356563782
 
-     b3 ::Float64 = 1.781477937
 
-     b4 ::Float64 = -1.821255978
 
-     b5 ::Float64 = 1.330274428
 
-     
 
-     @parallel for i = 1:widthn
 
-         
 
-         d1 ::Float64 = (log(data[1,i] / data[2,i]) + (data[3,i] + pow(data[5,i], 2.0) * 0.5) * data[4,i]) / (data[5,i] * sqrt(data[4,i]))
 
-         d2 ::Float64 = (log(data[1,i] / data[2,i]) + (data[3,i] - pow(data[5,i], 2.0) * 0.5) * data[4,i]) / (data[5,i] * sqrt(data[4,i]))
 
-         
 
-         f ::Float64 = 0
 
-         ff ::Float64 = 0
 
-         s1 ::Float64 = 0
 
-         s2 ::Float64 = 0
 
-         s3 ::Float64 = 0
 
-         s4 ::Float64 = 0
 
-         s5 ::Float64 = 0
 
-         sz ::Float64 = 0
 
-         
 
-         
 
-         ######## Compute normcdf of d1
 
-         normd1p ::Float64 = 0
 
-         normd1n ::Float64 = 0
 
-         boold1 ::Int64 = (d1 >= 0) + (d1 <= 0)
 
-         
 
-         if (boold1 >= 2)
 
-             normd1p = 0.5
 
-             normd1n = 0.5
 
-         else
 
-             tmp1 ::Float64 = abs(d1)
 
-             f = 1 / sqrt(2 * M_PI)
 
-             ff = exp(-pow(tmp1, 2.0) / 2) * f
 
-             s1 = b1 / (1 + p * tmp1)
 
-             s2 = b2 / pow((1 + p * tmp1), 2.0)
 
-             s3 = b3 / pow((1 + p * tmp1), 3.0)
 
-             s4 = b4 / pow((1 + p * tmp1), 4.0)
 
-             s5 = b5 / pow((1 + p * tmp1), 5.0)
 
-             sz = ff * (s1 + s2 + s3 + s4 + s5)
 
-         
 
-             if (d1 > 0)
 
-                 normd1p = 1 - sz # normcdf(d1)
 
-                 normd1n = sz # normcdf(-d1)
 
-             else
 
-                 normd1p = sz
 
-                 normd1n = 1 - sz
 
-             end    
 
-         end
 
-         ########
 
-         
 
-         ######## Compute normcdf of d2
 
-         normd2p ::Float64 = 0
 
-         normd2n ::Float64 = 0
 
-         boold2 ::Int64 = (d2 >= 0) + (d2 <= 0)
 
-         
 
-         if (boold2 >= 2)
 
-             normd2p = 0.5
 
-             normd2n = 0.5
 
-         else
 
-             tmp2 ::Float64 = abs(d2)
 
-             f = 1 / sqrt(2 * M_PI)
 
-             ff = exp(-pow(tmp2, 2.0) / 2) * f
 
-             s1 = b1 / (1 + p * tmp2)
 
-             s2 = b2 / pow((1 + p * tmp2), 2.0)
 
-             s3 = b3 / pow((1 + p * tmp2), 3.0)
 
-             s4 = b4 / pow((1 + p * tmp2), 4.0)
 
-             s5 = b5 / pow((1 + p * tmp2), 5.0)
 
-             sz = ff * (s1 + s2 + s3 + s4 + s5)
 
-         
 
-         
 
-             if (d2 > 0)
 
-                 normd2p = 1 - sz # normcdf(d2)
 
-                 normd2n = sz # normcdf(-d2)
 
-             else
 
-                 normd2p = sz
 
-                 normd2n = 1 - sz
 
-             end
 
-         end
 
-         # normd1p = (1 + erf(d1/sqrt(2.0)))/2.0
 
-         # normd1n = (1 + erf(-d1/sqrt(2.0)))/2.0
 
-         
 
-         # normd2p = (1 + erf(d2/sqrt(2.0)))/2.0
 
-         # normd2n = (1 + erf(-d2/sqrt(2.0)))/2.0
 
-         
 
-         res[1,i] = data[1,i] * (normd1p) - data[2,i]*exp(-data[3,i]*data[4,i]) * (normd2p) # S * N(d1) - r*exp(-r*T) * norm(d2)
 
-         res[2,i] = -data[1,i] * (normd1n) + data[2,i]*exp(-data[3,i]*data[4,i]) * (normd2n) # -S * N(-d1) + r*exp(-r*T) * norm(-d2)
 
-         
 
-     end
 
-     return 0
 
- end
 
- starpu_init()
 
- function black_scholes_starpu(data ::Matrix{Float64}, res ::Matrix{Float64}, nslices ::Int64)
 
-     vert = StarpuDataFilter(STARPU_MATRIX_FILTER_VERTICAL_BLOCK, nslices)
 
-     @starpu_block let
 
-         dat_handle, res_handle = starpu_data_register(data, res)
 
-         starpu_data_partition(dat_handle, vert)
 
-         starpu_data_partition(res_handle, vert)
 
-         
 
-         #Compute the price of call and put option in the res matrix
 
-         @starpu_sync_tasks for task in (1:nslices)
 
-             @starpu_async_cl black_scholes(dat_handle[task], res_handle[task]) [STARPU_RW, STARPU_RW] 
 
-         end
 
-     end
 
-     return 0
 
- end
 
- function init_data(data, data_nbr);
 
-     for i in 1:data_nbr
 
-         data[1,i] = rand(Float64) * 100
 
-         data[2,i] = rand(Float64) * 100
 
-         data[3,i] = rand(Float64)
 
-         data[4,i] = rand(Float64) * 10
 
-         data[5,i] = rand(Float64) * 10
 
-     end
 
-     return data
 
- end
 
-         
 
- function median_times(data_nbr, nslices, nbr_tests)
 
-     data ::Matrix{Float64} = zeros(5, data_nbr)
 
-     # data[1,1] = 100.0
 
-     # data[2,1] = 100.0
 
-     # data[3,1] = 0.05
 
-     # data[4,1] = 1.0
 
-     # data[5,1] = 0.2
 
-     res ::Matrix{Float64} = zeros(2, data_nbr)
 
-     exec_times ::Vector{Float64} = [0. for i in 1:nbr_tests]
 
-     for i = 1:nbr_tests
 
-         
 
-         init_data(data, data_nbr)
 
-         tic()
 
-         black_scholes_starpu(data, res, nslices);
 
-         t = toq()
 
-         exec_times[i] = t
 
-     end
 
-     sort!(exec_times)
 
-     # println(data)
 
-     # println(res)
 
-     
 
-     return exec_times[1 + div(nbr_tests - 1, 2)]
 
- end
 
- function display_times(start_nbr, step_nbr, stop_nbr, nslices, nbr_tests)
 
-     i = 1
 
-     open("black_scholes_times.dat", "w") do f 
 
-         for data_nbr in (start_nbr : step_nbr : stop_nbr)
 
-             t = median_times(data_nbr, nslices, nbr_tests)
 
-             println("Number of data:\n$data_nbr\nTimes:\njl: $t\nC: $(mtc[i])\nGen: $(mtcgen[i])")
 
-             write(f, "$data_nbr $(t)\n")
 
-             i = i + 1
 
-         end
 
-     end
 
- end
 
 
  |