starpu_trace_state_stats.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335
  1. #!/usr/bin/python2.7
  2. ##
  3. # StarPU --- Runtime system for heterogeneous multicore architectures.
  4. #
  5. # Copyright (C) 2016 INRIA
  6. #
  7. # StarPU is free software; you can redistribute it and/or modify
  8. # it under the terms of the GNU Lesser General Public License as published by
  9. # the Free Software Foundation; either version 2.1 of the License, or (at
  10. # your option) any later version.
  11. #
  12. # StarPU is distributed in the hope that it will be useful, but
  13. # WITHOUT ANY WARRANTY; without even the implied warranty of
  14. # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. #
  16. # See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. ##
  18. ##
  19. # This script parses the generated trace.rec file and reports statistics about
  20. # the number of different events/tasks and their durations. The report is
  21. # similar to the starpu_paje_state_stats.in script, except that this one
  22. # doesn't need R and pj_dump (from the pajeng repository), and it is also much
  23. # faster.
  24. ##
  25. import getopt
  26. import os
  27. import sys
  28. class Event():
  29. def __init__(self, type, name, category, start_time):
  30. self._type = type
  31. self._name = name
  32. self._category = category
  33. self._start_time = start_time
  34. class EventStats():
  35. def __init__(self, name, duration_time, category, count = 1):
  36. self._name = name
  37. self._duration_time = duration_time
  38. self._category = category
  39. self._count = count
  40. def aggregate(self, duration_time):
  41. self._duration_time += duration_time
  42. self._count += 1
  43. def show(self):
  44. if not self._name == None:
  45. print "\"" + self._name + "\"," + str(self._count) + ",\"" + self._category + "\"," + str(round(self._duration_time, 6))
  46. class Worker():
  47. def __init__(self, id):
  48. self._id = id
  49. self._events = []
  50. self._stats = []
  51. self._stack = []
  52. def get_event_stats(self, name):
  53. for stat in self._stats:
  54. if stat._name == name:
  55. return stat
  56. return None
  57. def add_event(self, type, name, category, start_time):
  58. self._events.append(Event(type, name, category, start_time))
  59. def calc_stats(self, start_profiling_time):
  60. num_events = len(self._events) - 1
  61. for i in xrange(0, num_events):
  62. curr_event = self._events[i]
  63. next_event = self._events[i+1]
  64. if curr_event._start_time <= start_profiling_time:
  65. # Ignore events before the start_profiling program event.
  66. continue
  67. if next_event._type == "PushState":
  68. self._stack.append(next_event)
  69. for j in xrange(i+1, num_events):
  70. next_event = self._events[j]
  71. if next_event._type == "SetState":
  72. break
  73. elif next_event._type == "PopState":
  74. curr_event = self._stack.pop()
  75. # Compute duration with the next event.
  76. a = curr_event._start_time
  77. b = next_event._start_time
  78. found = False
  79. for j in xrange(len(self._stats)):
  80. if self._stats[j]._name == curr_event._name:
  81. self._stats[j].aggregate(b - a)
  82. found = True
  83. break
  84. if not found == True:
  85. self._stats.append(EventStats(curr_event._name, b - a, curr_event._category))
  86. def read_blocks(input_file):
  87. empty_lines = 0
  88. first_line = 1
  89. blocks = []
  90. for line in open(input_file):
  91. if first_line:
  92. blocks.append([])
  93. blocks[-1].append(line)
  94. first_line = 0
  95. # Check for empty lines
  96. if not line or line[0] == '\n':
  97. # If 1st one: new block
  98. if empty_lines == 0:
  99. blocks.append([])
  100. empty_lines += 1
  101. else:
  102. # Non empty line: add line in current(last) block
  103. empty_lines = 0
  104. blocks[-1].append(line)
  105. return blocks
  106. def read_field(field, index):
  107. return field[index+1:-1]
  108. def insert_worker_event(workers, prog_events, block):
  109. worker_id = -1
  110. name = None
  111. start_time = 0.0
  112. category = None
  113. for line in block:
  114. if line[:2] == "E:": # EventType
  115. event_type = read_field(line, 2)
  116. elif line[:2] == "C:": # Category
  117. category = read_field(line, 2)
  118. elif line[:2] == "W:": # WorkerId
  119. worker_id = int(read_field(line, 2))
  120. elif line[:2] == "N:": # Name
  121. name = read_field(line, 2)
  122. elif line[:2] == "S:": # StartTime
  123. start_time = float(read_field(line, 2))
  124. # Program events don't belong to workers, they are globals.
  125. if category == "Program":
  126. prog_events.append(Event(event_type, name, category, start_time))
  127. return
  128. for worker in workers:
  129. if worker._id == worker_id:
  130. worker.add_event(event_type, name, category, start_time)
  131. return
  132. worker = Worker(worker_id)
  133. worker.add_event(event_type, name, category, start_time)
  134. workers.append(worker)
  135. def calc_times(stats):
  136. tr = 0.0 # Runtime
  137. tt = 0.0 # Task
  138. ti = 0.0 # Idle
  139. for stat in stats:
  140. if stat._category == None:
  141. continue
  142. if stat._category == "Runtime":
  143. tr += stat._duration_time
  144. elif stat._category == "Task":
  145. tt += stat._duration_time
  146. elif stat._category == "Other":
  147. ti += stat._duration_time
  148. else:
  149. sys.exit("Unknown category '" + stat._category + "'!")
  150. return (ti, tr, tt)
  151. def save_times(ti, tr, tt):
  152. f = open("times.csv", "w+")
  153. f.write("\"Time\",\"Duration\"\n")
  154. f.write("\"Runtime\"," + str(tr) + "\n")
  155. f.write("\"Task\"," + str(tt) + "\n")
  156. f.write("\"Idle\"," + str(ti) + "\n")
  157. f.close()
  158. def calc_et(tt_1, tt_p):
  159. """ Compute the task efficiency (et). This measures the exploitation of
  160. data locality. """
  161. return tt_1 / tt_p
  162. def calc_er(tt_p, tr_p):
  163. """ Compute the runtime efficiency (er). This measures how the runtime
  164. overhead affects performance."""
  165. return tt_p / (tt_p + tr_p)
  166. def calc_ep(tt_p, tr_p, ti_p):
  167. """ Compute the pipeline efficiency (et). This measures how much
  168. concurrency is available and how well it's exploited. """
  169. return (tt_p + tr_p) / (tt_p + tr_p + ti_p)
  170. def calc_e(et, er, ep):
  171. """ Compute the parallel efficiency. """
  172. return et * er * ep
  173. def save_efficiencies(e, ep, er, et):
  174. f = open("efficiencies.csv", "w+")
  175. f.write("\"Efficiency\",\"Value\"\n")
  176. f.write("\"Parallel\"," + str(e) + "\n")
  177. f.write("\"Task\"," + str(et) + "\n")
  178. f.write("\"Runtime\"," + str(er) + "\n")
  179. f.write("\"Pipeline\"," + str(ep) + "\n")
  180. f.close()
  181. def usage():
  182. print "USAGE:"
  183. print "starpu_trace_state_stats.py [ -te -s=<time> ] <trace.rec>"
  184. print
  185. print "OPTIONS:"
  186. print " -t or --time Compute and dump times to times.csv"
  187. print
  188. print " -e or --efficiency Compute and dump efficiencies to efficiencies.csv"
  189. print
  190. print " -s or --seq_task_time Used to compute task efficiency between sequential and parallel times"
  191. print " (if not set, task efficiency will be 1.0)"
  192. print
  193. print "EXAMPLES:"
  194. print "# Compute event statistics and report them to stdout:"
  195. print "python starpu_trace_state_stats.py trace.rec"
  196. print
  197. print "# Compute event stats, times and efficiencies:"
  198. print "python starpu_trace_state_stats.py -te trace.rec"
  199. print
  200. print "# Compute correct task efficiency with the sequential task time:"
  201. print "python starpu_trace_state_stats.py -s=60093.950614 trace.rec"
  202. def main():
  203. try:
  204. opts, args = getopt.getopt(sys.argv[1:], "hets:",
  205. ["help", "time", "efficiency", "seq_task_time="])
  206. except getopt.GetoptError as err:
  207. usage()
  208. sys.exit(1)
  209. dump_time = False
  210. dump_efficiency = False
  211. tt_1 = 0.0
  212. for o, a in opts:
  213. if o in ("-h", "--help"):
  214. usage()
  215. sys.exit()
  216. elif o in ("-t", "--time"):
  217. dump_time = True
  218. elif o in ("-e", "--efficiency"):
  219. dump_efficiency = True
  220. elif o in ("-s", "--seq_task_time"):
  221. tt_1 = float(a)
  222. if len(args) < 1:
  223. usage()
  224. sys.exit()
  225. recfile = args[0]
  226. if not os.path.isfile(recfile):
  227. sys.exit("File does not exist!")
  228. # Declare a list for all workers.
  229. workers = []
  230. # Declare a list for program events
  231. prog_events = []
  232. # Read the recutils file format per blocks.
  233. blocks = read_blocks(recfile)
  234. for block in blocks:
  235. if not len(block) == 0:
  236. first_line = block[0]
  237. if first_line[:2] == "E:":
  238. insert_worker_event(workers, prog_events, block)
  239. # Find the start_profiling time event.
  240. start_profiling_time = 0.0
  241. for prog_event in prog_events:
  242. if prog_event._name == "start_profiling":
  243. start_profiling_time = prog_event._start_time
  244. break
  245. # Compute worker statistics.
  246. stats = []
  247. for worker in workers:
  248. worker.calc_stats(start_profiling_time)
  249. for stat in worker._stats:
  250. found = False
  251. for s in stats:
  252. if stat._name == s._name:
  253. found = True
  254. break
  255. if not found == True:
  256. stats.append(EventStats(stat._name, 0.0, stat._category, 0))
  257. # Compute global statistics for all workers.
  258. for i in xrange(0, len(workers)):
  259. for stat in stats:
  260. s = workers[i].get_event_stats(stat._name)
  261. if not s == None:
  262. # A task might not be executed on all workers.
  263. stat._duration_time += s._duration_time
  264. stat._count += s._count
  265. # Output statistics.
  266. print "\"Name\",\"Count\",\"Type\",\"Duration\""
  267. for stat in stats:
  268. stat.show()
  269. # Compute runtime, task, idle times and dump them to times.csv
  270. ti_p = tr_p = tt_p = 0.0
  271. if dump_time == True:
  272. ti_p, tr_p, tt_p = calc_times(stats)
  273. save_times(ti_p, tr_p, tt_p)
  274. # Compute runtime, task, idle efficiencies and dump them to
  275. # efficiencies.csv.
  276. if dump_efficiency == True or not tt_1 == 0.0:
  277. if dump_time == False:
  278. ti_p, tr_p, tt_p = calc_times(stats)
  279. if tt_1 == 0.0:
  280. sys.stderr.write("WARNING: Task efficiency will be 1.0 because -s is not set!\n")
  281. tt_1 = tt_p
  282. # Compute efficiencies.
  283. ep = round(calc_ep(tt_p, tr_p, ti_p), 6)
  284. er = round(calc_er(tt_p, tr_p), 6)
  285. et = round(calc_et(tt_1, tt_p), 6)
  286. e = round(calc_e(et, er, ep), 6)
  287. save_efficiencies(e, ep, er, et)
  288. if __name__ == "__main__":
  289. main()