basic-api.texi 78 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Initialization and Termination:: Initialization and Termination methods
  9. * Workers' Properties:: Methods to enumerate workers' properties
  10. * Data Library:: Methods to manipulate data
  11. * Data Interfaces::
  12. * Data Partition::
  13. * Codelets and Tasks:: Methods to construct tasks
  14. * Explicit Dependencies:: Explicit Dependencies
  15. * Implicit Data Dependencies:: Implicit Data Dependencies
  16. * Performance Model API::
  17. * Profiling API:: Profiling API
  18. * CUDA extensions:: CUDA extensions
  19. * OpenCL extensions:: OpenCL extensions
  20. * Cell extensions:: Cell extensions
  21. * Miscellaneous helpers::
  22. @end menu
  23. @node Initialization and Termination
  24. @section Initialization and Termination
  25. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  26. This is StarPU initialization method, which must be called prior to any other
  27. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  28. policy, number of cores, ...) by passing a non-null argument. Default
  29. configuration is used if the passed argument is @code{NULL}.
  30. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  31. indicates that no worker was available (so that StarPU was not initialized).
  32. @end deftypefun
  33. @deftp {Data type} {struct starpu_conf}
  34. This structure is passed to the @code{starpu_init} function in order
  35. to configure StarPU.
  36. When the default value is used, StarPU automatically selects the number
  37. of processing units and takes the default scheduling policy. This parameter
  38. overwrites the equivalent environment variables.
  39. @table @asis
  40. @item @code{sched_policy_name} (default = NULL)
  41. This is the name of the scheduling policy. This can also be specified
  42. with the @code{STARPU_SCHED} environment variable.
  43. @item @code{sched_policy} (default = NULL)
  44. This is the definition of the scheduling policy. This field is ignored
  45. if @code{sched_policy_name} is set.
  46. @item @code{ncpus} (default = -1)
  47. This is the number of CPU cores that StarPU can use. This can also be
  48. specified with the @code{STARPU_NCPUS} environment variable.
  49. @item @code{ncuda} (default = -1)
  50. This is the number of CUDA devices that StarPU can use. This can also
  51. be specified with the @code{STARPU_NCUDA} environment variable.
  52. @item @code{nopencl} (default = -1)
  53. This is the number of OpenCL devices that StarPU can use. This can
  54. also be specified with the @code{STARPU_NOPENCL} environment variable.
  55. @item @code{nspus} (default = -1)
  56. This is the number of Cell SPUs that StarPU can use. This can also be
  57. specified with the @code{STARPU_NGORDON} environment variable.
  58. @item @code{use_explicit_workers_bindid} (default = 0)
  59. If this flag is set, the @code{workers_bindid} array indicates where
  60. the different workers are bound, otherwise StarPU automatically
  61. selects where to bind the different workers unless the
  62. @code{STARPU_WORKERS_CPUID} environment variable is set. The
  63. @code{STARPU_WORKERS_CPUID} environment variable is ignored if the
  64. @code{use_explicit_workers_bindid} flag is set.
  65. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  66. If the @code{use_explicit_workers_bindid} flag is set, this array
  67. indicates where to bind the different workers. The i-th entry of the
  68. @code{workers_bindid} indicates the logical identifier of the
  69. processor which should execute the i-th worker. Note that the logical
  70. ordering of the CPUs is either determined by the OS, or provided by
  71. the @code{hwloc} library in case it is available. When this flag is
  72. set, the @ref{STARPU_WORKERS_CPUID} environment variable is ignored.
  73. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  74. If this flag is set, the CUDA workers will be attached to the CUDA
  75. devices specified in the @code{workers_cuda_gpuid} array. Otherwise,
  76. StarPU affects the CUDA devices in a round-robin fashion. When this
  77. flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  78. ignored.
  79. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  80. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  81. contains the logical identifiers of the CUDA devices (as used by
  82. @code{cudaGetDevice}).
  83. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  84. If this flag is set, the OpenCL workers will be attached to the OpenCL
  85. devices specified in the @code{workers_opencl_gpuid} array. Otherwise,
  86. StarPU affects the OpenCL devices in a round-robin fashion.
  87. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  88. todo
  89. @item @code{calibrate} (default = 0)
  90. If this flag is set, StarPU will calibrate the performance models when
  91. executing tasks. If this value is equal to -1, the default value is
  92. used. The default value is overwritten by the @code{STARPU_CALIBRATE}
  93. environment variable when it is set.
  94. @item @code{single_combined_worker} (default = 0)
  95. By default, StarPU creates various combined workers according to the machine
  96. structure. Some parallel libraries (e.g. most OpenMP implementations) however do
  97. not support concurrent calls to parallel code. In such case, setting this flag
  98. makes StarPU only create one combined worker, containing all
  99. the CPU workers. The default value is overwritten by the
  100. @code{STARPU_SINGLE_COMBINED_WORKER} environment variable when it is set.
  101. @end table
  102. @end deftp
  103. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  104. This function initializes the @var{conf} structure passed as argument
  105. with the default values. In case some configuration parameters are already
  106. specified through environment variables, @code{starpu_conf_init} initializes
  107. the fields of the structure according to the environment variables. For
  108. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  109. @code{.ncuda} field of the structure passed as argument.
  110. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  111. indicates that the argument was NULL.
  112. @end deftypefun
  113. @deftypefun void starpu_shutdown (void)
  114. This is StarPU termination method. It must be called at the end of the
  115. application: statistics and other post-mortem debugging information are not
  116. guaranteed to be available until this method has been called.
  117. @end deftypefun
  118. @node Workers' Properties
  119. @section Workers' Properties
  120. @deftp {DataType} {enum starpu_archtype}
  121. The different values are:
  122. @table @asis
  123. @item @code{STARPU_CPU_WORKER}
  124. @item @code{STARPU_CUDA_WORKER}
  125. @item @code{STARPU_OPENCL_WORKER}
  126. @item @code{STARPU_GORDON_WORKER}
  127. @end table
  128. @end deftp
  129. @deftypefun unsigned starpu_worker_get_count (void)
  130. This function returns the number of workers (i.e. processing units executing
  131. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  132. @end deftypefun
  133. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  134. Returns the number of workers of the given type indicated by the argument. A positive
  135. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  136. the type is not valid otherwise.
  137. @end deftypefun
  138. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  139. This function returns the number of CPUs controlled by StarPU. The returned
  140. value should be at most @code{STARPU_MAXCPUS}.
  141. @end deftypefun
  142. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  143. This function returns the number of CUDA devices controlled by StarPU. The returned
  144. value should be at most @code{STARPU_MAXCUDADEVS}.
  145. @end deftypefun
  146. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  147. This function returns the number of OpenCL devices controlled by StarPU. The returned
  148. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  149. @end deftypefun
  150. @deftypefun unsigned starpu_spu_worker_get_count (void)
  151. This function returns the number of Cell SPUs controlled by StarPU.
  152. @end deftypefun
  153. @deftypefun int starpu_worker_get_id (void)
  154. This function returns the identifier of the current worker, i.e the one associated to the calling
  155. thread. The returned value is either -1 if the current context is not a StarPU
  156. worker (i.e. when called from the application outside a task or a callback), or
  157. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  158. @end deftypefun
  159. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  160. This function gets the list of identifiers of workers with the given
  161. type. It fills the workerids array with the identifiers of the workers that have the type
  162. indicated in the first argument. The maxsize argument indicates the size of the
  163. workids array. The returned value gives the number of identifiers that were put
  164. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  165. workers with the appropriate type: in that case, the array is filled with the
  166. maxsize first elements. To avoid such overflows, the value of maxsize can be
  167. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  168. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  169. @end deftypefun
  170. @deftypefun int starpu_worker_get_devid (int @var{id})
  171. This functions returns the device id of the given worker. The worker
  172. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  173. CUDA worker, this device identifier is the logical device identifier exposed by
  174. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  175. identifier of a CPU worker is the logical identifier of the core on which the
  176. worker was bound; this identifier is either provided by the OS or by the
  177. @code{hwloc} library in case it is available.
  178. @end deftypefun
  179. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  180. This function returns the type of processing unit associated to a
  181. worker. The worker identifier is a value returned by the
  182. @code{starpu_worker_get_id} function). The returned value
  183. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  184. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  185. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  186. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  187. identifier is unspecified.
  188. @end deftypefun
  189. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  190. This function allows to get the name of a given worker.
  191. StarPU associates a unique human readable string to each processing unit. This
  192. function copies at most the @var{maxlen} first bytes of the unique string
  193. associated to a worker identified by its identifier @var{id} into the
  194. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  195. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  196. function on an invalid identifier results in an unspecified behaviour.
  197. @end deftypefun
  198. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  199. This function returns the identifier of the memory node associated to the
  200. worker identified by @var{workerid}.
  201. @end deftypefun
  202. @node Data Library
  203. @section Data Library
  204. @menu
  205. * Introduction to Data Library::
  206. * Basic Data Library API::
  207. * Access registered data from the application::
  208. @end menu
  209. This section describes the data management facilities provided by StarPU.
  210. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  211. design their own data interfaces if required.
  212. @node Introduction to Data Library
  213. @subsection Introduction
  214. Data management is done at a high-level in StarPU: rather than accessing a mere
  215. list of contiguous buffers, the tasks may manipulate data that are described by
  216. a high-level construct which we call data interface.
  217. An example of data interface is the "vector" interface which describes a
  218. contiguous data array on a spefic memory node. This interface is a simple
  219. structure containing the number of elements in the array, the size of the
  220. elements, and the address of the array in the appropriate address space (this
  221. address may be invalid if there is no valid copy of the array in the memory
  222. node). More informations on the data interfaces provided by StarPU are
  223. given in @ref{Data Interfaces}.
  224. When a piece of data managed by StarPU is used by a task, the task
  225. implementation is given a pointer to an interface describing a valid copy of
  226. the data that is accessible from the current processing unit.
  227. Every worker is associated to a memory node which is a logical abstraction of
  228. the address space from which the processing unit gets its data. For instance,
  229. the memory node associated to the different CPU workers represents main memory
  230. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  231. Every memory node is identified by a logical index which is accessible from the
  232. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  233. to StarPU, the specified memory node indicates where the piece of data
  234. initially resides (we also call this memory node the home node of a piece of
  235. data).
  236. @node Basic Data Library API
  237. @subsection Basic Data Library API
  238. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  239. This function allocates data of the given size in main memory. It will also try to pin it in
  240. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  241. thus permit data transfer and computation overlapping. The allocated buffer must
  242. be freed thanks to the @code{starpu_free} function.
  243. @end deftypefun
  244. @deftypefun int starpu_free (void *@var{A})
  245. This function frees memory which has previously allocated with
  246. @code{starpu_malloc}.
  247. @end deftypefun
  248. @deftp {Data Type} {enum starpu_access_mode}
  249. This datatype describes a data access mode. The different available modes are:
  250. @table @asis
  251. @item @code{STARPU_R}: read-only mode.
  252. @item @code{STARPU_W}: write-only mode.
  253. @item @code{STARPU_RW}: read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  254. @item @code{STARPU_SCRATCH}: scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  255. @item @code{STARPU_REDUX} reduction mode.
  256. @end table
  257. @end deftp
  258. @deftp {Data Type} {starpu_data_handle_t}
  259. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  260. data. Once a piece of data has been registered to StarPU, it is associated to a
  261. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  262. over the entire machine, so that we can maintain data consistency and locate
  263. data replicates for instance.
  264. @end deftp
  265. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, void *@var{interface}, {struct starpu_data_interface_ops} *@var{ops})
  266. Register a piece of data into the handle located at the @var{handleptr}
  267. address. The @var{interface} buffer contains the initial description of the
  268. data in the home node. The @var{ops} argument is a pointer to a structure
  269. describing the different methods used to manipulate this type of interface. See
  270. @ref{struct starpu_data_interface_ops} for more details on this structure.
  271. If @code{home_node} is -1, StarPU will automatically
  272. allocate the memory when it is used for the
  273. first time in write-only mode. Once such data handle has been automatically
  274. allocated, it is possible to access it using any access mode.
  275. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  276. matrix) which can be registered by the means of helper functions (e.g.
  277. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  278. @end deftypefun
  279. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  280. This function unregisters a data handle from StarPU. If the data was
  281. automatically allocated by StarPU because the home node was -1, all
  282. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  283. is put back into the home node in the buffer that was initially registered.
  284. Using a data handle that has been unregistered from StarPU results in an
  285. undefined behaviour.
  286. @end deftypefun
  287. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  288. This is the same as starpu_data_unregister, except that StarPU does not put back
  289. a valid copy into the home node, in the buffer that was initially registered.
  290. @end deftypefun
  291. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  292. Destroy all replicates of the data handle. After data invalidation, the first
  293. access to the handle must be performed in write-only mode. Accessing an
  294. invalidated data in read-mode results in undefined behaviour.
  295. @end deftypefun
  296. @c TODO create a specific sections about user interaction with the DSM ?
  297. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  298. This function sets the write-through mask of a given data, i.e. a bitmask of
  299. nodes where the data should be always replicated after modification.
  300. @end deftypefun
  301. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  302. Issue a prefetch request for a given data to a given node, i.e.
  303. requests that the data be replicated to the given node, so that it is available
  304. there for tasks. If the @var{async} parameter is 0, the call will block until
  305. the transfer is achieved, else the call will return as soon as the request is
  306. scheduled (which may however have to wait for a task completion).
  307. @end deftypefun
  308. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  309. Return the handle associated to ptr @var{ptr}.
  310. @end deftypefun
  311. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  312. todo
  313. @end deftypefun
  314. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  315. Query the status of the handle on the specified memory node.
  316. @end deftypefun
  317. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  318. This function allows to specify that a piece of data can be discarded
  319. without impacting the application.
  320. @end deftypefun
  321. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  322. todo
  323. @end deftypefun
  324. @node Access registered data from the application
  325. @subsection Access registered data from the application
  326. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  327. The application must call this function prior to accessing registered data from
  328. main memory outside tasks. StarPU ensures that the application will get an
  329. up-to-date copy of the data in main memory located where the data was
  330. originally registered, and that all concurrent accesses (e.g. from tasks) will
  331. be consistent with the access mode specified in the @var{mode} argument.
  332. @code{starpu_data_release} must be called once the application does not need to
  333. access the piece of data anymore. Note that implicit data
  334. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  335. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  336. the data, unless that they have not been disabled explictly by calling
  337. @code{starpu_data_set_default_sequential_consistency_flag} or
  338. @code{starpu_data_set_sequential_consistency_flag}.
  339. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  340. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  341. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  342. @end deftypefun
  343. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  344. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  345. @code{starpu_data_release}. When the data specified in the first argument is
  346. available in the appropriate access mode, the callback function is executed.
  347. The application may access the requested data during the execution of this
  348. callback. The callback function must call @code{starpu_data_release} once the
  349. application does not need to access the piece of data anymore.
  350. Note that implicit data dependencies are also enforced by
  351. @code{starpu_data_acquire_cb} in case they are enabled.
  352. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  353. be called from task callbacks. Upon successful completion, this function
  354. returns 0.
  355. @end deftypefun
  356. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  357. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  358. except that the code to be executed in a callback is directly provided as a
  359. macro parameter, and the data handle is automatically released after it. This
  360. permits to easily execute code which depends on the value of some registered
  361. data. This is non-blocking too and may be called from task callbacks.
  362. @end defmac
  363. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  364. This function releases the piece of data acquired by the application either by
  365. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  366. @end deftypefun
  367. @node Data Interfaces
  368. @section Data Interfaces
  369. @menu
  370. * Registering Data::
  371. * Accessing Data Interfaces::
  372. @end menu
  373. @node Registering Data
  374. @subsection Registering Data
  375. There are several ways to register a memory region so that it can be managed by
  376. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  377. matrices as well as BCSR and CSR sparse matrices.
  378. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  379. Register a void interface. There is no data really associated to that
  380. interface, but it may be used as a synchronization mechanism. It also
  381. permits to express an abstract piece of data that is managed by the
  382. application internally: this makes it possible to forbid the
  383. concurrent execution of different tasks accessing the same "void" data
  384. in read-write concurrently.
  385. @end deftypefun
  386. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  387. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  388. typically a scalar, and initialize @var{handle} to represent this data
  389. item.
  390. @cartouche
  391. @smallexample
  392. float var;
  393. starpu_data_handle_t var_handle;
  394. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  395. @end smallexample
  396. @end cartouche
  397. @end deftypefun
  398. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{count}, size_t @var{size})
  399. Register the @var{count} @var{size}-byte elements pointed to by
  400. @var{ptr} and initialize @var{handle} to represent it.
  401. @cartouche
  402. @smallexample
  403. float vector[NX];
  404. starpu_data_handle_t vector_handle;
  405. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  406. sizeof(vector[0]));
  407. @end smallexample
  408. @end cartouche
  409. @end deftypefun
  410. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{size})
  411. Register the @var{nx}x@var{ny} 2D matrix of @var{size}-byte elements
  412. pointed by @var{ptr} and initialize @var{handle} to represent it.
  413. @var{ld} specifies the number of extra elements present at the end of
  414. each row; a non-zero @var{ld} adds padding, which can be useful for
  415. alignment purposes.
  416. @cartouche
  417. @smallexample
  418. float *matrix;
  419. starpu_data_handle_t matrix_handle;
  420. matrix = (float*)malloc(width * height * sizeof(float));
  421. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  422. width, width, height, sizeof(float));
  423. @end smallexample
  424. @end cartouche
  425. @end deftypefun
  426. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{size})
  427. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{size}-byte
  428. elements pointed by @var{ptr} and initialize @var{handle} to represent
  429. it. Again, @var{ldy} and @var{ldz} specify the number of extra elements
  430. present at the end of each row or column.
  431. @cartouche
  432. @smallexample
  433. float *block;
  434. starpu_data_handle_t block_handle;
  435. block = (float*)malloc(nx*ny*nz*sizeof(float));
  436. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  437. nx, nx*ny, nx, ny, nz, sizeof(float));
  438. @end smallexample
  439. @end cartouche
  440. @end deftypefun
  441. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  442. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  443. Compressed Sparse Row Representation) sparse matrix interface.
  444. TODO
  445. @end deftypefun
  446. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  447. This variant of @code{starpu_data_register} uses the CSR (Compressed
  448. Sparse Row Representation) sparse matrix interface.
  449. TODO
  450. @end deftypefun
  451. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  452. todo
  453. @end deftypefun
  454. @node Accessing Data Interfaces
  455. @subsection Accessing Data Interfaces
  456. Each data interface is provided with a set of field access functions.
  457. The ones using a @code{void *} parameter aimed to be used in codelet
  458. implementations (see for example the code in @ref{Source code of Vector Scaling}).
  459. @deftp {Data Type} {enum starpu_data_interface_id}
  460. The different values are:
  461. @table @asis
  462. @item @code{STARPU_MATRIX_INTERFACE_ID}
  463. @item @code{STARPU_BLOCK_INTERFACE_ID}
  464. @item @code{STARPU_VECTOR_INTERFACE_ID}
  465. @item @code{STARPU_CSR_INTERFACE_ID}
  466. @item @code{STARPU_BCSR_INTERFACE_ID}
  467. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  468. @item @code{STARPU_VOID_INTERFACE_ID}
  469. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  470. @item @code{STARPU_NINTERFACES_ID} : number of data interfaces
  471. @end table
  472. @end deftp
  473. @menu
  474. * Accessing Handle::
  475. * Accessing Variable Data Interfaces::
  476. * Accessing Vector Data Interfaces::
  477. * Accessing Matrix Data Interfaces::
  478. * Accessing Block Data Interfaces::
  479. * Accessing BCSR Data Interfaces::
  480. * Accessing CSR Data Interfaces::
  481. @end menu
  482. @node Accessing Handle
  483. @subsubsection Handle
  484. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  485. Return the pointer associated with @var{handle} on node @var{node} or
  486. @code{NULL} if @var{handle}'s interface does not support this
  487. operation or data for this handle is not allocated on that node.
  488. @end deftypefun
  489. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  490. Return the local pointer associated with @var{handle} or @code{NULL}
  491. if @var{handle}'s interface does not have data allocated locally
  492. @end deftypefun
  493. @deftypefun {enum starpu_data_interface_id} starpu_get_handle_interface_id (starpu_data_handle_t @var{handle})
  494. Return the unique identifier of the interface associated with the given @var{handle}.
  495. @end deftypefun
  496. @node Accessing Variable Data Interfaces
  497. @subsubsection Variable Data Interfaces
  498. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  499. Return the size of the variable designated by @var{handle}.
  500. @end deftypefun
  501. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  502. Return a pointer to the variable designated by @var{handle}.
  503. @end deftypefun
  504. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  505. Return a pointer to the variable designated by @var{interface}.
  506. @end defmac
  507. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  508. Return the size of the variable designated by @var{interface}.
  509. @end defmac
  510. @node Accessing Vector Data Interfaces
  511. @subsubsection Vector Data Interfaces
  512. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  513. Return the number of elements registered into the array designated by @var{handle}.
  514. @end deftypefun
  515. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  516. Return the size of each element of the array designated by @var{handle}.
  517. @end deftypefun
  518. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  519. Return the local pointer associated with @var{handle}.
  520. @end deftypefun
  521. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  522. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  523. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  524. @end defmac
  525. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  526. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  527. documented below has to be used in addition to this.
  528. @end defmac
  529. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  530. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  531. @end defmac
  532. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  533. Return the number of elements registered into the array designated by @var{interface}.
  534. @end defmac
  535. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  536. Return the size of each element of the array designated by @var{interface}.
  537. @end defmac
  538. @node Accessing Matrix Data Interfaces
  539. @subsubsection Matrix Data Interfaces
  540. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  541. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  542. @end deftypefun
  543. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  544. Return the number of elements on the y-axis of the matrix designated by
  545. @var{handle}.
  546. @end deftypefun
  547. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  548. Return the number of extra elements present at the end of each row of the
  549. matrix designated by @var{handle}.
  550. @end deftypefun
  551. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  552. Return the local pointer associated with @var{handle}.
  553. @end deftypefun
  554. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  555. Return the size of the elements registered into the matrix designated by
  556. @var{handle}.
  557. @end deftypefun
  558. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  559. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  560. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  561. used instead.
  562. @end defmac
  563. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  564. Return a device handle for the matrix designated by @var{interface}, to be used
  565. on OpenCL. The offset documented below has to be used in addition to this.
  566. @end defmac
  567. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  568. Return the offset in the matrix designated by @var{interface}, to be used with
  569. the device handle.
  570. @end defmac
  571. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  572. Return the number of elements on the x-axis of the matrix designated by
  573. @var{interface}.
  574. @end defmac
  575. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  576. Return the number of elements on the y-axis of the matrix designated by
  577. @var{interface}.
  578. @end defmac
  579. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  580. Return the number of extra elements present at the end of each row of the
  581. matrix designated by @var{interface}.
  582. @end defmac
  583. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  584. Return the size of the elements registered into the matrix designated by
  585. @var{interface}.
  586. @end defmac
  587. @node Accessing Block Data Interfaces
  588. @subsubsection Block Data Interfaces
  589. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  590. todo
  591. @end deftypefun
  592. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  593. todo
  594. @end deftypefun
  595. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  596. todo
  597. @end deftypefun
  598. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  599. todo
  600. @end deftypefun
  601. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  602. todo
  603. @end deftypefun
  604. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  605. todo
  606. @end deftypefun
  607. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  608. todo
  609. @end deftypefun
  610. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  611. todo
  612. @end defmac
  613. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  614. todo
  615. @end defmac
  616. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  617. todo
  618. @end defmac
  619. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  620. todo
  621. @end defmac
  622. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  623. todo
  624. @end defmac
  625. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  626. todo
  627. @end defmac
  628. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  629. todo
  630. @end defmac
  631. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  632. todo
  633. @end defmac
  634. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  635. todo
  636. @end defmac
  637. @node Accessing BCSR Data Interfaces
  638. @subsubsection BCSR Data Interfaces
  639. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  640. todo
  641. @end deftypefun
  642. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  643. todo
  644. @end deftypefun
  645. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  646. todo
  647. @end deftypefun
  648. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  649. todo
  650. @end deftypefun
  651. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  652. todo
  653. @end deftypefun
  654. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  655. todo
  656. @end deftypefun
  657. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  658. todo
  659. @end deftypefun
  660. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  661. todo
  662. @end deftypefun
  663. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  664. todo
  665. @end deftypefun
  666. @node Accessing CSR Data Interfaces
  667. @subsubsection CSR Data Interfaces
  668. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  669. todo
  670. @end deftypefun
  671. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  672. todo
  673. @end deftypefun
  674. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  675. todo
  676. @end deftypefun
  677. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  678. todo
  679. @end deftypefun
  680. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  681. todo
  682. @end deftypefun
  683. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  684. todo
  685. @end deftypefun
  686. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  687. todo
  688. @end deftypefun
  689. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  690. todo
  691. @end defmac
  692. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  693. todo
  694. @end defmac
  695. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  696. todo
  697. @end defmac
  698. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  699. todo
  700. @end defmac
  701. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  702. todo
  703. @end defmac
  704. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  705. todo
  706. @end defmac
  707. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  708. todo
  709. @end defmac
  710. @node Data Partition
  711. @section Data Partition
  712. @menu
  713. * Basic API::
  714. * Predefined filter functions::
  715. @end menu
  716. @node Basic API
  717. @subsection Basic API
  718. @deftp {Data Type} {struct starpu_data_filter}
  719. The filter structure describes a data partitioning operation, to be given to the
  720. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  721. for an example. The different fields are:
  722. @table @asis
  723. @item @code{filter_func}
  724. This function fills the @code{child_interface} structure with interface
  725. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  726. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  727. @item @code{nchildren}
  728. This is the number of parts to partition the data into.
  729. @item @code{get_nchildren}
  730. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  731. children depends on the actual data (e.g. the number of blocks in a sparse
  732. matrix).
  733. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle);}
  734. @item @code{get_child_ops}
  735. In case the resulting children use a different data interface, this function
  736. returns which interface is used by child number @code{id}.
  737. @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  738. @item @code{filter_arg}
  739. Some filters take an addition parameter, but this is usually unused.
  740. @item @code{filter_arg_ptr}
  741. Some filters take an additional array parameter like the sizes of the parts, but
  742. this is usually unused.
  743. @end table
  744. @end deftp
  745. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  746. @anchor{starpu_data_partition}
  747. This requests partitioning one StarPU data @var{initial_handle} into several
  748. subdata according to the filter @var{f}, as shown in the following example:
  749. @cartouche
  750. @smallexample
  751. struct starpu_data_filter f = @{
  752. .filter_func = starpu_vertical_block_filter_func,
  753. .nchildren = nslicesx,
  754. .get_nchildren = NULL,
  755. .get_child_ops = NULL
  756. @};
  757. starpu_data_partition(A_handle, &f);
  758. @end smallexample
  759. @end cartouche
  760. @end deftypefun
  761. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, uint32_t @var{gathering_node})
  762. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  763. collected back into one big piece in the @var{gathering_node} (usually 0).
  764. @cartouche
  765. @smallexample
  766. starpu_data_unpartition(A_handle, 0);
  767. @end smallexample
  768. @end cartouche
  769. @end deftypefun
  770. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  771. This function returns the number of children.
  772. @end deftypefun
  773. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  774. todo
  775. @end deftypefun
  776. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  777. After partitioning a StarPU data by applying a filter,
  778. @code{starpu_data_get_sub_data} can be used to get handles for each of
  779. the data portions. @var{root_data} is the parent data that was
  780. partitioned. @var{depth} is the number of filters to traverse (in
  781. case several filters have been applied, to e.g. partition in row
  782. blocks, and then in column blocks), and the subsequent
  783. parameters are the indexes. The function returns a handle to the
  784. subdata.
  785. @cartouche
  786. @smallexample
  787. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  788. @end smallexample
  789. @end cartouche
  790. @end deftypefun
  791. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  792. This function is similar to @code{starpu_data_get_sub_data} but uses a
  793. va_list for the parameter list.
  794. @end deftypefun
  795. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  796. todo
  797. @end deftypefun
  798. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  799. todo
  800. @end deftypefun
  801. @node Predefined filter functions
  802. @subsection Predefined filter functions
  803. @menu
  804. * Partitioning BCSR Data::
  805. * Partitioning BLAS interface::
  806. * Partitioning Vector Data::
  807. * Partitioning Block Data::
  808. @end menu
  809. This section gives a partial list of the predefined partitioning functions.
  810. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  811. list can be found in @code{starpu_data_filters.h} .
  812. @node Partitioning BCSR Data
  813. @subsubsection Partitioning BCSR Data
  814. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  815. TODO
  816. @end deftypefun
  817. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  818. TODO
  819. @end deftypefun
  820. @node Partitioning BLAS interface
  821. @subsubsection Partitioning BLAS interface
  822. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  823. This partitions a dense Matrix into horizontal blocks.
  824. @end deftypefun
  825. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  826. This partitions a dense Matrix into vertical blocks.
  827. @end deftypefun
  828. @node Partitioning Vector Data
  829. @subsubsection Partitioning Vector Data
  830. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  831. Return in @code{*@var{child_interface}} the @var{id}th element of the
  832. vector represented by @var{father_interface} once partitioned in
  833. @var{nparts} chunks of equal size.
  834. @end deftypefun
  835. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  836. Return in @code{*@var{child_interface}} the @var{id}th element of the
  837. vector represented by @var{father_interface} once partitioned into
  838. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  839. @code{*@var{f}}.
  840. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  841. @code{uint32_t} elements, each of which specifies the number of elements
  842. in each chunk of the partition.
  843. @end deftypefun
  844. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  845. Return in @code{*@var{child_interface}} the @var{id}th element of the
  846. vector represented by @var{father_interface} once partitioned in two
  847. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  848. @code{0} or @code{1}.
  849. @end deftypefun
  850. @node Partitioning Block Data
  851. @subsubsection Partitioning Block Data
  852. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  853. This partitions a 3D matrix along the X axis.
  854. @end deftypefun
  855. @node Codelets and Tasks
  856. @section Codelets and Tasks
  857. This section describes the interface to manipulate codelets and tasks.
  858. @deftp {Data Type} {struct starpu_codelet}
  859. The codelet structure describes a kernel that is possibly implemented on various
  860. targets. For compatibility, make sure to initialize the whole structure to zero.
  861. @table @asis
  862. @item @code{where} (optional)
  863. Indicates which types of processing units are able to execute the codelet.
  864. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  865. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  866. indicates that it is only available on Cell SPUs. If the field is
  867. unset, its value will be automatically set based on the availability
  868. of the @code{XXX_funcs} fields defined below.
  869. @item @code{cpu_func} (optional)
  870. This field has been made deprecated. One should use instead the
  871. @code{cpu_funcs} field.
  872. @item @code{cpu_funcs} (optional)
  873. Is an array of function pointers to the CPU implementations of the codelet.
  874. It must be terminated by a NULL value.
  875. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  876. argument being the array of data managed by the data management library, and
  877. the second argument is a pointer to the argument passed from the @code{cl_arg}
  878. field of the @code{starpu_task} structure.
  879. If the @code{where} field is set, then the @code{cpu_funcs} field is
  880. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  881. field, it must be non-null otherwise.
  882. @item @code{cuda_func} (optional)
  883. This field has been made deprecated. One should use instead the
  884. @code{cuda_funcs} field.
  885. @item @code{cuda_funcs} (optional)
  886. Is an array of function pointers to the CUDA implementations of the codelet.
  887. It must be terminated by a NULL value.
  888. @emph{The functions must be host-functions written in the CUDA runtime
  889. API}. Their prototype must
  890. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  891. If the @code{where} field is set, then the @code{cuda_funcs}
  892. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  893. field, it must be non-null otherwise.
  894. @item @code{opencl_func} (optional)
  895. This field has been made deprecated. One should use instead the
  896. @code{opencl_funcs} field.
  897. @item @code{opencl_funcs} (optional)
  898. Is an array of function pointers to the OpenCL implementations of the codelet.
  899. It must be terminated by a NULL value.
  900. The functions prototype must be:
  901. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  902. If the @code{where} field is set, then the @code{opencl_funcs} field
  903. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  904. field, it must be non-null otherwise.
  905. @item @code{gordon_func} (optional)
  906. This field has been made deprecated. One should use instead the
  907. @code{gordon_funcs} field.
  908. @item @code{gordon_funcs} (optional)
  909. Is an array of index of the Cell SPU implementations of the codelet within the
  910. Gordon library.
  911. It must be terminated by a NULL value.
  912. See Gordon documentation for more details on how to register a kernel and
  913. retrieve its index.
  914. @item @code{nbuffers}
  915. Specifies the number of arguments taken by the codelet. These arguments are
  916. managed by the DSM and are accessed from the @code{void *buffers[]}
  917. array. The constant argument passed with the @code{cl_arg} field of the
  918. @code{starpu_task} structure is not counted in this number. This value should
  919. not be above @code{STARPU_NMAXBUFS}.
  920. @item @code{modes}
  921. Is an array of @code{enum starpu_access_mode}. It describes the
  922. required access modes to the data neeeded by the codelet (e.g.
  923. @code{STARPU_RW}). The number of entries in this array must be
  924. specified in the @code{nbuffers} field (defined above), and should not
  925. exceed @code{STARPU_NMAXBUFS}.
  926. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  927. option when configuring StarPU.
  928. @item @code{model} (optional)
  929. This is a pointer to the task duration performance model associated to this
  930. codelet. This optional field is ignored when set to @code{NULL}.
  931. TODO
  932. @item @code{power_model} (optional)
  933. This is a pointer to the task power consumption performance model associated
  934. to this codelet. This optional field is ignored when set to @code{NULL}.
  935. In the case of parallel codelets, this has to account for all processing units
  936. involved in the parallel execution.
  937. TODO
  938. @end table
  939. @end deftp
  940. @deftp {Data Type} {struct starpu_task}
  941. The @code{starpu_task} structure describes a task that can be offloaded on the various
  942. processing units managed by StarPU. It instantiates a codelet. It can either be
  943. allocated dynamically with the @code{starpu_task_create} method, or declared
  944. statically. In the latter case, the programmer has to zero the
  945. @code{starpu_task} structure and to fill the different fields properly. The
  946. indicated default values correspond to the configuration of a task allocated
  947. with @code{starpu_task_create}.
  948. @table @asis
  949. @item @code{cl}
  950. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  951. describes where the kernel should be executed, and supplies the appropriate
  952. implementations. When set to @code{NULL}, no code is executed during the tasks,
  953. such empty tasks can be useful for synchronization purposes.
  954. @item @code{buffers}
  955. This field has been made deprecated. One should use instead the
  956. @code{handles} field to specify the handles to the data accessed by
  957. the task. The access modes are now defined in the @code{mode} field of
  958. the @code{struct starpu_codelet} structure.
  959. @item @code{handles}
  960. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  961. to the different pieces of data accessed by the task. The number
  962. of entries in this array must be specified in the @code{nbuffers} field of the
  963. @code{struct starpu_codelet} structure, and should not exceed
  964. @code{STARPU_NMAXBUFS}.
  965. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  966. option when configuring StarPU.
  967. @item @code{cl_arg} (optional; default: @code{NULL})
  968. This pointer is passed to the codelet through the second argument
  969. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  970. In the specific case of the Cell processor, see the @code{cl_arg_size}
  971. argument.
  972. @item @code{cl_arg_size} (optional, Cell-specific)
  973. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  974. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  975. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  976. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  977. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  978. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  979. codelets, where the @code{cl_arg} pointer is given as such.
  980. @item @code{callback_func} (optional) (default: @code{NULL})
  981. This is a function pointer of prototype @code{void (*f)(void *)} which
  982. specifies a possible callback. If this pointer is non-null, the callback
  983. function is executed @emph{on the host} after the execution of the task. The
  984. callback is passed the value contained in the @code{callback_arg} field. No
  985. callback is executed if the field is set to @code{NULL}.
  986. @item @code{callback_arg} (optional) (default: @code{NULL})
  987. This is the pointer passed to the callback function. This field is ignored if
  988. the @code{callback_func} is set to @code{NULL}.
  989. @item @code{use_tag} (optional) (default: @code{0})
  990. If set, this flag indicates that the task should be associated with the tag
  991. contained in the @code{tag_id} field. Tag allow the application to synchronize
  992. with the task and to express task dependencies easily.
  993. @item @code{tag_id}
  994. This fields contains the tag associated to the task if the @code{use_tag} field
  995. was set, it is ignored otherwise.
  996. @item @code{synchronous}
  997. If this flag is set, the @code{starpu_task_submit} function is blocking and
  998. returns only when the task has been executed (or if no worker is able to
  999. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1000. @item @code{priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1001. This field indicates a level of priority for the task. This is an integer value
  1002. that must be set between the return values of the
  1003. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1004. and that of the @code{starpu_sched_get_max_priority} for the most important
  1005. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1006. are provided for convenience and respectively returns value of
  1007. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1008. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1009. order to allow static task initialization. Scheduling strategies that take
  1010. priorities into account can use this parameter to take better scheduling
  1011. decisions, but the scheduling policy may also ignore it.
  1012. @item @code{execute_on_a_specific_worker} (default: @code{0})
  1013. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1014. task to the worker specified by the @code{workerid} field.
  1015. @item @code{workerid} (optional)
  1016. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1017. which is the identifier of the worker that should process this task (as
  1018. returned by @code{starpu_worker_get_id}). This field is ignored if
  1019. @code{execute_on_a_specific_worker} field is set to 0.
  1020. @item @code{detach} (optional) (default: @code{1})
  1021. If this flag is set, it is not possible to synchronize with the task
  1022. by the means of @code{starpu_task_wait} later on. Internal data structures
  1023. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1024. flag is not set.
  1025. @item @code{destroy} (optional) (default: @code{1})
  1026. If this flag is set, the task structure will automatically be freed, either
  1027. after the execution of the callback if the task is detached, or during
  1028. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1029. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1030. called explicitly. Setting this flag for a statically allocated task structure
  1031. will result in undefined behaviour.
  1032. @item @code{predicted} (output field)
  1033. Predicted duration of the task. This field is only set if the scheduling
  1034. strategy used performance models.
  1035. @end table
  1036. @end deftp
  1037. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1038. Initialize @var{task} with default values. This function is implicitly
  1039. called by @code{starpu_task_create}. By default, tasks initialized with
  1040. @code{starpu_task_init} must be deinitialized explicitly with
  1041. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  1042. constant @code{STARPU_TASK_INITIALIZER}.
  1043. @end deftypefun
  1044. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1045. Allocate a task structure and initialize it with default values. Tasks
  1046. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1047. task is terminated. This means that the task pointer can not be used any more
  1048. once the task is submitted, since it can be executed at any time (unless
  1049. dependencies make it wait) and thus freed at any time.
  1050. If the destroy flag is explicitly unset, the resources used
  1051. by the task have to be freed by calling
  1052. @code{starpu_task_destroy}.
  1053. @end deftypefun
  1054. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  1055. Release all the structures automatically allocated to execute @var{task}. This is
  1056. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  1057. freed. This should be used for statically allocated tasks for instance.
  1058. @end deftypefun
  1059. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1060. Free the resource allocated during @code{starpu_task_create} and
  1061. associated with @var{task}. This function can be called automatically
  1062. after the execution of a task by setting the @code{destroy} flag of the
  1063. @code{starpu_task} structure (default behaviour). Calling this function
  1064. on a statically allocated task results in an undefined behaviour.
  1065. @end deftypefun
  1066. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1067. This function blocks until @var{task} has been executed. It is not possible to
  1068. synchronize with a task more than once. It is not possible to wait for
  1069. synchronous or detached tasks.
  1070. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1071. indicates that the specified task was either synchronous or detached.
  1072. @end deftypefun
  1073. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1074. This function submits @var{task} to StarPU. Calling this function does
  1075. not mean that the task will be executed immediately as there can be data or task
  1076. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1077. scheduling this task with respect to such dependencies.
  1078. This function returns immediately if the @code{synchronous} field of the
  1079. @code{starpu_task} structure was set to 0, and block until the termination of
  1080. the task otherwise. It is also possible to synchronize the application with
  1081. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1082. function for instance.
  1083. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1084. means that there is no worker able to process this task (e.g. there is no GPU
  1085. available and this task is only implemented for CUDA devices).
  1086. @end deftypefun
  1087. @deftypefun int starpu_task_wait_for_all (void)
  1088. This function blocks until all the tasks that were submitted are terminated.
  1089. @end deftypefun
  1090. @deftypefun {struct starpu_task *} starpu_get_current_task (void)
  1091. This function returns the task currently executed by the worker, or
  1092. NULL if it is called either from a thread that is not a task or simply
  1093. because there is no task being executed at the moment.
  1094. @end deftypefun
  1095. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1096. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1097. @end deftypefun
  1098. @deftypefun int starpu_task_wait_for_no_ready (void)
  1099. This function waits until there is no more ready task.
  1100. @end deftypefun
  1101. @c Callbacks : what can we put in callbacks ?
  1102. @node Explicit Dependencies
  1103. @section Explicit Dependencies
  1104. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1105. Declare task dependencies between a @var{task} and an array of tasks of length
  1106. @var{ndeps}. This function must be called prior to the submission of the task,
  1107. but it may called after the submission or the execution of the tasks in the
  1108. array, provided the tasks are still valid (ie. they were not automatically
  1109. destroyed). Calling this function on a task that was already submitted or with
  1110. an entry of @var{task_array} that is not a valid task anymore results in an
  1111. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1112. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1113. same task, in this case, the dependencies are added. It is possible to have
  1114. redundancy in the task dependencies.
  1115. @end deftypefun
  1116. @deftp {Data Type} {starpu_tag_t}
  1117. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1118. dependencies between tasks by the means of those tags. To do so, fill the
  1119. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1120. be arbitrary) and set the @code{use_tag} field to 1.
  1121. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1122. not be started until the tasks which holds the declared dependency tags are
  1123. completed.
  1124. @end deftp
  1125. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1126. Specify the dependencies of the task identified by tag @var{id}. The first
  1127. argument specifies the tag which is configured, the second argument gives the
  1128. number of tag(s) on which @var{id} depends. The following arguments are the
  1129. tags which have to be terminated to unlock the task.
  1130. This function must be called before the associated task is submitted to StarPU
  1131. with @code{starpu_task_submit}.
  1132. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1133. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1134. typically need to be explicitly casted. Using the
  1135. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1136. @cartouche
  1137. @smallexample
  1138. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1139. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1140. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1141. @end smallexample
  1142. @end cartouche
  1143. @end deftypefun
  1144. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1145. This function is similar to @code{starpu_tag_declare_deps}, except
  1146. that its does not take a variable number of arguments but an array of
  1147. tags of size @var{ndeps}.
  1148. @cartouche
  1149. @smallexample
  1150. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1151. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1152. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1153. @end smallexample
  1154. @end cartouche
  1155. @end deftypefun
  1156. @deftypefun void starpu_tag_wait (starpu_tag_t @var{id})
  1157. This function blocks until the task associated to tag @var{id} has been
  1158. executed. This is a blocking call which must therefore not be called within
  1159. tasks or callbacks, but only from the application directly. It is possible to
  1160. synchronize with the same tag multiple times, as long as the
  1161. @code{starpu_tag_remove} function is not called. Note that it is still
  1162. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1163. data structure was freed (e.g. if the @code{destroy} flag of the
  1164. @code{starpu_task} was enabled).
  1165. @end deftypefun
  1166. @deftypefun void starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1167. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1168. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1169. terminated.
  1170. @end deftypefun
  1171. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1172. This function releases the resources associated to tag @var{id}. It can be
  1173. called once the corresponding task has been executed and when there is
  1174. no other tag that depend on this tag anymore.
  1175. @end deftypefun
  1176. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1177. This function explicitly unlocks tag @var{id}. It may be useful in the
  1178. case of applications which execute part of their computation outside StarPU
  1179. tasks (e.g. third-party libraries). It is also provided as a
  1180. convenient tool for the programmer, for instance to entirely construct the task
  1181. DAG before actually giving StarPU the opportunity to execute the tasks.
  1182. @end deftypefun
  1183. @node Implicit Data Dependencies
  1184. @section Implicit Data Dependencies
  1185. In this section, we describe how StarPU makes it possible to insert implicit
  1186. task dependencies in order to enforce sequential data consistency. When this
  1187. data consistency is enabled on a specific data handle, any data access will
  1188. appear as sequentially consistent from the application. For instance, if the
  1189. application submits two tasks that access the same piece of data in read-only
  1190. mode, and then a third task that access it in write mode, dependencies will be
  1191. added between the two first tasks and the third one. Implicit data dependencies
  1192. are also inserted in the case of data accesses from the application.
  1193. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1194. Set the default sequential consistency flag. If a non-zero value is passed, a
  1195. sequential data consistency will be enforced for all handles registered after
  1196. this function call, otherwise it is disabled. By default, StarPU enables
  1197. sequential data consistency. It is also possible to select the data consistency
  1198. mode of a specific data handle with the
  1199. @code{starpu_data_set_sequential_consistency_flag} function.
  1200. @end deftypefun
  1201. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1202. Return the default sequential consistency flag
  1203. @end deftypefun
  1204. @deftypefun unsigned starpu_data_set_default_sequential_consistency_flag (void)
  1205. This function returns the current default sequential consistency flag.
  1206. @end deftypefun
  1207. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1208. Sets the data consistency mode associated to a data handle. The consistency
  1209. mode set using this function has the priority over the default mode which can
  1210. be set with @code{starpu_data_set_sequential_consistency_flag}.
  1211. @end deftypefun
  1212. @node Performance Model API
  1213. @section Performance Model API
  1214. @deftp {Data Type} {enum starpu_perf_archtype}
  1215. Enumerates the various types of architectures.
  1216. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1217. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1218. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1219. @table @asis
  1220. @item @code{STARPU_CPU_DEFAULT}
  1221. @item @code{STARPU_CUDA_DEFAULT}
  1222. @item @code{STARPU_OPENCL_DEFAULT}
  1223. @item @code{STARPU_GORDON_DEFAULT}
  1224. @end table
  1225. @end deftp
  1226. @deftp {Data Type} {struct starpu_perfmodel}
  1227. contains all information about a performance model. At least the
  1228. @code{type} and @code{symbol} fields have to be filled when defining a
  1229. performance model for a codelet. If not provided, other fields have to be zero.
  1230. @table @asis
  1231. @item @code{type}
  1232. is the type of performance model. @code{STARPU_HISTORY_BASED},
  1233. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1234. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1235. @code{per_arch} has to be filled with functions which return the cost in
  1236. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1237. a function that returns the cost in micro-seconds on a CPU, timing on other
  1238. archs will be determined by multiplying by an arch-specific factor.
  1239. @item @code{symbol}
  1240. is the symbol name for the performance model, which will be used as
  1241. file name to store the model.
  1242. @item @code{cost_model}
  1243. This field is deprecated. Use instead the @code{cost_function} field.
  1244. @item @code{cost_function}
  1245. Used by @code{STARPU_COMMON}: takes a task and
  1246. implementation number, and must return a task duration estimation in micro-seconds.
  1247. @item @code{per_arch}
  1248. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1249. starpu_per_arch_perfmodel} structures.
  1250. @item @code{size_base}
  1251. Used by @code{STARPU_HISTORY_BASED} and
  1252. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1253. implementation number, and returns the size to be used as index for
  1254. history and regression.
  1255. @end table
  1256. @end deftp
  1257. @deftp {Data Type} {struct starpu_per_arch_perfmodel}
  1258. contains information about the performance model of a given arch.
  1259. @table @asis
  1260. @item @code{cost_model}
  1261. This field is deprecated. Use instead the @code{cost_function} field.
  1262. @item @code{cost_function}
  1263. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1264. target arch and implementation number (as mere conveniency, since the array
  1265. is already indexed by these), and must return a task duration estimation in
  1266. micro-seconds.
  1267. @item @code{list}
  1268. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1269. records all execution history measures.
  1270. @item @code{regression}
  1271. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1272. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1273. regression.
  1274. @item @code{size_base}: Same as in @code{struct perfmodel}, but per-arch, in
  1275. case it depends on the architecture-specific implementation.
  1276. @end table
  1277. @end deftp
  1278. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1279. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{~/.starpu}.
  1280. @end deftypefun
  1281. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen})
  1282. returns the path to the debugginf information for the performance model.
  1283. @end deftypefun
  1284. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen})
  1285. returns the architecture name for @var{arch}.
  1286. @end deftypefun
  1287. @deftypefun void starpu_force_bus_sampling (void)
  1288. forces sampling the bus performance model again.
  1289. @end deftypefun
  1290. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1291. returns the architecture type of a given worker.
  1292. @end deftypefun
  1293. @deftypefun int starpu_list_models ({FILE *}@var{output})
  1294. prints a list of all performance models on @var{output}.
  1295. @end deftypefun
  1296. @deftypefun void starpu_print_bus_bandwidth ({FILE *}@var{f})
  1297. prints a matrix of bus bandwidths on @var{f}.
  1298. @end deftypefun
  1299. @node Profiling API
  1300. @section Profiling API
  1301. @deftypefun int starpu_profiling_status_set (int @var{status})
  1302. Thie function sets the profiling status. Profiling is activated by passing
  1303. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  1304. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1305. resets all profiling measurements. When profiling is enabled, the
  1306. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1307. to a valid @code{struct starpu_task_profiling_info} structure containing
  1308. information about the execution of the task.
  1309. Negative return values indicate an error, otherwise the previous status is
  1310. returned.
  1311. @end deftypefun
  1312. @deftypefun int starpu_profiling_status_get (void)
  1313. Return the current profiling status or a negative value in case there was an error.
  1314. @end deftypefun
  1315. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  1316. This function sets the ID used for profiling trace filename
  1317. @end deftypefun
  1318. @deftp {Data Type} {struct starpu_task_profiling_info}
  1319. This structure contains information about the execution of a task. It is
  1320. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1321. structure if profiling was enabled. The different fields are:
  1322. @table @asis
  1323. @item @code{submit_time}
  1324. Date of task submission (relative to the initialization of StarPU).
  1325. @item @code{start_time}
  1326. Date of task execution beginning (relative to the initialization of StarPU).
  1327. @item @code{end_time}
  1328. Date of task execution termination (relative to the initialization of StarPU).
  1329. @item @code{workerid}
  1330. Identifier of the worker which has executed the task.
  1331. @end table
  1332. @end deftp
  1333. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1334. This structure contains the profiling information associated to a
  1335. worker. The different fields are:
  1336. @table @asis
  1337. @item @code{start_time}
  1338. Starting date for the reported profiling measurements.
  1339. @item @code{total_time}
  1340. Duration of the profiling measurement interval.
  1341. @item @code{executing_time}
  1342. Time spent by the worker to execute tasks during the profiling measurement interval.
  1343. @item @code{sleeping_time}
  1344. Time spent idling by the worker during the profiling measurement interval.
  1345. @item @code{executed_tasks}
  1346. Number of tasks executed by the worker during the profiling measurement interval.
  1347. @end table
  1348. @end deftp
  1349. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  1350. Get the profiling info associated to the worker identified by @var{workerid},
  1351. and reset the profiling measurements. If the @var{worker_info} argument is
  1352. NULL, only reset the counters associated to worker @var{workerid}.
  1353. Upon successful completion, this function returns 0. Otherwise, a negative
  1354. value is returned.
  1355. @end deftypefun
  1356. @deftp {Data Type} {struct starpu_bus_profiling_info}
  1357. TODO. The different fields are:
  1358. @table @asis
  1359. @item @code{start_time}
  1360. TODO
  1361. @item @code{total_time}
  1362. TODO
  1363. @item @code{transferred_bytes}
  1364. TODO
  1365. @item @code{transfer_count}
  1366. TODO
  1367. @end table
  1368. @end deftp
  1369. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  1370. todo
  1371. @end deftypefun
  1372. @deftypefun int starpu_bus_get_count (void)
  1373. TODO
  1374. @end deftypefun
  1375. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  1376. TODO
  1377. @end deftypefun
  1378. @deftypefun int starpu_bus_get_src (int @var{busid})
  1379. TODO
  1380. @end deftypefun
  1381. @deftypefun int starpu_bus_get_dst (int @var{busid})
  1382. TODO
  1383. @end deftypefun
  1384. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  1385. TODO
  1386. @end deftypefun
  1387. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  1388. TODO
  1389. @end deftypefun
  1390. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  1391. TODO
  1392. @end deftypefun
  1393. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  1394. TODO
  1395. @end deftypefun
  1396. @node CUDA extensions
  1397. @section CUDA extensions
  1398. @deftypefun {cudaStream_t *} starpu_cuda_get_local_stream (void)
  1399. This function gets the current worker's CUDA stream.
  1400. StarPU provides a stream for every CUDA device controlled by StarPU. This
  1401. function is only provided for convenience so that programmers can easily use
  1402. asynchronous operations within codelets without having to create a stream by
  1403. hand. Note that the application is not forced to use the stream provided by
  1404. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  1405. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  1406. the likelihood of having all transfers overlapped.
  1407. @end deftypefun
  1408. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  1409. This function returns a pointer to device properties for worker @var{workerid}
  1410. (assumed to be a CUDA worker).
  1411. @end deftypefun
  1412. @deftypefun void starpu_helper_cublas_init (void)
  1413. This function initializes CUBLAS on every CUDA device.
  1414. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  1415. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  1416. controlled by StarPU. This call blocks until CUBLAS has been properly
  1417. initialized on every device.
  1418. @end deftypefun
  1419. @deftypefun void starpu_helper_cublas_shutdown (void)
  1420. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  1421. @end deftypefun
  1422. @node OpenCL extensions
  1423. @section OpenCL extensions
  1424. @menu
  1425. * Writing OpenCL kernels:: Writing OpenCL kernels
  1426. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  1427. * Loading OpenCL kernels:: Loading OpenCL kernels
  1428. * OpenCL statistics:: Collecting statistics from OpenCL
  1429. @end menu
  1430. @node Writing OpenCL kernels
  1431. @subsection Writing OpenCL kernels
  1432. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1433. todo
  1434. @end deftypefun
  1435. @deftypefun size_t starpu_opencl_get_global_mem_size (int @var{devid})
  1436. todo
  1437. @end deftypefun
  1438. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  1439. todo
  1440. @end deftypefun
  1441. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  1442. todo
  1443. @end deftypefun
  1444. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue});
  1445. todo
  1446. @end deftypefun
  1447. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  1448. todo
  1449. @end deftypefun
  1450. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  1451. todo
  1452. @end deftypefun
  1453. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  1454. Sets the arguments of a given kernel. The list of arguments must be given as
  1455. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  1456. The last argument must be 0. Returns the number of arguments that were
  1457. successfully set. In case of failure, @var{err} is set to the error returned by
  1458. OpenCL.
  1459. @end deftypefun
  1460. @node Compiling OpenCL kernels
  1461. @subsection Compiling OpenCL kernels
  1462. Source codes for OpenCL kernels can be stored in a file or in a
  1463. string. StarPU provides functions to build the program executable for
  1464. each available OpenCL device as a @code{cl_program} object. This
  1465. program executable can then be loaded within a specific queue as
  1466. explained in the next section. These are only helpers, Applications
  1467. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  1468. use (e.g. different programs on the different OpenCL devices, for
  1469. relocation purpose for instance).
  1470. @deftp {Data Type} {struct starpu_opencl_program}
  1471. todo
  1472. @end deftp
  1473. @deftypefun int starpu_opencl_load_opencl_from_file (char *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1474. @anchor{starpu_opencl_load_opencl_from_file}
  1475. This function compiles an OpenCL source code stored in a file.
  1476. @end deftypefun
  1477. @deftypefun int starpu_opencl_load_opencl_from_string (char *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1478. This function compiles an OpenCL source code stored in a string.
  1479. @end deftypefun
  1480. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  1481. This function unloads an OpenCL compiled code.
  1482. @end deftypefun
  1483. @node Loading OpenCL kernels
  1484. @subsection Loading OpenCL kernels
  1485. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, char *@var{kernel_name}, int @var{devid})
  1486. TODO
  1487. @end deftypefun
  1488. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  1489. TODO
  1490. @end deftypefun
  1491. @node OpenCL statistics
  1492. @subsection OpenCL statistics
  1493. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  1494. This function allows to collect statistics on a kernel execution.
  1495. After termination of the kernels, the OpenCL codelet should call this function
  1496. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  1497. collect statistics about the kernel execution (used cycles, consumed power).
  1498. @end deftypefun
  1499. @node Cell extensions
  1500. @section Cell extensions
  1501. nothing yet.
  1502. @node Miscellaneous helpers
  1503. @section Miscellaneous helpers
  1504. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  1505. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  1506. The @var{asynchronous} parameter indicates whether the function should
  1507. block or not. In the case of an asynchronous call, it is possible to
  1508. synchronize with the termination of this operation either by the means of
  1509. implicit dependencies (if enabled) or by calling
  1510. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  1511. this callback function is executed after the handle has been copied, and it is
  1512. given the @var{callback_arg} pointer as argument.
  1513. @end deftypefun
  1514. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  1515. This function executes the given function on a subset of workers.
  1516. When calling this method, the offloaded function specified by the first argument is
  1517. executed by every StarPU worker that may execute the function.
  1518. The second argument is passed to the offloaded function.
  1519. The last argument specifies on which types of processing units the function
  1520. should be executed. Similarly to the @var{where} field of the
  1521. @code{struct starpu_codelet} structure, it is possible to specify that the function
  1522. should be executed on every CUDA device and every CPU by passing
  1523. @code{STARPU_CPU|STARPU_CUDA}.
  1524. This function blocks until the function has been executed on every appropriate
  1525. processing units, so that it may not be called from a callback function for
  1526. instance.
  1527. @end deftypefun