mpi_cholesky.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009-2011 Université de Bordeaux 1
  4. * Copyright (C) 2010 Mehdi Juhoor <mjuhoor@gmail.com>
  5. * Copyright (C) 2010, 2011 Centre National de la Recherche Scientifique
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. #include <starpu_mpi.h>
  19. #include "mpi_cholesky.h"
  20. #include "mpi_cholesky_models.h"
  21. /*
  22. * Create the codelets
  23. */
  24. static struct starpu_codelet cl11 =
  25. {
  26. .where = STARPU_CPU|STARPU_CUDA,
  27. .cpu_func = chol_cpu_codelet_update_u11,
  28. #ifdef STARPU_USE_CUDA
  29. .cuda_func = chol_cublas_codelet_update_u11,
  30. #endif
  31. .nbuffers = 1,
  32. .model = &chol_model_11
  33. };
  34. static struct starpu_codelet cl21 =
  35. {
  36. .where = STARPU_CPU|STARPU_CUDA,
  37. .cpu_func = chol_cpu_codelet_update_u21,
  38. #ifdef STARPU_USE_CUDA
  39. .cuda_func = chol_cublas_codelet_update_u21,
  40. #endif
  41. .nbuffers = 2,
  42. .model = &chol_model_21
  43. };
  44. static struct starpu_codelet cl22 =
  45. {
  46. .where = STARPU_CPU|STARPU_CUDA,
  47. .cpu_func = chol_cpu_codelet_update_u22,
  48. #ifdef STARPU_USE_CUDA
  49. .cuda_func = chol_cublas_codelet_update_u22,
  50. #endif
  51. .nbuffers = 3,
  52. .model = &chol_model_22
  53. };
  54. /* Returns the MPI node number where data indexes index is */
  55. int my_distrib(int x, int y, int nb_nodes)
  56. {
  57. return (x+y) % nb_nodes;
  58. }
  59. /*
  60. * code to bootstrap the factorization
  61. * and construct the DAG
  62. */
  63. static void dw_cholesky(float ***matA, unsigned size, unsigned ld, unsigned nblocks, int rank, int nodes)
  64. {
  65. struct timeval start;
  66. struct timeval end;
  67. starpu_data_handle_t **data_handles;
  68. int x, y;
  69. /* create all the DAG nodes */
  70. unsigned i,j,k;
  71. data_handles = malloc(nblocks*sizeof(starpu_data_handle_t *));
  72. for(x=0 ; x<nblocks ; x++) data_handles[x] = malloc(nblocks*sizeof(starpu_data_handle_t));
  73. for(x = 0; x < nblocks ; x++)
  74. {
  75. for (y = 0; y < nblocks; y++)
  76. {
  77. int mpi_rank = my_distrib(x, y, nodes);
  78. if (mpi_rank == rank)
  79. {
  80. //fprintf(stderr, "[%d] Owning data[%d][%d]\n", rank, x, y);
  81. starpu_matrix_data_register(&data_handles[x][y], 0, (uintptr_t)matA[x][y],
  82. ld, size/nblocks, size/nblocks, sizeof(float));
  83. }
  84. /* TODO: make better test to only registering what is needed */
  85. else
  86. {
  87. /* I don't own that index, but will need it for my computations */
  88. //fprintf(stderr, "[%d] Neighbour of data[%d][%d]\n", rank, x, y);
  89. starpu_matrix_data_register(&data_handles[x][y], -1, (uintptr_t)NULL,
  90. ld, size/nblocks, size/nblocks, sizeof(float));
  91. }
  92. if (data_handles[x][y])
  93. {
  94. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  95. starpu_data_set_tag(data_handles[x][y], (y*nblocks)+x);
  96. }
  97. }
  98. }
  99. starpu_mpi_barrier(MPI_COMM_WORLD);
  100. gettimeofday(&start, NULL);
  101. for (k = 0; k < nblocks; k++)
  102. {
  103. int prio = STARPU_DEFAULT_PRIO;
  104. if (!noprio) prio = STARPU_MAX_PRIO;
  105. starpu_mpi_insert_task(MPI_COMM_WORLD, &cl11,
  106. STARPU_PRIORITY, prio,
  107. STARPU_RW, data_handles[k][k],
  108. 0);
  109. for (j = k+1; j<nblocks; j++)
  110. {
  111. prio = STARPU_DEFAULT_PRIO;
  112. if (!noprio&& (j == k+1)) prio = STARPU_MAX_PRIO;
  113. starpu_mpi_insert_task(MPI_COMM_WORLD, &cl21,
  114. STARPU_PRIORITY, prio,
  115. STARPU_R, data_handles[k][k],
  116. STARPU_RW, data_handles[k][j],
  117. 0);
  118. for (i = k+1; i<nblocks; i++)
  119. {
  120. if (i <= j)
  121. {
  122. prio = STARPU_DEFAULT_PRIO;
  123. if (!noprio && (i == k + 1) && (j == k +1) ) prio = STARPU_MAX_PRIO;
  124. starpu_mpi_insert_task(MPI_COMM_WORLD, &cl22,
  125. STARPU_PRIORITY, prio,
  126. STARPU_R, data_handles[k][i],
  127. STARPU_R, data_handles[k][j],
  128. STARPU_RW, data_handles[i][j],
  129. 0);
  130. }
  131. }
  132. }
  133. }
  134. starpu_task_wait_for_all();
  135. for(x = 0; x < nblocks ; x++)
  136. {
  137. for (y = 0; y < nblocks; y++)
  138. {
  139. if (data_handles[x][y])
  140. starpu_data_unregister(data_handles[x][y]);
  141. }
  142. free(data_handles[x]);
  143. }
  144. free(data_handles);
  145. starpu_mpi_barrier(MPI_COMM_WORLD);
  146. gettimeofday(&end, NULL);
  147. if (rank == 0)
  148. {
  149. double timing = (double)((end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec));
  150. fprintf(stderr, "Computation took (in ms)\n");
  151. fprintf(stdout, "%2.2f\n", timing/1000);
  152. double flop = (1.0f*size*size*size)/3.0f;
  153. fprintf(stderr, "Synthetic GFlops : %2.2f\n", (flop/timing/1000.0f));
  154. }
  155. }
  156. int main(int argc, char **argv)
  157. {
  158. /* create a simple definite positive symetric matrix example
  159. *
  160. * Hilbert matrix : h(i,j) = 1/(i+j+1)
  161. * */
  162. float ***bmat;
  163. int rank, nodes;
  164. parse_args(argc, argv);
  165. struct starpu_conf conf;
  166. starpu_conf_init(&conf);
  167. conf.sched_policy_name = "heft";
  168. conf.calibrate = 1;
  169. starpu_init(&conf);
  170. starpu_mpi_initialize_extended(&rank, &nodes);
  171. starpu_helper_cublas_init();
  172. unsigned i,j,x,y;
  173. bmat = malloc(nblocks * sizeof(float *));
  174. for(x=0 ; x<nblocks ; x++)
  175. {
  176. bmat[x] = malloc(nblocks * sizeof(float *));
  177. for(y=0 ; y<nblocks ; y++)
  178. {
  179. starpu_malloc((void **)&bmat[x][y], BLOCKSIZE*BLOCKSIZE*sizeof(float));
  180. for (i = 0; i < BLOCKSIZE; i++)
  181. {
  182. for (j = 0; j < BLOCKSIZE; j++)
  183. {
  184. bmat[x][y][j +i*BLOCKSIZE] = (1.0f/(1.0f+(i+(x*BLOCKSIZE)+j+(y*BLOCKSIZE)))) + ((i+(x*BLOCKSIZE) == j+(y*BLOCKSIZE))?1.0f*size:0.0f);
  185. //mat[j +i*size] = ((i == j)?1.0f*size:0.0f);
  186. }
  187. }
  188. }
  189. }
  190. if (display)
  191. {
  192. printf("[%d] Input :\n", rank);
  193. for(y=0 ; y<nblocks ; y++)
  194. {
  195. for(x=0 ; x<nblocks ; x++)
  196. {
  197. printf("Block %d,%d :\n", x, y);
  198. for (j = 0; j < BLOCKSIZE; j++)
  199. {
  200. for (i = 0; i < BLOCKSIZE; i++)
  201. {
  202. if (i <= j)
  203. {
  204. printf("%2.2f\t", bmat[y][x][j +i*BLOCKSIZE]);
  205. }
  206. else
  207. {
  208. printf(".\t");
  209. }
  210. }
  211. printf("\n");
  212. }
  213. }
  214. }
  215. }
  216. dw_cholesky(bmat, size, size/nblocks, nblocks, rank, nodes);
  217. starpu_mpi_shutdown();
  218. if (display)
  219. {
  220. printf("[%d] Results :\n", rank);
  221. for(y=0 ; y<nblocks ; y++)
  222. {
  223. for(x=0 ; x<nblocks ; x++)
  224. {
  225. printf("Block %d,%d :\n", x, y);
  226. for (j = 0; j < BLOCKSIZE; j++)
  227. {
  228. for (i = 0; i < BLOCKSIZE; i++)
  229. {
  230. if (i <= j)
  231. {
  232. printf("%2.2f\t", bmat[y][x][j +i*BLOCKSIZE]);
  233. }
  234. else
  235. {
  236. printf(".\t");
  237. }
  238. }
  239. printf("\n");
  240. }
  241. }
  242. }
  243. }
  244. float *rmat = malloc(size*size*sizeof(float));
  245. for(x=0 ; x<nblocks ; x++)
  246. {
  247. for(y=0 ; y<nblocks ; y++)
  248. {
  249. for (i = 0; i < BLOCKSIZE; i++)
  250. {
  251. for (j = 0; j < BLOCKSIZE; j++)
  252. {
  253. rmat[j+(y*BLOCKSIZE)+(i+(x*BLOCKSIZE))*size] = bmat[x][y][j +i*BLOCKSIZE];
  254. }
  255. }
  256. }
  257. }
  258. fprintf(stderr, "[%d] compute explicit LLt ...\n", rank);
  259. for (j = 0; j < size; j++)
  260. {
  261. for (i = 0; i < size; i++)
  262. {
  263. if (i > j)
  264. {
  265. rmat[j+i*size] = 0.0f; // debug
  266. }
  267. }
  268. }
  269. float *test_mat = malloc(size*size*sizeof(float));
  270. STARPU_ASSERT(test_mat);
  271. SSYRK("L", "N", size, size, 1.0f,
  272. rmat, size, 0.0f, test_mat, size);
  273. fprintf(stderr, "[%d] comparing results ...\n", rank);
  274. if (display)
  275. {
  276. for (j = 0; j < size; j++)
  277. {
  278. for (i = 0; i < size; i++)
  279. {
  280. if (i <= j)
  281. {
  282. printf("%2.2f\t", test_mat[j +i*size]);
  283. }
  284. else
  285. {
  286. printf(".\t");
  287. }
  288. }
  289. printf("\n");
  290. }
  291. }
  292. int correctness = 1;
  293. for(x = 0; x < nblocks ; x++)
  294. {
  295. for (y = 0; y < nblocks; y++)
  296. {
  297. int mpi_rank = my_distrib(x, y, nodes);
  298. if (mpi_rank == rank)
  299. {
  300. for (i = (size/nblocks)*x ; i < (size/nblocks)*x+(size/nblocks); i++)
  301. {
  302. for (j = (size/nblocks)*y ; j < (size/nblocks)*y+(size/nblocks); j++)
  303. {
  304. if (i <= j)
  305. {
  306. float orig = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size:0.0f);
  307. float err = abs(test_mat[j +i*size] - orig);
  308. if (err > 0.00001)
  309. {
  310. fprintf(stderr, "[%d] Error[%d, %d] --> %2.2f != %2.2f (err %2.2f)\n", rank, i, j, test_mat[j +i*size], orig, err);
  311. correctness = 0;
  312. break;
  313. }
  314. }
  315. }
  316. }
  317. }
  318. }
  319. }
  320. for(x=0 ; x<nblocks ; x++)
  321. {
  322. for(y=0 ; y<nblocks ; y++)
  323. {
  324. starpu_free((void *)bmat[x][y]);
  325. }
  326. free(bmat[x]);
  327. }
  328. free(bmat);
  329. free(rmat);
  330. free(test_mat);
  331. starpu_helper_cublas_shutdown();
  332. starpu_shutdown();
  333. assert(correctness);
  334. return 0;
  335. }