| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 | /* dsycon.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dsycon_(char *uplo, integer *n, doublereal *a, integer *	lda, integer *ipiv, doublereal *anorm, doublereal *rcond, doublereal *	work, integer *iwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1;    /* Local variables */    integer i__, kase;    extern logical lsame_(char *, char *);    integer isave[3];    logical upper;    extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, 	     integer *, doublereal *, integer *, integer *), xerbla_(char *, 	    integer *);    doublereal ainvnm;    extern /* Subroutine */ int dsytrs_(char *, integer *, integer *, 	    doublereal *, integer *, integer *, doublereal *, integer *, 	    integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSYCON estimates the reciprocal of the condition number (in the *//*  1-norm) of a real symmetric matrix A using the factorization *//*  A = U*D*U**T or A = L*D*L**T computed by DSYTRF. *//*  An estimate is obtained for norm(inv(A)), and the reciprocal of the *//*  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          Specifies whether the details of the factorization are stored *//*          as an upper or lower triangular matrix. *//*          = 'U':  Upper triangular, form is A = U*D*U**T; *//*          = 'L':  Lower triangular, form is A = L*D*L**T. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) *//*          The block diagonal matrix D and the multipliers used to *//*          obtain the factor U or L as computed by DSYTRF. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  IPIV    (input) INTEGER array, dimension (N) *//*          Details of the interchanges and the block structure of D *//*          as determined by DSYTRF. *//*  ANORM   (input) DOUBLE PRECISION *//*          The 1-norm of the original matrix A. *//*  RCOND   (output) DOUBLE PRECISION *//*          The reciprocal of the condition number of the matrix A, *//*          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an *//*          estimate of the 1-norm of inv(A) computed in this routine. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N) *//*  IWORK    (workspace) INTEGER array, dimension (N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --ipiv;    --work;    --iwork;    /* Function Body */    *info = 0;    upper = lsame_(uplo, "U");    if (! upper && ! lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*n)) {	*info = -4;    } else if (*anorm < 0.) {	*info = -6;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DSYCON", &i__1);	return 0;    }/*     Quick return if possible */    *rcond = 0.;    if (*n == 0) {	*rcond = 1.;	return 0;    } else if (*anorm <= 0.) {	return 0;    }/*     Check that the diagonal matrix D is nonsingular. */    if (upper) {/*        Upper triangular storage: examine D from bottom to top */	for (i__ = *n; i__ >= 1; --i__) {	    if (ipiv[i__] > 0 && a[i__ + i__ * a_dim1] == 0.) {		return 0;	    }/* L10: */	}    } else {/*        Lower triangular storage: examine D from top to bottom. */	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    if (ipiv[i__] > 0 && a[i__ + i__ * a_dim1] == 0.) {		return 0;	    }/* L20: */	}    }/*     Estimate the 1-norm of the inverse. */    kase = 0;L30:    dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave);    if (kase != 0) {/*        Multiply by inv(L*D*L') or inv(U*D*U'). */	dsytrs_(uplo, n, &c__1, &a[a_offset], lda, &ipiv[1], &work[1], n, 		info);	goto L30;    }/*     Compute the estimate of the reciprocal condition number. */    if (ainvnm != 0.) {	*rcond = 1. / ainvnm / *anorm;    }    return 0;/*     End of DSYCON */} /* dsycon_ */
 |