| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244 | /* dspgv.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dspgv_(integer *itype, char *jobz, char *uplo, integer *	n, doublereal *ap, doublereal *bp, doublereal *w, doublereal *z__, 	integer *ldz, doublereal *work, integer *info){    /* System generated locals */    integer z_dim1, z_offset, i__1;    /* Local variables */    integer j, neig;    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dspev_(char *, char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *);    char trans[1];    logical upper;    extern /* Subroutine */ int dtpmv_(char *, char *, char *, integer *, 	    doublereal *, doublereal *, integer *), 	    dtpsv_(char *, char *, char *, integer *, doublereal *, 	    doublereal *, integer *);    logical wantz;    extern /* Subroutine */ int xerbla_(char *, integer *), dpptrf_(	    char *, integer *, doublereal *, integer *), dspgst_(	    integer *, char *, integer *, doublereal *, doublereal *, integer 	    *);/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSPGV computes all the eigenvalues and, optionally, the eigenvectors *//*  of a real generalized symmetric-definite eigenproblem, of the form *//*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x. *//*  Here A and B are assumed to be symmetric, stored in packed format, *//*  and B is also positive definite. *//*  Arguments *//*  ========= *//*  ITYPE   (input) INTEGER *//*          Specifies the problem type to be solved: *//*          = 1:  A*x = (lambda)*B*x *//*          = 2:  A*B*x = (lambda)*x *//*          = 3:  B*A*x = (lambda)*x *//*  JOBZ    (input) CHARACTER*1 *//*          = 'N':  Compute eigenvalues only; *//*          = 'V':  Compute eigenvalues and eigenvectors. *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangles of A and B are stored; *//*          = 'L':  Lower triangles of A and B are stored. *//*  N       (input) INTEGER *//*          The order of the matrices A and B.  N >= 0. *//*  AP      (input/output) DOUBLE PRECISION array, dimension *//*                            (N*(N+1)/2) *//*          On entry, the upper or lower triangle of the symmetric matrix *//*          A, packed columnwise in a linear array.  The j-th column of A *//*          is stored in the array AP as follows: *//*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; *//*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. *//*          On exit, the contents of AP are destroyed. *//*  BP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) *//*          On entry, the upper or lower triangle of the symmetric matrix *//*          B, packed columnwise in a linear array.  The j-th column of B *//*          is stored in the array BP as follows: *//*          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; *//*          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. *//*          On exit, the triangular factor U or L from the Cholesky *//*          factorization B = U**T*U or B = L*L**T, in the same storage *//*          format as B. *//*  W       (output) DOUBLE PRECISION array, dimension (N) *//*          If INFO = 0, the eigenvalues in ascending order. *//*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N) *//*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of *//*          eigenvectors.  The eigenvectors are normalized as follows: *//*          if ITYPE = 1 or 2, Z**T*B*Z = I; *//*          if ITYPE = 3, Z**T*inv(B)*Z = I. *//*          If JOBZ = 'N', then Z is not referenced. *//*  LDZ     (input) INTEGER *//*          The leading dimension of the array Z.  LDZ >= 1, and if *//*          JOBZ = 'V', LDZ >= max(1,N). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  DPPTRF or DSPEV returned an error code: *//*             <= N:  if INFO = i, DSPEV failed to converge; *//*                    i off-diagonal elements of an intermediate *//*                    tridiagonal form did not converge to zero. *//*             > N:   if INFO = n + i, for 1 <= i <= n, then the leading *//*                    minor of order i of B is not positive definite. *//*                    The factorization of B could not be completed and *//*                    no eigenvalues or eigenvectors were computed. *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --ap;    --bp;    --w;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    --work;    /* Function Body */    wantz = lsame_(jobz, "V");    upper = lsame_(uplo, "U");    *info = 0;    if (*itype < 1 || *itype > 3) {	*info = -1;    } else if (! (wantz || lsame_(jobz, "N"))) {	*info = -2;    } else if (! (upper || lsame_(uplo, "L"))) {	*info = -3;    } else if (*n < 0) {	*info = -4;    } else if (*ldz < 1 || wantz && *ldz < *n) {	*info = -9;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DSPGV ", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Form a Cholesky factorization of B. */    dpptrf_(uplo, n, &bp[1], info);    if (*info != 0) {	*info = *n + *info;	return 0;    }/*     Transform problem to standard eigenvalue problem and solve. */    dspgst_(itype, uplo, n, &ap[1], &bp[1], info);    dspev_(jobz, uplo, n, &ap[1], &w[1], &z__[z_offset], ldz, &work[1], info);    if (wantz) {/*        Backtransform eigenvectors to the original problem. */	neig = *n;	if (*info > 0) {	    neig = *info - 1;	}	if (*itype == 1 || *itype == 2) {/*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x; *//*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */	    if (upper) {		*(unsigned char *)trans = 'N';	    } else {		*(unsigned char *)trans = 'T';	    }	    i__1 = neig;	    for (j = 1; j <= i__1; ++j) {		dtpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 			1], &c__1);/* L10: */	    }	} else if (*itype == 3) {/*           For B*A*x=(lambda)*x; *//*           backtransform eigenvectors: x = L*y or U'*y */	    if (upper) {		*(unsigned char *)trans = 'T';	    } else {		*(unsigned char *)trans = 'N';	    }	    i__1 = neig;	    for (j = 1; j <= i__1; ++j) {		dtpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 			1], &c__1);/* L20: */	    }	}    }    return 0;/*     End of DSPGV */} /* dspgv_ */
 |