| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610 | /* dlasd2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b30 = 0.;/* Subroutine */ int dlasd2_(integer *nl, integer *nr, integer *sqre, integer 	*k, doublereal *d__, doublereal *z__, doublereal *alpha, doublereal *	beta, doublereal *u, integer *ldu, doublereal *vt, integer *ldvt, 	doublereal *dsigma, doublereal *u2, integer *ldu2, doublereal *vt2, 	integer *ldvt2, integer *idxp, integer *idx, integer *idxc, integer *	idxq, integer *coltyp, integer *info){    /* System generated locals */    integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset, 	    vt2_dim1, vt2_offset, i__1;    doublereal d__1, d__2;    /* Local variables */    doublereal c__;    integer i__, j, m, n;    doublereal s;    integer k2;    doublereal z1;    integer ct, jp;    doublereal eps, tau, tol;    integer psm[4], nlp1, nlp2, idxi, idxj;    extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *);    integer ctot[4], idxjp;    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    integer jprev;    extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *);    extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, 	    integer *, integer *, integer *), dlacpy_(char *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *), dlaset_(char *, integer *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *), xerbla_(char *, 	    integer *);    doublereal hlftol;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLASD2 merges the two sets of singular values together into a single *//*  sorted set.  Then it tries to deflate the size of the problem. *//*  There are two ways in which deflation can occur:  when two or more *//*  singular values are close together or if there is a tiny entry in the *//*  Z vector.  For each such occurrence the order of the related secular *//*  equation problem is reduced by one. *//*  DLASD2 is called from DLASD1. *//*  Arguments *//*  ========= *//*  NL     (input) INTEGER *//*         The row dimension of the upper block.  NL >= 1. *//*  NR     (input) INTEGER *//*         The row dimension of the lower block.  NR >= 1. *//*  SQRE   (input) INTEGER *//*         = 0: the lower block is an NR-by-NR square matrix. *//*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. *//*         The bidiagonal matrix has N = NL + NR + 1 rows and *//*         M = N + SQRE >= N columns. *//*  K      (output) INTEGER *//*         Contains the dimension of the non-deflated matrix, *//*         This is the order of the related secular equation. 1 <= K <=N. *//*  D      (input/output) DOUBLE PRECISION array, dimension(N) *//*         On entry D contains the singular values of the two submatrices *//*         to be combined.  On exit D contains the trailing (N-K) updated *//*         singular values (those which were deflated) sorted into *//*         increasing order. *//*  Z      (output) DOUBLE PRECISION array, dimension(N) *//*         On exit Z contains the updating row vector in the secular *//*         equation. *//*  ALPHA  (input) DOUBLE PRECISION *//*         Contains the diagonal element associated with the added row. *//*  BETA   (input) DOUBLE PRECISION *//*         Contains the off-diagonal element associated with the added *//*         row. *//*  U      (input/output) DOUBLE PRECISION array, dimension(LDU,N) *//*         On entry U contains the left singular vectors of two *//*         submatrices in the two square blocks with corners at (1,1), *//*         (NL, NL), and (NL+2, NL+2), (N,N). *//*         On exit U contains the trailing (N-K) updated left singular *//*         vectors (those which were deflated) in its last N-K columns. *//*  LDU    (input) INTEGER *//*         The leading dimension of the array U.  LDU >= N. *//*  VT     (input/output) DOUBLE PRECISION array, dimension(LDVT,M) *//*         On entry VT' contains the right singular vectors of two *//*         submatrices in the two square blocks with corners at (1,1), *//*         (NL+1, NL+1), and (NL+2, NL+2), (M,M). *//*         On exit VT' contains the trailing (N-K) updated right singular *//*         vectors (those which were deflated) in its last N-K columns. *//*         In case SQRE =1, the last row of VT spans the right null *//*         space. *//*  LDVT   (input) INTEGER *//*         The leading dimension of the array VT.  LDVT >= M. *//*  DSIGMA (output) DOUBLE PRECISION array, dimension (N) *//*         Contains a copy of the diagonal elements (K-1 singular values *//*         and one zero) in the secular equation. *//*  U2     (output) DOUBLE PRECISION array, dimension(LDU2,N) *//*         Contains a copy of the first K-1 left singular vectors which *//*         will be used by DLASD3 in a matrix multiply (DGEMM) to solve *//*         for the new left singular vectors. U2 is arranged into four *//*         blocks. The first block contains a column with 1 at NL+1 and *//*         zero everywhere else; the second block contains non-zero *//*         entries only at and above NL; the third contains non-zero *//*         entries only below NL+1; and the fourth is dense. *//*  LDU2   (input) INTEGER *//*         The leading dimension of the array U2.  LDU2 >= N. *//*  VT2    (output) DOUBLE PRECISION array, dimension(LDVT2,N) *//*         VT2' contains a copy of the first K right singular vectors *//*         which will be used by DLASD3 in a matrix multiply (DGEMM) to *//*         solve for the new right singular vectors. VT2 is arranged into *//*         three blocks. The first block contains a row that corresponds *//*         to the special 0 diagonal element in SIGMA; the second block *//*         contains non-zeros only at and before NL +1; the third block *//*         contains non-zeros only at and after  NL +2. *//*  LDVT2  (input) INTEGER *//*         The leading dimension of the array VT2.  LDVT2 >= M. *//*  IDXP   (workspace) INTEGER array dimension(N) *//*         This will contain the permutation used to place deflated *//*         values of D at the end of the array. On output IDXP(2:K) *//*         points to the nondeflated D-values and IDXP(K+1:N) *//*         points to the deflated singular values. *//*  IDX    (workspace) INTEGER array dimension(N) *//*         This will contain the permutation used to sort the contents of *//*         D into ascending order. *//*  IDXC   (output) INTEGER array dimension(N) *//*         This will contain the permutation used to arrange the columns *//*         of the deflated U matrix into three groups:  the first group *//*         contains non-zero entries only at and above NL, the second *//*         contains non-zero entries only below NL+2, and the third is *//*         dense. *//*  IDXQ   (input/output) INTEGER array dimension(N) *//*         This contains the permutation which separately sorts the two *//*         sub-problems in D into ascending order.  Note that entries in *//*         the first hlaf of this permutation must first be moved one *//*         position backward; and entries in the second half *//*         must first have NL+1 added to their values. *//*  COLTYP (workspace/output) INTEGER array dimension(N) *//*         As workspace, this will contain a label which will indicate *//*         which of the following types a column in the U2 matrix or a *//*         row in the VT2 matrix is: *//*         1 : non-zero in the upper half only *//*         2 : non-zero in the lower half only *//*         3 : dense *//*         4 : deflated *//*         On exit, it is an array of dimension 4, with COLTYP(I) being *//*         the dimension of the I-th type columns. *//*  INFO   (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Ming Gu and Huan Ren, Computer Science Division, University of *//*     California at Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --z__;    u_dim1 = *ldu;    u_offset = 1 + u_dim1;    u -= u_offset;    vt_dim1 = *ldvt;    vt_offset = 1 + vt_dim1;    vt -= vt_offset;    --dsigma;    u2_dim1 = *ldu2;    u2_offset = 1 + u2_dim1;    u2 -= u2_offset;    vt2_dim1 = *ldvt2;    vt2_offset = 1 + vt2_dim1;    vt2 -= vt2_offset;    --idxp;    --idx;    --idxc;    --idxq;    --coltyp;    /* Function Body */    *info = 0;    if (*nl < 1) {	*info = -1;    } else if (*nr < 1) {	*info = -2;    } else if (*sqre != 1 && *sqre != 0) {	*info = -3;    }    n = *nl + *nr + 1;    m = n + *sqre;    if (*ldu < n) {	*info = -10;    } else if (*ldvt < m) {	*info = -12;    } else if (*ldu2 < n) {	*info = -15;    } else if (*ldvt2 < m) {	*info = -17;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DLASD2", &i__1);	return 0;    }    nlp1 = *nl + 1;    nlp2 = *nl + 2;/*     Generate the first part of the vector Z; and move the singular *//*     values in the first part of D one position backward. */    z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1];    z__[1] = z1;    for (i__ = *nl; i__ >= 1; --i__) {	z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1];	d__[i__ + 1] = d__[i__];	idxq[i__ + 1] = idxq[i__] + 1;/* L10: */    }/*     Generate the second part of the vector Z. */    i__1 = m;    for (i__ = nlp2; i__ <= i__1; ++i__) {	z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1];/* L20: */    }/*     Initialize some reference arrays. */    i__1 = nlp1;    for (i__ = 2; i__ <= i__1; ++i__) {	coltyp[i__] = 1;/* L30: */    }    i__1 = n;    for (i__ = nlp2; i__ <= i__1; ++i__) {	coltyp[i__] = 2;/* L40: */    }/*     Sort the singular values into increasing order */    i__1 = n;    for (i__ = nlp2; i__ <= i__1; ++i__) {	idxq[i__] += nlp1;/* L50: */    }/*     DSIGMA, IDXC, IDXC, and the first column of U2 *//*     are used as storage space. */    i__1 = n;    for (i__ = 2; i__ <= i__1; ++i__) {	dsigma[i__] = d__[idxq[i__]];	u2[i__ + u2_dim1] = z__[idxq[i__]];	idxc[i__] = coltyp[idxq[i__]];/* L60: */    }    dlamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);    i__1 = n;    for (i__ = 2; i__ <= i__1; ++i__) {	idxi = idx[i__] + 1;	d__[i__] = dsigma[idxi];	z__[i__] = u2[idxi + u2_dim1];	coltyp[i__] = idxc[idxi];/* L70: */    }/*     Calculate the allowable deflation tolerance */    eps = dlamch_("Epsilon");/* Computing MAX */    d__1 = abs(*alpha), d__2 = abs(*beta);    tol = max(d__1,d__2);/* Computing MAX */    d__2 = (d__1 = d__[n], abs(d__1));    tol = eps * 8. * max(d__2,tol);/*     There are 2 kinds of deflation -- first a value in the z-vector *//*     is small, second two (or more) singular values are very close *//*     together (their difference is small). *//*     If the value in the z-vector is small, we simply permute the *//*     array so that the corresponding singular value is moved to the *//*     end. *//*     If two values in the D-vector are close, we perform a two-sided *//*     rotation designed to make one of the corresponding z-vector *//*     entries zero, and then permute the array so that the deflated *//*     singular value is moved to the end. *//*     If there are multiple singular values then the problem deflates. *//*     Here the number of equal singular values are found.  As each equal *//*     singular value is found, an elementary reflector is computed to *//*     rotate the corresponding singular subspace so that the *//*     corresponding components of Z are zero in this new basis. */    *k = 1;    k2 = n + 1;    i__1 = n;    for (j = 2; j <= i__1; ++j) {	if ((d__1 = z__[j], abs(d__1)) <= tol) {/*           Deflate due to small z component. */	    --k2;	    idxp[k2] = j;	    coltyp[j] = 4;	    if (j == n) {		goto L120;	    }	} else {	    jprev = j;	    goto L90;	}/* L80: */    }L90:    j = jprev;L100:    ++j;    if (j > n) {	goto L110;    }    if ((d__1 = z__[j], abs(d__1)) <= tol) {/*        Deflate due to small z component. */	--k2;	idxp[k2] = j;	coltyp[j] = 4;    } else {/*        Check if singular values are close enough to allow deflation. */	if ((d__1 = d__[j] - d__[jprev], abs(d__1)) <= tol) {/*           Deflation is possible. */	    s = z__[jprev];	    c__ = z__[j];/*           Find sqrt(a**2+b**2) without overflow or *//*           destructive underflow. */	    tau = dlapy2_(&c__, &s);	    c__ /= tau;	    s = -s / tau;	    z__[j] = tau;	    z__[jprev] = 0.;/*           Apply back the Givens rotation to the left and right *//*           singular vector matrices. */	    idxjp = idxq[idx[jprev] + 1];	    idxj = idxq[idx[j] + 1];	    if (idxjp <= nlp1) {		--idxjp;	    }	    if (idxj <= nlp1) {		--idxj;	    }	    drot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], &		    c__1, &c__, &s);	    drot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, &		    c__, &s);	    if (coltyp[j] != coltyp[jprev]) {		coltyp[j] = 3;	    }	    coltyp[jprev] = 4;	    --k2;	    idxp[k2] = jprev;	    jprev = j;	} else {	    ++(*k);	    u2[*k + u2_dim1] = z__[jprev];	    dsigma[*k] = d__[jprev];	    idxp[*k] = jprev;	    jprev = j;	}    }    goto L100;L110:/*     Record the last singular value. */    ++(*k);    u2[*k + u2_dim1] = z__[jprev];    dsigma[*k] = d__[jprev];    idxp[*k] = jprev;L120:/*     Count up the total number of the various types of columns, then *//*     form a permutation which positions the four column types into *//*     four groups of uniform structure (although one or more of these *//*     groups may be empty). */    for (j = 1; j <= 4; ++j) {	ctot[j - 1] = 0;/* L130: */    }    i__1 = n;    for (j = 2; j <= i__1; ++j) {	ct = coltyp[j];	++ctot[ct - 1];/* L140: */    }/*     PSM(*) = Position in SubMatrix (of types 1 through 4) */    psm[0] = 2;    psm[1] = ctot[0] + 2;    psm[2] = psm[1] + ctot[1];    psm[3] = psm[2] + ctot[2];/*     Fill out the IDXC array so that the permutation which it induces *//*     will place all type-1 columns first, all type-2 columns next, *//*     then all type-3's, and finally all type-4's, starting from the *//*     second column. This applies similarly to the rows of VT. */    i__1 = n;    for (j = 2; j <= i__1; ++j) {	jp = idxp[j];	ct = coltyp[jp];	idxc[psm[ct - 1]] = j;	++psm[ct - 1];/* L150: */    }/*     Sort the singular values and corresponding singular vectors into *//*     DSIGMA, U2, and VT2 respectively.  The singular values/vectors *//*     which were not deflated go into the first K slots of DSIGMA, U2, *//*     and VT2 respectively, while those which were deflated go into the *//*     last N - K slots, except that the first column/row will be treated *//*     separately. */    i__1 = n;    for (j = 2; j <= i__1; ++j) {	jp = idxp[j];	dsigma[j] = d__[jp];	idxj = idxq[idx[idxp[idxc[j]]] + 1];	if (idxj <= nlp1) {	    --idxj;	}	dcopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1);	dcopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2);/* L160: */    }/*     Determine DSIGMA(1), DSIGMA(2) and Z(1) */    dsigma[1] = 0.;    hlftol = tol / 2.;    if (abs(dsigma[2]) <= hlftol) {	dsigma[2] = hlftol;    }    if (m > n) {	z__[1] = dlapy2_(&z1, &z__[m]);	if (z__[1] <= tol) {	    c__ = 1.;	    s = 0.;	    z__[1] = tol;	} else {	    c__ = z1 / z__[1];	    s = z__[m] / z__[1];	}    } else {	if (abs(z1) <= tol) {	    z__[1] = tol;	} else {	    z__[1] = z1;	}    }/*     Move the rest of the updating row to Z. */    i__1 = *k - 1;    dcopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1);/*     Determine the first column of U2, the first row of VT2 and the *//*     last row of VT. */    dlaset_("A", &n, &c__1, &c_b30, &c_b30, &u2[u2_offset], ldu2);    u2[nlp1 + u2_dim1] = 1.;    if (m > n) {	i__1 = nlp1;	for (i__ = 1; i__ <= i__1; ++i__) {	    vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1];	    vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1];/* L170: */	}	i__1 = m;	for (i__ = nlp2; i__ <= i__1; ++i__) {	    vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1];	    vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1];/* L180: */	}    } else {	dcopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2);    }    if (m > n) {	dcopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2);    }/*     The deflated singular values and their corresponding vectors go *//*     into the back of D, U, and V respectively. */    if (n > *k) {	i__1 = n - *k;	dcopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);	i__1 = n - *k;	dlacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1)		 * u_dim1 + 1], ldu);	i__1 = n - *k;	dlacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 + 		vt_dim1], ldvt);    }/*     Copy CTOT into COLTYP for referencing in DLASD3. */    for (j = 1; j <= 4; ++j) {	coltyp[j] = ctot[j - 1];/* L190: */    }    return 0;/*     End of DLASD2 */} /* dlasd2_ */
 |