| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250 | /* dlaed1.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;/* Subroutine */ int dlaed1_(integer *n, doublereal *d__, doublereal *q, 	integer *ldq, integer *indxq, doublereal *rho, integer *cutpnt, 	doublereal *work, integer *iwork, integer *info){    /* System generated locals */    integer q_dim1, q_offset, i__1, i__2;    /* Local variables */    integer i__, k, n1, n2, is, iw, iz, iq2, zpp1, indx, indxc;    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    integer indxp;    extern /* Subroutine */ int dlaed2_(integer *, integer *, integer *, 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 	     integer *, integer *, integer *, integer *), dlaed3_(integer *, 	    integer *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *, integer *, 	    doublereal *, doublereal *, integer *);    integer idlmda;    extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, 	    integer *, integer *, integer *), xerbla_(char *, integer *);    integer coltyp;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAED1 computes the updated eigensystem of a diagonal *//*  matrix after modification by a rank-one symmetric matrix.  This *//*  routine is used only for the eigenproblem which requires all *//*  eigenvalues and eigenvectors of a tridiagonal matrix.  DLAED7 handles *//*  the case in which eigenvalues only or eigenvalues and eigenvectors *//*  of a full symmetric matrix (which was reduced to tridiagonal form) *//*  are desired. *//*    T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) *//*     where Z = Q'u, u is a vector of length N with ones in the *//*     CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. *//*     The eigenvectors of the original matrix are stored in Q, and the *//*     eigenvalues are in D.  The algorithm consists of three stages: *//*        The first stage consists of deflating the size of the problem *//*        when there are multiple eigenvalues or if there is a zero in *//*        the Z vector.  For each such occurence the dimension of the *//*        secular equation problem is reduced by one.  This stage is *//*        performed by the routine DLAED2. *//*        The second stage consists of calculating the updated *//*        eigenvalues. This is done by finding the roots of the secular *//*        equation via the routine DLAED4 (as called by DLAED3). *//*        This routine also calculates the eigenvectors of the current *//*        problem. *//*        The final stage consists of computing the updated eigenvectors *//*        directly using the updated eigenvalues.  The eigenvectors for *//*        the current problem are multiplied with the eigenvectors from *//*        the overall problem. *//*  Arguments *//*  ========= *//*  N      (input) INTEGER *//*         The dimension of the symmetric tridiagonal matrix.  N >= 0. *//*  D      (input/output) DOUBLE PRECISION array, dimension (N) *//*         On entry, the eigenvalues of the rank-1-perturbed matrix. *//*         On exit, the eigenvalues of the repaired matrix. *//*  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ,N) *//*         On entry, the eigenvectors of the rank-1-perturbed matrix. *//*         On exit, the eigenvectors of the repaired tridiagonal matrix. *//*  LDQ    (input) INTEGER *//*         The leading dimension of the array Q.  LDQ >= max(1,N). *//*  INDXQ  (input/output) INTEGER array, dimension (N) *//*         On entry, the permutation which separately sorts the two *//*         subproblems in D into ascending order. *//*         On exit, the permutation which will reintegrate the *//*         subproblems back into sorted order, *//*         i.e. D( INDXQ( I = 1, N ) ) will be in ascending order. *//*  RHO    (input) DOUBLE PRECISION *//*         The subdiagonal entry used to create the rank-1 modification. *//*  CUTPNT (input) INTEGER *//*         The location of the last eigenvalue in the leading sub-matrix. *//*         min(1,N) <= CUTPNT <= N/2. *//*  WORK   (workspace) DOUBLE PRECISION array, dimension (4*N + N**2) *//*  IWORK  (workspace) INTEGER array, dimension (4*N) *//*  INFO   (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          > 0:  if INFO = 1, an eigenvalue did not converge *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Jeff Rutter, Computer Science Division, University of California *//*     at Berkeley, USA *//*  Modified by Francoise Tisseur, University of Tennessee. *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    q_dim1 = *ldq;    q_offset = 1 + q_dim1;    q -= q_offset;    --indxq;    --work;    --iwork;    /* Function Body */    *info = 0;    if (*n < 0) {	*info = -1;    } else if (*ldq < max(1,*n)) {	*info = -4;    } else /* if(complicated condition) */ {/* Computing MIN */	i__1 = 1, i__2 = *n / 2;	if (min(i__1,i__2) > *cutpnt || *n / 2 < *cutpnt) {	    *info = -7;	}    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DLAED1", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     The following values are integer pointers which indicate *//*     the portion of the workspace *//*     used by a particular array in DLAED2 and DLAED3. */    iz = 1;    idlmda = iz + *n;    iw = idlmda + *n;    iq2 = iw + *n;    indx = 1;    indxc = indx + *n;    coltyp = indxc + *n;    indxp = coltyp + *n;/*     Form the z-vector which consists of the last row of Q_1 and the *//*     first row of Q_2. */    dcopy_(cutpnt, &q[*cutpnt + q_dim1], ldq, &work[iz], &c__1);    zpp1 = *cutpnt + 1;    i__1 = *n - *cutpnt;    dcopy_(&i__1, &q[zpp1 + zpp1 * q_dim1], ldq, &work[iz + *cutpnt], &c__1);/*     Deflate eigenvalues. */    dlaed2_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, &indxq[1], rho, &work[	    iz], &work[idlmda], &work[iw], &work[iq2], &iwork[indx], &iwork[	    indxc], &iwork[indxp], &iwork[coltyp], info);    if (*info != 0) {	goto L20;    }/*     Solve Secular Equation. */    if (k != 0) {	is = (iwork[coltyp] + iwork[coltyp + 1]) * *cutpnt + (iwork[coltyp + 		1] + iwork[coltyp + 2]) * (*n - *cutpnt) + iq2;	dlaed3_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, rho, &work[idlmda], 		 &work[iq2], &iwork[indxc], &iwork[coltyp], &work[iw], &work[		is], info);	if (*info != 0) {	    goto L20;	}/*     Prepare the INDXQ sorting permutation. */	n1 = k;	n2 = *n - k;	dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);    } else {	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    indxq[i__] = i__;/* L10: */	}    }L20:    return 0;/*     End of DLAED1 */} /* dlaed1_ */
 |