| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263 | 
							- /* dgbtf2.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static doublereal c_b9 = -1.;
 
- /* Subroutine */ int dgbtf2_(integer *m, integer *n, integer *kl, integer *ku, 
 
- 	 doublereal *ab, integer *ldab, integer *ipiv, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
 
-     doublereal d__1;
 
-     /* Local variables */
 
-     integer i__, j, km, jp, ju, kv;
 
-     extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *), dscal_(integer *, doublereal *, doublereal *, integer 
 
- 	    *), dswap_(integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *);
 
-     extern integer idamax_(integer *, doublereal *, integer *);
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGBTF2 computes an LU factorization of a real m-by-n band matrix A */
 
- /*  using partial pivoting with row interchanges. */
 
- /*  This is the unblocked version of the algorithm, calling Level 2 BLAS. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A.  M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix A.  N >= 0. */
 
- /*  KL      (input) INTEGER */
 
- /*          The number of subdiagonals within the band of A.  KL >= 0. */
 
- /*  KU      (input) INTEGER */
 
- /*          The number of superdiagonals within the band of A.  KU >= 0. */
 
- /*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
 
- /*          On entry, the matrix A in band storage, in rows KL+1 to */
 
- /*          2*KL+KU+1; rows 1 to KL of the array need not be set. */
 
- /*          The j-th column of A is stored in the j-th column of the */
 
- /*          array AB as follows: */
 
- /*          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl) */
 
- /*          On exit, details of the factorization: U is stored as an */
 
- /*          upper triangular band matrix with KL+KU superdiagonals in */
 
- /*          rows 1 to KL+KU+1, and the multipliers used during the */
 
- /*          factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */
 
- /*          See below for further details. */
 
- /*  LDAB    (input) INTEGER */
 
- /*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1. */
 
- /*  IPIV    (output) INTEGER array, dimension (min(M,N)) */
 
- /*          The pivot indices; for 1 <= i <= min(M,N), row i of the */
 
- /*          matrix was interchanged with row IPIV(i). */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0: successful exit */
 
- /*          < 0: if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization */
 
- /*               has been completed, but the factor U is exactly */
 
- /*               singular, and division by zero will occur if it is used */
 
- /*               to solve a system of equations. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The band storage scheme is illustrated by the following example, when */
 
- /*  M = N = 6, KL = 2, KU = 1: */
 
- /*  On entry:                       On exit: */
 
- /*      *    *    *    +    +    +       *    *    *   u14  u25  u36 */
 
- /*      *    *    +    +    +    +       *    *   u13  u24  u35  u46 */
 
- /*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56 */
 
- /*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66 */
 
- /*     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   * */
 
- /*     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    * */
 
- /*  Array elements marked * are not used by the routine; elements marked */
 
- /*  + need not be set on entry, but are required by the routine to store */
 
- /*  elements of U, because of fill-in resulting from the row */
 
- /*  interchanges. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     KV is the number of superdiagonals in the factor U, allowing for */
 
- /*     fill-in. */
 
-     /* Parameter adjustments */
 
-     ab_dim1 = *ldab;
 
-     ab_offset = 1 + ab_dim1;
 
-     ab -= ab_offset;
 
-     --ipiv;
 
-     /* Function Body */
 
-     kv = *ku + *kl;
 
- /*     Test the input parameters. */
 
-     *info = 0;
 
-     if (*m < 0) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*kl < 0) {
 
- 	*info = -3;
 
-     } else if (*ku < 0) {
 
- 	*info = -4;
 
-     } else if (*ldab < *kl + kv + 1) {
 
- 	*info = -6;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGBTF2", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*m == 0 || *n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Gaussian elimination with partial pivoting */
 
- /*     Set fill-in elements in columns KU+2 to KV to zero. */
 
-     i__1 = min(kv,*n);
 
-     for (j = *ku + 2; j <= i__1; ++j) {
 
- 	i__2 = *kl;
 
- 	for (i__ = kv - j + 2; i__ <= i__2; ++i__) {
 
- 	    ab[i__ + j * ab_dim1] = 0.;
 
- /* L10: */
 
- 	}
 
- /* L20: */
 
-     }
 
- /*     JU is the index of the last column affected by the current stage */
 
- /*     of the factorization. */
 
-     ju = 1;
 
-     i__1 = min(*m,*n);
 
-     for (j = 1; j <= i__1; ++j) {
 
- /*        Set fill-in elements in column J+KV to zero. */
 
- 	if (j + kv <= *n) {
 
- 	    i__2 = *kl;
 
- 	    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		ab[i__ + (j + kv) * ab_dim1] = 0.;
 
- /* L30: */
 
- 	    }
 
- 	}
 
- /*        Find pivot and test for singularity. KM is the number of */
 
- /*        subdiagonal elements in the current column. */
 
- /* Computing MIN */
 
- 	i__2 = *kl, i__3 = *m - j;
 
- 	km = min(i__2,i__3);
 
- 	i__2 = km + 1;
 
- 	jp = idamax_(&i__2, &ab[kv + 1 + j * ab_dim1], &c__1);
 
- 	ipiv[j] = jp + j - 1;
 
- 	if (ab[kv + jp + j * ab_dim1] != 0.) {
 
- /* Computing MAX */
 
- /* Computing MIN */
 
- 	    i__4 = j + *ku + jp - 1;
 
- 	    i__2 = ju, i__3 = min(i__4,*n);
 
- 	    ju = max(i__2,i__3);
 
- /*           Apply interchange to columns J to JU. */
 
- 	    if (jp != 1) {
 
- 		i__2 = ju - j + 1;
 
- 		i__3 = *ldab - 1;
 
- 		i__4 = *ldab - 1;
 
- 		dswap_(&i__2, &ab[kv + jp + j * ab_dim1], &i__3, &ab[kv + 1 + 
 
- 			j * ab_dim1], &i__4);
 
- 	    }
 
- 	    if (km > 0) {
 
- /*              Compute multipliers. */
 
- 		d__1 = 1. / ab[kv + 1 + j * ab_dim1];
 
- 		dscal_(&km, &d__1, &ab[kv + 2 + j * ab_dim1], &c__1);
 
- /*              Update trailing submatrix within the band. */
 
- 		if (ju > j) {
 
- 		    i__2 = ju - j;
 
- 		    i__3 = *ldab - 1;
 
- 		    i__4 = *ldab - 1;
 
- 		    dger_(&km, &i__2, &c_b9, &ab[kv + 2 + j * ab_dim1], &c__1, 
 
- 			     &ab[kv + (j + 1) * ab_dim1], &i__3, &ab[kv + 1 + 
 
- 			    (j + 1) * ab_dim1], &i__4);
 
- 		}
 
- 	    }
 
- 	} else {
 
- /*           If pivot is zero, set INFO to the index of the pivot */
 
- /*           unless a zero pivot has already been found. */
 
- 	    if (*info == 0) {
 
- 		*info = j;
 
- 	    }
 
- 	}
 
- /* L40: */
 
-     }
 
-     return 0;
 
- /*     End of DGBTF2 */
 
- } /* dgbtf2_ */
 
 
  |