| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488 | /* StarPU --- Runtime system for heterogeneous multicore architectures. * * Copyright (C) 2010, 2013, 2014, 2016, 2017  CNRS * * StarPU is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * StarPU is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU Lesser General Public License in COPYING.LGPL for more details. *//**   Matrix Market I/O library for ANSI C**   See http://math.nist.gov/MatrixMarket for details.***/#include <stdio.h>#include <string.h>#include <stdlib.h>#include <ctype.h>#include "mmio.h"int mm_read_unsymmetric_sparse(const char *fname, int *M_, int *N_, int *nz_, double **val_, int **I_, int **J_){	FILE *f;	MM_typecode matcode;	int M, N, nz;	int i;	double *val;	int *I, *J;	if ((f = fopen(fname, "r")) == NULL)	{		fprintf(stderr, "File <%s> not found\n", fname);		return -1;	}	if (mm_read_banner(f, &matcode) != 0)	{		fprintf(stderr, "mm_read_unsymetric: Could not process Matrix Market banner ");		fprintf(stderr, " in file [%s]\n", fname);		return -1;	}	if ( !(mm_is_real(matcode) && mm_is_matrix(matcode) && mm_is_sparse(matcode)))	{		fprintf(stderr, "Sorry, this application does not support ");		fprintf(stderr, "Market Market type: [%s]\n", mm_typecode_to_str(matcode));		return -1;	}	/* find out size of sparse matrix: M, N, nz .... */	if (mm_read_mtx_crd_size(f, &M, &N, &nz) !=0)	{		fprintf(stderr, "read_unsymmetric_sparse(): could not parse matrix size.\n");		return -1;	}	*M_ = M;	*N_ = N;	*nz_ = nz;	/* reseve memory for matrices */	I = (int *) malloc(nz * sizeof(int));	J = (int *) malloc(nz * sizeof(int));	val = (double *) malloc(nz * sizeof(double));	*val_ = val;	*I_ = I;	*J_ = J;	/* NOTE: when reading in doubles, ANSI C requires the use of the "l"  */	/*   specifier as in "%lg", "%lf", "%le", otherwise errors will occur */	/*  (ANSI C X3.159-1989, Sec. 4.9.6.2, p. 136 lines 13-15)            */	for (i=0; i<nz; i++)	{		fscanf(f, "%d %d %lg\n", &I[i], &J[i], &val[i]);		I[i]--;  /* adjust from 1-based to 0-based */		J[i]--;	}	fclose(f);	return 0;}int mm_is_valid(MM_typecode matcode){	if (!mm_is_matrix(matcode)) return 0;	if (mm_is_dense(matcode) && mm_is_pattern(matcode)) return 0;	if (mm_is_real(matcode) && mm_is_hermitian(matcode)) return 0;	if (mm_is_pattern(matcode) && (mm_is_hermitian(matcode) || mm_is_skew(matcode))) return 0;	return 1;}int mm_read_banner(FILE *f, MM_typecode *matcode){	char line[MM_MAX_LINE_LENGTH+1];	char banner[MM_MAX_TOKEN_LENGTH+1];	char mtx[MM_MAX_TOKEN_LENGTH+1];	char crd[MM_MAX_TOKEN_LENGTH+1];	char data_type[MM_MAX_TOKEN_LENGTH+1];	char storage_scheme[MM_MAX_TOKEN_LENGTH+1];	char *p;	mm_clear_typecode(matcode);	if (fgets(line, MM_MAX_LINE_LENGTH, f) == NULL)		return MM_PREMATURE_EOF;	if (sscanf(line, "%"MM_MAX_TOKEN_LENGTH_S"s %"MM_MAX_TOKEN_LENGTH_S"s %"MM_MAX_TOKEN_LENGTH_S"s %"MM_MAX_TOKEN_LENGTH_S"s %"MM_MAX_TOKEN_LENGTH_S"s", banner, mtx, crd, data_type, storage_scheme) != 5)		return MM_PREMATURE_EOF;	for (p=mtx; *p!='\0'; *p=tolower(*p),p++);  /* convert to lower case */	for (p=crd; *p!='\0'; *p=tolower(*p),p++);	for (p=data_type; *p!='\0'; *p=tolower(*p),p++);	for (p=storage_scheme; *p!='\0'; *p=tolower(*p),p++);	/* check for banner */	if (strncmp(banner, MatrixMarketBanner, strlen(MatrixMarketBanner)) != 0)		return MM_NO_HEADER;	/* first field should be "mtx" */	if (strcmp(mtx, MM_MTX_STR) != 0)		return  MM_UNSUPPORTED_TYPE;	mm_set_matrix(matcode);	/* second field describes whether this is a sparse matrix (in coordinate storage) or a dense array */	if (strcmp(crd, MM_SPARSE_STR) == 0)		mm_set_sparse(matcode);	else if (strcmp(crd, MM_DENSE_STR) == 0)		mm_set_dense(matcode);	else		return MM_UNSUPPORTED_TYPE;	/* third field */	if (strcmp(data_type, MM_REAL_STR) == 0)		mm_set_real(matcode);	else if (strcmp(data_type, MM_COMPLEX_STR) == 0)		mm_set_complex(matcode);	else if (strcmp(data_type, MM_PATTERN_STR) == 0)		mm_set_pattern(matcode);	else if (strcmp(data_type, MM_INT_STR) == 0)		mm_set_integer(matcode);	else		return MM_UNSUPPORTED_TYPE;	/* fourth field */	if (strcmp(storage_scheme, MM_GENERAL_STR) == 0)		mm_set_general(matcode);	else if (strcmp(storage_scheme, MM_SYMM_STR) == 0)		mm_set_symmetric(matcode);	else if (strcmp(storage_scheme, MM_HERM_STR) == 0)		mm_set_hermitian(matcode);	else if (strcmp(storage_scheme, MM_SKEW_STR) == 0)		mm_set_skew(matcode);	else		return MM_UNSUPPORTED_TYPE;	return 0;}int mm_write_mtx_crd_size(FILE *f, int M, int N, int nz){	if (fprintf(f, "%d %d %d\n", M, N, nz) != 3)		return MM_COULD_NOT_WRITE_FILE;	else		return 0;}int mm_read_mtx_crd_size(FILE *f, int *M, int *N, int *nz ){	char line[MM_MAX_LINE_LENGTH];	/* set return null parameter values, in case we exit with errors */	*M = *N = *nz = 0;	/* now continue scanning until you reach the end-of-comments */	do	{		if (fgets(line,MM_MAX_LINE_LENGTH,f) == NULL)			return MM_PREMATURE_EOF;	} while (line[0] == '%');	/* line[] is either blank or has M,N, nz */	if (sscanf(line, "%d %d %d", M, N, nz) == 3)		return 0;	else	{		int num_items_read;		do		{			num_items_read = fscanf(f, "%d %d %d", M, N, nz);			if (num_items_read == EOF) return MM_PREMATURE_EOF;		}		while (num_items_read != 3);	}	return 0;}int mm_read_mtx_array_size(FILE *f, int *M, int *N){	char line[MM_MAX_LINE_LENGTH];	/* set return null parameter values, in case we exit with errors */	*M = *N = 0;	/* now continue scanning until you reach the end-of-comments */	do	{		if (fgets(line,MM_MAX_LINE_LENGTH,f) == NULL)			return MM_PREMATURE_EOF;	} while (line[0] == '%');	/* line[] is either blank or has M,N, nz */	if (sscanf(line, "%d %d", M, N) == 2)		return 0;	else /* we have a blank line */	{		int num_items_read;		do		{			num_items_read = fscanf(f, "%d %d", M, N);			if (num_items_read == EOF) return MM_PREMATURE_EOF;		}		while (num_items_read != 2);	}	return 0;}int mm_write_mtx_array_size(FILE *f, int M, int N){	if (fprintf(f, "%d %d\n", M, N) != 2)		return MM_COULD_NOT_WRITE_FILE;	else		return 0;}/*-------------------------------------------------------------------------*//******************************************************************//* use when I[], J[], and val[]J, and val[] are already allocated *//******************************************************************/int mm_read_mtx_crd_data(FILE *f, int M, int N, int nz, int I[], int J[], double val[], MM_typecode matcode){	int i;	if (mm_is_complex(matcode))	{		for (i=0; i<nz; i++)			if (fscanf(f, "%d %d %lg %lg", &I[i], &J[i], &val[2*i], &val[2*i+1]) != 4)				return MM_PREMATURE_EOF;	}	else if (mm_is_real(matcode))	{		for (i=0; i<nz; i++)		{			if (fscanf(f, "%d %d %lg\n", &I[i], &J[i], &val[i]) != 3)				return MM_PREMATURE_EOF;		}	}	else if (mm_is_pattern(matcode))	{		for (i=0; i<nz; i++)			if (fscanf(f, "%d %d", &I[i], &J[i]) != 2)				return MM_PREMATURE_EOF;	}	else		return MM_UNSUPPORTED_TYPE;	return 0;}int mm_read_mtx_crd_entry(FILE *f, int *I, int *J, double *real, double *imag, MM_typecode matcode){	if (mm_is_complex(matcode))	{		if (fscanf(f, "%d %d %lg %lg", I, J, real, imag) != 4)			return MM_PREMATURE_EOF;	}	else if (mm_is_real(matcode))	{		if (fscanf(f, "%d %d %lg\n", I, J, real) != 3)			return MM_PREMATURE_EOF;	}	else if (mm_is_pattern(matcode))	{		if (fscanf(f, "%d %d", I, J) != 2) return MM_PREMATURE_EOF;	}	else		return MM_UNSUPPORTED_TYPE;	return 0;}/************************************************************************    mm_read_mtx_crd()  fills M, N, nz, array of values, and return                        type code, e.g. 'MCRS'                        if matrix is complex, values[] is of size 2*nz,                            (nz pairs of real/imaginary values)************************************************************************/int mm_read_mtx_crd(char *fname, int *M, int *N, int *nz, int **I, int **J, double **val, MM_typecode *matcode){	int ret_code;	FILE *f;	if (strcmp(fname, "stdin") == 0) f=stdin;	else		if ((f = fopen(fname, "r")) == NULL)			return MM_COULD_NOT_READ_FILE;	if ((ret_code = mm_read_banner(f, matcode)) != 0)	{		if (f != stdin) fclose(f);		return ret_code;	}	if (!(mm_is_valid(*matcode) && mm_is_sparse(*matcode) && mm_is_matrix(*matcode)))	{		if (f != stdin) fclose(f);		return MM_UNSUPPORTED_TYPE;	}	if ((ret_code = mm_read_mtx_crd_size(f, M, N, nz)) != 0)	{		if (f != stdin) fclose(f);		return ret_code;	}	*I = (int *) malloc(*nz * sizeof(int));	*J = (int *) malloc(*nz * sizeof(int));	*val = NULL;	if (mm_is_complex(*matcode))	{		*val = (double *) malloc(*nz * 2 * sizeof(double));		ret_code = mm_read_mtx_crd_data(f, *M, *N, *nz, *I, *J, *val, *matcode);		if (ret_code != 0)		{			if (f != stdin) fclose(f);			return ret_code;		}	}	else if (mm_is_real(*matcode))	{		*val = (double *) malloc(*nz * sizeof(double));		ret_code = mm_read_mtx_crd_data(f, *M, *N, *nz, *I, *J, *val, *matcode);		if (ret_code != 0)		{			if (f != stdin) fclose(f);			return ret_code;		}	}	else if (mm_is_pattern(*matcode))	{		ret_code = mm_read_mtx_crd_data(f, *M, *N, *nz, *I, *J, *val, *matcode);		if (ret_code != 0)		{			if (f != stdin) fclose(f);			return ret_code;		}	}	if (f != stdin) fclose(f);	return 0;}int mm_write_banner(FILE *f, MM_typecode matcode){	char *str = mm_typecode_to_str(matcode);	int ret_code;	ret_code = fprintf(f, "%s %s\n", MatrixMarketBanner, str);	free(str);	if (ret_code != 2)		return MM_COULD_NOT_WRITE_FILE;	else		return 0;}int mm_write_mtx_crd(char fname[], int M, int N, int nz, int I[], int J[], double val[], MM_typecode matcode){	FILE *f;	int i;	if (strcmp(fname, "stdout") == 0)		f = stdout;	else if ((f = fopen(fname, "w")) == NULL)		return MM_COULD_NOT_WRITE_FILE;	/* print banner followed by typecode */	fprintf(f, "%s ", MatrixMarketBanner);	fprintf(f, "%s\n", mm_typecode_to_str(matcode));	/* print matrix sizes and nonzeros */	fprintf(f, "%d %d %d\n", M, N, nz);	/* print values */	if (mm_is_pattern(matcode))		for (i=0; i<nz; i++)			fprintf(f, "%d %d\n", I[i], J[i]);	else if (mm_is_real(matcode))		for (i=0; i<nz; i++)			fprintf(f, "%d %d %20.16g\n", I[i], J[i], val[i]);	else if (mm_is_complex(matcode))		for (i=0; i<nz; i++)			fprintf(f, "%d %d %20.16g %20.16g\n", I[i], J[i], val[2*i], val[2*i+1]);	else	{		if (f != stdout) fclose(f);		return MM_UNSUPPORTED_TYPE;	}	if (f !=stdout) fclose(f);	return 0;}/***  Create a new copy of a string s.  mm_strdup() is a common routine, but*  not part of ANSI C, so it is included here.  Used by mm_typecode_to_str().**/char *mm_strdup(const char *s){	int len = strlen(s);	char *s2 = (char *) malloc((len+1)*sizeof(char));	return strcpy(s2, s);}char  *mm_typecode_to_str(MM_typecode matcode){	char buffer[MM_MAX_LINE_LENGTH];	char *types[4];	/*	char *mm_strdup(const char *); */	/* check for MTX type */	if (mm_is_matrix(matcode))		types[0] = MM_MTX_STR;	/* check for CRD or ARR matrix */	if (mm_is_sparse(matcode))		types[1] = MM_SPARSE_STR;	else if (mm_is_dense(matcode))		types[1] = MM_DENSE_STR;	else		return NULL;	/* check for element data type */	if (mm_is_real(matcode))		types[2] = MM_REAL_STR;	else if (mm_is_complex(matcode))		types[2] = MM_COMPLEX_STR;	else if (mm_is_pattern(matcode))		types[2] = MM_PATTERN_STR;	else if (mm_is_integer(matcode))		types[2] = MM_INT_STR;	else		return NULL;	/* check for symmetry type */	if (mm_is_general(matcode))		types[3] = MM_GENERAL_STR;	else if (mm_is_symmetric(matcode))		types[3] = MM_SYMM_STR;	else if (mm_is_hermitian(matcode))		types[3] = MM_HERM_STR;	else if (mm_is_skew(matcode))		types[3] = MM_SKEW_STR;	else		return NULL;	snprintf(buffer, sizeof(buffer), "%s %s %s %s", types[0], types[1], types[2], types[3]);	return mm_strdup(buffer);}
 |