| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 | 
							- /* dpbsv.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int _starpu_dpbsv_(char *uplo, integer *n, integer *kd, integer *
 
- 	nrhs, doublereal *ab, integer *ldab, doublereal *b, integer *ldb, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer ab_dim1, ab_offset, b_dim1, b_offset, i__1;
 
-     /* Local variables */
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *), _starpu_dpbtrf_(
 
- 	    char *, integer *, integer *, doublereal *, integer *, integer *), _starpu_dpbtrs_(char *, integer *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *);
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DPBSV computes the solution to a real system of linear equations */
 
- /*     A * X = B, */
 
- /*  where A is an N-by-N symmetric positive definite band matrix and X */
 
- /*  and B are N-by-NRHS matrices. */
 
- /*  The Cholesky decomposition is used to factor A as */
 
- /*     A = U**T * U,  if UPLO = 'U', or */
 
- /*     A = L * L**T,  if UPLO = 'L', */
 
- /*  where U is an upper triangular band matrix, and L is a lower */
 
- /*  triangular band matrix, with the same number of superdiagonals or */
 
- /*  subdiagonals as A.  The factored form of A is then used to solve the */
 
- /*  system of equations A * X = B. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of linear equations, i.e., the order of the */
 
- /*          matrix A.  N >= 0. */
 
- /*  KD      (input) INTEGER */
 
- /*          The number of superdiagonals of the matrix A if UPLO = 'U', */
 
- /*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrix B.  NRHS >= 0. */
 
- /*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
 
- /*          On entry, the upper or lower triangle of the symmetric band */
 
- /*          matrix A, stored in the first KD+1 rows of the array.  The */
 
- /*          j-th column of A is stored in the j-th column of the array AB */
 
- /*          as follows: */
 
- /*          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j; */
 
- /*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD). */
 
- /*          See below for further details. */
 
- /*          On exit, if INFO = 0, the triangular factor U or L from the */
 
- /*          Cholesky factorization A = U**T*U or A = L*L**T of the band */
 
- /*          matrix A, in the same storage format as A. */
 
- /*  LDAB    (input) INTEGER */
 
- /*          The leading dimension of the array AB.  LDAB >= KD+1. */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          On entry, the N-by-NRHS right hand side matrix B. */
 
- /*          On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, the leading minor of order i of A is not */
 
- /*                positive definite, so the factorization could not be */
 
- /*                completed, and the solution has not been computed. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The band storage scheme is illustrated by the following example, when */
 
- /*  N = 6, KD = 2, and UPLO = 'U': */
 
- /*  On entry:                       On exit: */
 
- /*      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46 */
 
- /*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56 */
 
- /*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66 */
 
- /*  Similarly, if UPLO = 'L' the format of A is as follows: */
 
- /*  On entry:                       On exit: */
 
- /*     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66 */
 
- /*     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   * */
 
- /*     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    * */
 
- /*  Array elements marked * are not used by the routine. */
 
- /*  ===================================================================== */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     ab_dim1 = *ldab;
 
-     ab_offset = 1 + ab_dim1;
 
-     ab -= ab_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (! _starpu_lsame_(uplo, "U") && ! _starpu_lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*kd < 0) {
 
- 	*info = -3;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -4;
 
-     } else if (*ldab < *kd + 1) {
 
- 	*info = -6;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -8;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DPBSV ", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Compute the Cholesky factorization A = U'*U or A = L*L'. */
 
-     _starpu_dpbtrf_(uplo, n, kd, &ab[ab_offset], ldab, info);
 
-     if (*info == 0) {
 
- /*        Solve the system A*X = B, overwriting B with X. */
 
- 	_starpu_dpbtrs_(uplo, n, kd, nrhs, &ab[ab_offset], ldab, &b[b_offset], ldb, 
 
- 		info);
 
-     }
 
-     return 0;
 
- /*     End of DPBSV */
 
- } /* _starpu_dpbsv_ */
 
 
  |