| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 | 
							- /* dlanst.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- doublereal _starpu_dlanst_(char *norm, integer *n, doublereal *d__, doublereal *e)
 
- {
 
-     /* System generated locals */
 
-     integer i__1;
 
-     doublereal ret_val, d__1, d__2, d__3, d__4, d__5;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__;
 
-     doublereal sum, scale;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     doublereal anorm;
 
-     extern /* Subroutine */ int _starpu_dlassq_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *);
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLANST  returns the value of the one norm,  or the Frobenius norm, or */
 
- /*  the  infinity norm,  or the  element of  largest absolute value  of a */
 
- /*  real symmetric tridiagonal matrix A. */
 
- /*  Description */
 
- /*  =========== */
 
- /*  DLANST returns the value */
 
- /*     DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
 
- /*              ( */
 
- /*              ( norm1(A),         NORM = '1', 'O' or 'o' */
 
- /*              ( */
 
- /*              ( normI(A),         NORM = 'I' or 'i' */
 
- /*              ( */
 
- /*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */
 
- /*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
 
- /*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
 
- /*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
 
- /*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  NORM    (input) CHARACTER*1 */
 
- /*          Specifies the value to be returned in DLANST as described */
 
- /*          above. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0.  When N = 0, DLANST is */
 
- /*          set to zero. */
 
- /*  D       (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          The diagonal elements of A. */
 
- /*  E       (input) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The (n-1) sub-diagonal or super-diagonal elements of A. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     --e;
 
-     --d__;
 
-     /* Function Body */
 
-     if (*n <= 0) {
 
- 	anorm = 0.;
 
-     } else if (_starpu_lsame_(norm, "M")) {
 
- /*        Find max(abs(A(i,j))). */
 
- 	anorm = (d__1 = d__[*n], abs(d__1));
 
- 	i__1 = *n - 1;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- /* Computing MAX */
 
- 	    d__2 = anorm, d__3 = (d__1 = d__[i__], abs(d__1));
 
- 	    anorm = max(d__2,d__3);
 
- /* Computing MAX */
 
- 	    d__2 = anorm, d__3 = (d__1 = e[i__], abs(d__1));
 
- 	    anorm = max(d__2,d__3);
 
- /* L10: */
 
- 	}
 
-     } else if (_starpu_lsame_(norm, "O") || *(unsigned char *)
 
- 	    norm == '1' || _starpu_lsame_(norm, "I")) {
 
- /*        Find norm1(A). */
 
- 	if (*n == 1) {
 
- 	    anorm = abs(d__[1]);
 
- 	} else {
 
- /* Computing MAX */
 
- 	    d__3 = abs(d__[1]) + abs(e[1]), d__4 = (d__1 = e[*n - 1], abs(
 
- 		    d__1)) + (d__2 = d__[*n], abs(d__2));
 
- 	    anorm = max(d__3,d__4);
 
- 	    i__1 = *n - 1;
 
- 	    for (i__ = 2; i__ <= i__1; ++i__) {
 
- /* Computing MAX */
 
- 		d__4 = anorm, d__5 = (d__1 = d__[i__], abs(d__1)) + (d__2 = e[
 
- 			i__], abs(d__2)) + (d__3 = e[i__ - 1], abs(d__3));
 
- 		anorm = max(d__4,d__5);
 
- /* L20: */
 
- 	    }
 
- 	}
 
-     } else if (_starpu_lsame_(norm, "F") || _starpu_lsame_(norm, "E")) {
 
- /*        Find normF(A). */
 
- 	scale = 0.;
 
- 	sum = 1.;
 
- 	if (*n > 1) {
 
- 	    i__1 = *n - 1;
 
- 	    _starpu_dlassq_(&i__1, &e[1], &c__1, &scale, &sum);
 
- 	    sum *= 2;
 
- 	}
 
- 	_starpu_dlassq_(n, &d__[1], &c__1, &scale, &sum);
 
- 	anorm = scale * sqrt(sum);
 
-     }
 
-     ret_val = anorm;
 
-     return ret_val;
 
- /*     End of DLANST */
 
- } /* _starpu_dlanst_ */
 
 
  |